VS1001K [ETC]

MPEG AUDIO CODEC; MPEG音频编解码器
VS1001K
型号: VS1001K
厂家: ETC    ETC
描述:

MPEG AUDIO CODEC
MPEG音频编解码器

解码器 编解码器
文件: 总39页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VS1001K  
DATASHEET  
VS1001k - MPEG AUDIO CODEC  
Features  
Description  
MPEG audio layer 3 decoder (ISO11172-3)  
Supports MPEG 1 & 2, and 2.5 extensions,  
VS1001k is a single-chip solution for an MPEG  
layer 3 audio decoder. The chip contains a high-  
performance low-power DSP processor (VS DSP),  
working memory, 4 KiB program RAM and 0.5  
KiB data RAM for user applications, serial con-  
trol and input data interfaces, and a high-quality  
oversampling variable-sample-rate stereo DAC, fol-  
lowed by an earphone amplifier and a ground buffer.  
all their sample rates and bit rates, in mono  
and stereo  
Supports PCM input  
Supports VBR (variable bitrate)  
Can be used as a slave co-processor  
Operates with single clock 12..13 MHz or  
24..26 MHz  
Extremely low-power operation  
On-chip high-quality stereo DAC with no  
VS1001k receives its input bitstream through a  
serial input bus, which it listens to as a system  
slave. The input stream is decoded and passed  
through a analog/digital hybrid volume control to  
an 18-bit oversampling multi-bit sigma-delta DAC.  
The decoding is controlled via a serial control bus.  
In addition to the basic decoding, it is possible to  
add application specific features, like DSP effects,  
to the user RAM memory.  
phase error between channels  
Internal Op-Amp in BGA-49 and LQFP-48  
packages  
Stereo earphone driver capable of driving a  
30 load.  
Separate 2.5 .. 3.6V operating voltages for  
analog and digital  
4 KiB On-chip RAM for user code  
Serial control and data interfaces  
New functions may be added with software  
VS1001  
audio  
L
stereo ear−  
phone driver  
stereo  
DAC  
R
output  
DREQ  
serial  
DCLK  
data  
SDATA  
BSYNC  
x−ROM  
x−RAM  
y−RAM  
y−ROM  
SDI  
Bus  
interface  
X Bus  
VS_DSP  
SCI  
Bus  
SO  
serial  
control  
interface  
SI  
SCLK  
XCS  
Y Bus  
I Bus  
program  
RAM  
program  
ROM  
Version 4.11, 2003-09-18  
1
VS1001K  
VLSI  
DATASHEET  
y
Solution  
CONTENTS  
Contents  
1
2
License  
7
7
Characteristics & Specifications  
2.1 Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.2 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.3 DAC Interpolation Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.4 DAC Interpolation Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.6 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.7 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
8
8
8
8
9
9
2.8 Switching Characteristics - Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.9 Switching Characteristics - DREQ Signal . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.10 Switching Characteristics - SPI Interface Output . . . . . . . . . . . . . . . . . . . . . . 10  
2.11 Switching Characteristics - Boot Initialization . . . . . . . . . . . . . . . . . . . . . . . 10  
3
Packages and Pin Descriptions  
11  
3.1 SOIC-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.2 BGA-49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.3 LQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
5
6
Connection Diagram, SOIC-28  
Connection Diagram, BGA-49 and LQFP-48  
SPI Buses  
14  
15  
16  
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Version 4.11, 2003-09-18  
2
VS1001K  
VLSI  
DATASHEET  
y
Solution  
CONTENTS  
6.2 SPI Bus Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.3 Serial Protocol for Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . 16  
6.4 Serial Protocol for Serial Command Interface (SCI) . . . . . . . . . . . . . . . . . . . . 17  
6.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.4.2 SCI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.4.3 SCI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.5 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7
Functional Description  
20  
7.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.2 Data Flow of VS1001k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.3 Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.4 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.5 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.5.1 MODE (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.5.2 STATUS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5.3 INT FCNTLH (-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5.4 CLOCKF (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5.5 DECODE TIME (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5.6 AUDATA (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.5.7 WRAM (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.5.8 WRAMADDR (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.5.9 HDAT0 and HDAT1 (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.5.10 AIADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.5.11 VOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Version 4.11, 2003-09-18  
3
VS1001K  
VLSI  
DATASHEET  
y
Solution  
CONTENTS  
7.5.12 RESERVED (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.5.13 AICTRL[x] (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.6 Stereo Audio DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8
Operation  
28  
8.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.2 Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.3 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.4 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.5 Play/Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6 Sanity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.7 PCM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.8 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.8.1 Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.8.2 SCI Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.8.3 Sine Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9
Writing Software  
32  
9.1 When to Write Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2 The Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.3 User’s Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.4 Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.4.1 SCI Registers, 0x4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.4.2 Serial Registers, 0x4100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.4.3 DAC Registers, 0x4200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.4.4 Interrupt Registers, 0x4300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Version 4.11, 2003-09-18  
4
VS1001K  
VLSI  
DATASHEET  
y
Solution  
CONTENTS  
9.5 System Vector Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5.1 AudioInt, 0x4000..0x4001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5.2 SpiInt, 0x4002..0x4003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5.3 DataInt, 0x4004..0x4005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5.4 UserCodec, 0x4008..0x4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.6 System Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.6.1 WriteIRam(), 0x4010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.6.2 ReadIRam(), 0x4011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.6.3 DataWords(), 0x4012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.6.4 GetDataByte(), 0x4013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.6.5 GetDataWords(), 0x4014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10 VS1001 Version Changes  
37  
10.1 Changes Between VS1001h and Production Version VS1001k, 2001-08 . . . . . . . . . 37  
10.2 Changes Between VS1001g and VS1001h, 2001-05 . . . . . . . . . . . . . . . . . . . . 37  
10.3 Changes Between VS1001d to VS1001g, 2001-03 . . . . . . . . . . . . . . . . . . . . . 37  
11 Document Version Changes  
38  
11.1 Changes Between Version 4.10 and 4.11 for VS1001k, 2003-09 . . . . . . . . . . . . . 38  
11.2 Changes Between Version 4.08 and 4.10 for VS1001k, 2003-07 . . . . . . . . . . . . . 38  
11.3 Changes Between Version 4.07 and 4.08 for VS1001k, 2003-03 . . . . . . . . . . . . . 38  
11.4 Changes Between Version 4.06 and 4.07 for VS1001k, 2003-03 . . . . . . . . . . . . . 38  
11.5 Changes Between Version 4.05 and 4.06 for VS1001k, 2002-09 . . . . . . . . . . . . . 38  
11.6 Changes Between Version 4.03 and 4.05 for VS1001k, 2002-08 . . . . . . . . . . . . . 38  
12 Contact Information  
39  
Version 4.11, 2003-09-18  
5
VS1001K  
VLSI  
DATASHEET  
y
Solution  
LIST OF FIGURES  
List of Figures  
1
2
3
4
5
6
7
8
9
Pin Configuration, SOIC-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration, BGA-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration, LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Connection Diagram Using SOIC-28. . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Connection Diagram Using BGA-49. . . . . . . . . . . . . . . . . . . . . . . . 15  
BSYNC Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SCI Word Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SCI Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10 Data Flow of VS1001k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
11 Built-In Bass/Treble Enhancer Frequency Response at 44.1 kHz. . . . . . . . . . . . . . 23  
12 User’s Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Version 4.11, 2003-09-18  
6
VS1001K  
VLSI  
DATASHEET  
y
Solution  
1. LICENSE  
1 License  
MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and THOMSON multimedia.  
Supply of this product only conveys a license for private, non-commercial use.  
2 Characteristics & Specifications  
Unless otherwise noted: AVDD=2.9..3.6V, DVDD=2.3..3.6V, TA=-30..+85C, XTALI=24.576MHz, Full-  
Scale Output Sinewave at 1.526 kHz, measurement bandwidth 20..20000 Hz, analog output load 30 (no  
ground buffer) or 100 (with ground buffer), bitstream 128 kbits/s, local components as shown in Figures  
4 and 5.  
Note, that some analog values are in practice better than in these tables if chips are used within a limited  
temperature range and not too close to lower voltage limits.  
2.1 Analog Characteristics  
Parameter  
Symbol Min Typ Max Unit  
DAC Resolution  
Total Harmonic Distortion  
Dynamic Range (DAC unmuted, A-weighted)  
S/N Ratio (full scale signal)  
Interchannel Isolation  
16  
0.1  
90  
87  
75  
bits  
%
dB  
dB  
dB  
THD  
IDR  
SNR  
0.2  
70  
50  
Interchannel Gain Mismatch  
Frequency Response  
Frequency Response, AVDD = 2.8V  
Full Scale Output Voltage (Peak-to-peak)  
Deviation from Linear Phase  
Out of Band Energy  
Out of Band Energy with Analog Filter  
Analog Output Load Resistance, no ground buffer AOLR1  
Analog Output Load Resistance, ground buffer  
Analog Output Load Capacitance  
-0.5  
-0.1  
-0.3  
0.5 dB  
0.1 dB  
0.3 dB  
2.0 Vpp  
1.4 1.81  
5
-60  
-90  
302  
dB  
dB  
16  
16 1002  
AOLR2  
1000 pF  
1 3.6 volts can be achieved with +-to-+ wiring for mono difference sound.  
2 AOLR1/2 may be much lower, but below Typical distortion performance may be compromised.  
Version 4.11, 2003-09-18  
7
VS1001K  
VLSI  
DATASHEET  
y
Solution  
2. CHARACTERISTICS & SPECIFICATIONS  
2.2 Power Consumption  
Parameter  
Symbol Min Typ Max Unit  
Power Supply Rejection  
Power Supply Consumption AVDD, Reset  
40  
0.6  
4.5  
5.5  
7.5  
dB  
A
mA  
5.0  
6.0  
Power Supply Consumption AVDD, no load  
Power Supply Consumption AVDD, output loaded at 30  
Power Supply Consumption AVDD, o. @ 30 + GND-buf.  
Power Supply Consumption DVDD, Reset  
Power Supply Consumption DVDD  
3.0  
4.0  
6.0  
40.0 mA  
40.0 mA  
3.7 100.0  
15.0  
A
mA  
2.3 DAC Interpolation Filter Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Passband (to -3dB corner)  
Passband (Ripple Spec)  
Passband Ripple  
Transition Band  
Stop Band  
Stop Band Rejection  
Group Delay  
0
0
0.459Fs Hz  
0.420Fs Hz  
±0.056 dB  
0.580Fs Hz  
Hz  
0.420Fs  
0.580Fs  
90  
dB  
s
15/Fs  
Fs is conversion frequency  
2.4 DAC Interpolation Filter Characteristics  
Parameter  
Symbol Min Typ Max Unit  
-3 dB bandwidth  
Passband Response at 20 kHz  
300  
-0.05  
kHz  
dB  
2.5 Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
Analog Positive Supply  
Digital Positive Supply  
AVDD  
DVDD  
-0.3  
-0.3  
3.6  
3.6  
V
V
Current at Any Digital Output  
Voltage at Any Digital Input  
Operating Temperature  
Functional Operating Temperature  
Storage Temperature  
±50  
mA  
V
C  
C  
C  
DGND-1.0 DVDD+1.0  
-30  
-40  
-65  
+85  
+95  
+150  
Version 4.11, 2003-09-18  
8
VS1001K  
VLSI  
DATASHEET  
y
Solution  
2. CHARACTERISTICS & SPECIFICATIONS  
2.6 Recommended Operating Conditions  
Parameter  
Symbol  
Min Typ Max Unit  
Analog and Digital Ground  
Positive Analog  
Ambient Operating Temperature  
AGND DGND  
AVDD  
0.0  
2.51 3.0  
-30  
V
V
3.6  
+85 C  
1 If AVDD is below 2.8 V, distortion performance may be compromised.  
The following values are to be used when the clock doubler is active:  
Parameter  
Symbol Min  
Typ  
Max Unit  
Positive Digital  
Input Clock Frequency  
Internal Clock Frequency1  
DVDD  
XTALI  
CLKI  
2.3  
2.7  
12.288  
24.576  
3.6  
13  
26  
V
MHz  
MHz  
1 The maximum sample rate that may be decoded with correct speed is CLKI/512.  
The following values are to be used when the clock doubler is inactive:  
Parameter  
Symbol Min  
Typ  
Max Unit  
Positive Digital  
Input Clock Frequency  
Internal Clock Frequency1  
DVDD  
XTALI  
CLKI  
2.3  
2.7  
24.576  
24.576  
3.6  
26  
26  
V
MHz  
MHz  
1 The maximum sample rate that may be decoded with correct speed is CLKI/512.  
Note: With higher than typical voltages, VS1001k may operate with CLKI upto 30..32 MHz. However,  
the chips are not qualified for this kind of usage. If necessary, VLSI Solution Oy can qualify chips for  
higher clock rates for quantity orders.  
2.7 Digital Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage at I = -2.0 mA  
Low-Level Output Voltage at I = 2.0 mA  
Input Leakage Current  
0.7DVDD  
V
V
V
V
A
0.3DVDD  
0.7DVDD  
0.3DVDD  
1.0  
Version 4.11, 2003-09-18  
9
VS1001K  
VLSI  
DATASHEET  
y
Solution  
2. CHARACTERISTICS & SPECIFICATIONS  
2.8 Switching Characteristics - Clocks  
Parameter  
Symbol Min  
Typ  
Max Unit  
Master Clock Frequency 1 XTALI  
Master Clock Frequency 2 XTALI  
Master Clock Duty Cycle  
12.288  
24.576  
50  
MHz  
MHz  
%
40  
60  
Clock Output  
XTALO  
XTALI  
MHz  
1 Clock doubler active.  
2 Clock doubler inactive.  
2.9 Switching Characteristics - DREQ Signal  
Parameter  
Symbol Min Typ Max Unit  
200 ns  
Data Request Signal DREQ  
2.10 Switching Characteristics - SPI Interface Output  
Parameter  
Symbol Min Typ  
Max  
0.25×CLKI MHz  
100 ns  
Unit  
SPI Input Clock Frequency  
Rise time for SO  
2.11 Switching Characteristics - Boot Initialization  
Parameter  
Symbol Min Max  
Unit  
XTALI  
50000 XTALI  
RESET active time  
RESET inactive to software ready  
2
Version 4.11, 2003-09-18  
10  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
3. PACKAGES AND PIN DESCRIPTIONS  
3 Packages and Pin Descriptions  
3.1 SOIC-28  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VS1001  
SOIC − 28  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 1: Pin Configuration, SOIC-28.  
Pin Name  
Pin  
Pin Type  
Function  
DREQ  
DCLK  
SDATA  
BSYNC  
DVDD1  
DGND1  
XTALO  
XTALI  
DVDD2  
DGND2  
XCS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DO  
DIO  
DI  
data request, input bus  
serial input data bus clock  
serial data input  
byte synchronization signal  
digital power supply  
digital ground  
DI  
PWR  
PWR  
CLK  
CLK  
PWR  
PWR  
DI  
DI  
DI  
DO3  
DI  
DO  
crystal output  
crystal input  
digital power supply  
digital ground  
chip select input (active low)  
clock for serial bus  
serial input  
SCLK  
SI  
SO  
serial output  
TEST0  
TEST1  
TEST2  
AGND1  
AVDD1  
RIGHT  
AGND2  
RCAP  
AVDD2  
LEFT  
AGND3  
XRESET  
DGND3  
DVDD3  
reserved for test, connect to DVDD  
reserved for test, do not connect!  
reserved for test, do not connect!  
analog ground  
analog power supply  
right channel output  
analog ground  
capacitance for reference  
analog power supply  
left channel output  
analog ground  
active low asynchronous reset  
digital ground  
DO  
PWR  
PWR  
AO  
PWR  
AIO  
PWR  
AO  
PWR  
DI  
PWR  
PWR  
digital power supply  
Pin types:  
Type Description  
Type Description  
DI  
DO  
DIO  
Digital input, CMOS Input Pad  
Digital output, CMOS Input Pad  
Digital input/output  
AI  
AO  
AIO  
Analog input  
Analog output  
Analog input/output  
DO3 Digital output, CMOS Tri-stated Output Pad  
PWR Power supply pin  
SOIC-28 package dimensions can be found at http://www.vlsi.fi/vs1001/soic28.pdf .  
Version 4.11, 2003-09-18  
11  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
3. PACKAGES AND PIN DESCRIPTIONS  
3.2 BGA-49  
A1 BALL PAD CORNER  
4
5
3
6
7
1
2
A
B
C
D
E
F
G
1.10 REF  
0.80 TYP  
4.80  
7.00  
TOP VIEW  
Figure 2: Pin Configuration, BGA-49.  
Pin Name  
Ball  
Pin Type  
Function  
BSYNC  
DVDD1  
DGND1  
XTAL0  
XTALI  
DVDD2  
DGND2  
XCS  
E3  
F3  
F4  
G3  
E4  
F5  
F6  
G6  
D6  
E7  
D5  
C6  
C7  
B6  
C5  
B5  
A6  
B4  
A5  
C4  
A4  
B3  
A3  
B2  
A2  
B1  
D2  
D3  
E2  
E1  
F2  
DI  
PWR  
PWR  
CLK  
CLK  
PWR  
PWR  
DI  
DI  
DI  
DO3  
DI  
DO  
byte synchronization signal  
digital power supply  
digital ground  
crystal output  
crystal input  
digital power supply  
digital ground  
chip select input (active low)  
clock for serial bus  
serial input  
serial output  
reserved for test, connect to DVDD  
reserved for test, do not connect!  
reserved for test, do not connect!  
analog ground  
analog power supply  
right channel output  
analog ground  
analog ground for ground buffer  
ground buffer  
analog power supply for ground buffer  
capacitance for reference  
analog power supply  
left channel output  
analog ground  
active low asynchronous reset  
digital ground  
digital power supply  
data request, input bus  
serial input data bus clock  
serial data input  
SCLK  
SI  
SO  
TEST0  
TEST1  
TEST2  
AGND1  
AVDD1  
RIGHT  
AGND34  
GBGND  
GBUF  
GBVDD  
RCAP  
AVDD45  
LEFT  
DO  
PWR  
PWR  
AO  
PWR  
PWR  
AO  
PWR  
AIO  
PWR  
AO  
PWR  
DI  
PWR  
PWR  
DO  
DIO  
DI  
AGND56  
XRESET  
DGND3  
DVDD3  
DREQ  
DCLK  
SDATA  
Not connected are: A1, A7, B7, C1, C2, C3, D1, D4, D7, E5, E6, F1, F7, G1, G2, G4, G5 and G7. For  
“Pin Types”, see Chapter 3.1. BGA-49 package dimensions are at http://www.vlsi.fi/vs1001/bga49.pdf .  
Version 4.11, 2003-09-18  
12  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
3. PACKAGES AND PIN DESCRIPTIONS  
3.3 LQFP-48  
48  
1
Figure 3: Pin Configuration, LQFP-48.  
Pin Name  
Pin  
Pin Type  
Function  
nc  
1,2  
3
4
-
DI  
PWR  
-
XRESET  
DGND0  
nc  
active low asynchronous reset  
digital ground  
5
DVDD0  
nc  
6
7
PWR  
-
digital power supply  
DREQ  
DCLK  
SDATA  
nc  
BSYNC  
DVDD1  
nc  
DGND1  
XTALO  
XTALI  
DVDD2  
DGND2  
DGND3  
DGND4  
XCS  
8
9
DO  
DI  
DI  
-
DI  
PWR  
-
PWR  
AO  
AI  
PWR  
PWR  
PWR  
PWR  
DI  
data request, input bus  
serial input data bus clock  
serial data input  
10  
11,12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24.. . 27  
28  
29  
30  
31  
32  
32  
32  
35,36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
byte synchronization signal  
digital power supply  
digital ground  
crystal output  
crystal input  
digital power supply  
digital ground  
digital ground  
digital ground  
chip select input (active low)  
nc  
SCLK  
SI  
SO  
nc  
-
DI  
DI  
DO3  
-
clock for serial bus  
serial input  
serial output  
TEST0  
TEST1  
TEST2  
nc  
AGND0  
AVDD0  
RIGHT  
AGND1  
AGND2  
VCM  
AVDD1  
RCAP  
AVDD2  
LEFT  
AGND3  
nc  
DI  
reserved for test, connect to DVDD  
reserved for test, do not connect!  
reserved for test, do not connect!  
DO  
DO  
-
PWR  
PWR  
AO  
PWR  
PWR  
AO  
PWR  
AIO  
PWR  
AO  
PWR  
-
analog ground, low-noise reference  
analog power supply  
right channel output  
analog ground  
analog ground  
feedback  
analog power supply  
capacitance for reference  
analog power supply  
left channel output  
analog ground  
For “Pin Types”, see Chapter 3.1. LQFP-48 package dimensions are at http://www.vlsi.fi/vs1001/lqfp48.pdf .  
Version 4.11, 2003-09-18  
13  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
4. CONNECTION DIAGRAM, SOIC-28  
4 Connection Diagram, SOIC-28  
In this connection diagram, a SOIC-28 -packaged VS1001k is used.  
Figure 4: Typical Connection Diagram Using SOIC-28.  
Ground buffer is not available for the SOIC-28 package; hence it is not used.  
Version 4.11, 2003-09-18  
14  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
5. CONNECTION DIAGRAM, BGA-49 AND LQFP-48  
5 Connection Diagram, BGA-49 and LQFP-48  
In this connection diagram, a BGA-49 or LQFP-48 packaged VS1001k is used. In this picture, ground  
buffer is active.  
Figure 5: Typical Connection Diagram Using BGA-49.  
Ground buffer GBUF can be used for common voltage (1.37 V) for earphones. This will eliminate the  
need for large isolation capacitors on line outputs, and thus the audio output pins from VS1001k may be  
connected directly to the earphone connector. If GBUF is not used, GBGND and GBVDD should not be  
connected.  
Version 4.11, 2003-09-18  
15  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
6. SPI BUSES  
6 SPI Buses  
6.1 General  
The SPI Bus - that was originally used in some Motorola devices - has been used for both VS1001k’s  
Serial Data Interface SDI (Chapters 6.3 and 7.3) and Serial Control Interface SCI (Chapters 6.4 and 7.4).  
6.2 SPI Bus Pin Descriptions  
SDI Pin SCI Pin Description  
-
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. There is no chip select for SDI, which  
is always active.  
DCLK  
SCK  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written (clock 0 in the  
following figures).  
SDATA  
-
SI  
SO  
Serial input. SI is sampled on the rising SCK edge, if XCS is low.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
6.3 Serial Protocol for Serial Data Interface (SDI)  
The serial data interface can operate in either master or slave mode. In master mode, VS1001k generates  
the DCLK signal, which can be selected to be either 512 or 1024 kHz. In slave mode, the DCLK signal  
is generated by an external circuit.  
The data (SDATA signal) can be clocked in at either the rising or falling edge of the DCLK. (Chapter 7.5).  
The VS1001k chip assumes its input to be byte-sychronized. I.e. the internal operation of the decoder  
does not search for byte synchronization of the frames from the data stream, but instead assumes the  
data to be correctly byte-aligned. The bytes can be transmitted either MSB or LSB first, depending of  
contents of SCI register MODE (Chapter 7.5).  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 6: BSYNC Signal.  
To ensure correct byte-alignment of the input bitstream, the serial data interface has a BSYNC signal.  
Version 4.11, 2003-09-18  
16  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
6. SPI BUSES  
The first DCLK sampling edge (rising or falling, depending on selected polarity), during which the  
BSYNC is high, marks the first bit of a byte (LSB, if LSB-first order is used, MSB, if MSB-first order  
is used). If BSYNC is not used, it must be tied to VCC externally and the master of the input serial  
interface must always sustain the correct byte-alignment. Using BSYNC is strongly recommended. For  
more details, look at the Application Notes for VS10XX.  
The DREQ signal of the data interface is used in slave mode to signal if VS1001k’s FIFO is capable of  
receiving more input data. If DREQ is high, VS1001k can take at least 32 bytes of data. When there is  
less than 32 bytes of free space, DREQ is turned low, and the sender should stop transferring new data.  
Because of the 32-byte safety area, the sender may send upto 32 bytes of data at a time without checking  
the status of DREQ, making controlling VS1001k easier for low-speed microcontrollers.  
Note: DREQ may turn low or high at any time, even during a byte transmission. Thus, DREQ should  
only be used to decide whether to send more bytes. It should not abort a transmission that has already  
started.  
6.4 Serial Protocol for Serial Command Interface (SCI)  
6.4.1 General  
The serial bus protocol for the Serial Command Interface SCI (Chapter 7.4) consists of an instruction  
byte, address byte and one 16-bit data word. Each read or write operation can read or write a single  
register. Data bits are read at the rising edge, so the user should not update data at the rising edge.  
The operation is specified by an 8-bit instruction opcode. The supported instructions are read and write.  
See table below.  
Instruction  
Name  
Opcode  
Operation  
READ  
0000 0011 Read data  
WRITE 0000 0010 Write data  
Note: After using the Serial Command Interface, it is not allowed to send SCI or SDI data for 5 mi-  
croseconds.  
6.4.2 SCI Read  
VS1001k registers are read by the following sequence. First, XCS line is pulled low to select the device.  
Then the READ opcode (0x3) is transmitted via the SI line followed by an 8-bit word address. After the  
address has been read in, any further data on SI is ignored. The 16-bit data corresponding to the received  
address will be shifted out onto the SO line.  
XCS should be driven high after the data has been shifted out. In that case, the word address will be  
incremented and data corresponding to the next address will be shifted out. After the last word has been  
shifted out, XCS should be driven high to end the READ sequence.  
Version 4.11, 2003-09-18  
17  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
6. SPI BUSES  
Word read is shown in Figure 7.  
XCS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
30 31  
SCK  
0
0
0
0
0
0
1
1
7
6
5
4
3
2
1
0
don’t care  
SI  
instruction (READ)  
high impedance  
address  
data out  
15 14  
1
0
X
SO  
Figure 7: SCI Word Read  
6.4.3 SCI Write  
VS1001k registers are written by the following sequence. First, XCS line is pulled low to select the  
device. Then the WRITE opcode (0x2) is transmitted via the SI line followed by an 8-bit word address.  
After the word has been shifted in, XCS should be pulled high to end the WRITE sequence. XCS low to  
high transition must occur after SCLK high to low transition corresponding to LSB of the last word.  
Single word write is shown in Figure 8.  
XCS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
29 30 31  
SCK  
0
0
0
0
0
0
1
0
7
6
5
4
3
2
1
0
15 14  
2
1
0
don’t care  
SI  
instruction (WRITE)  
address  
data in  
Figure 8: SCI Word Write  
Version 4.11, 2003-09-18  
18  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
6. SPI BUSES  
6.5 SPI Timing Diagram  
tWL tWH  
tXCSH  
tXCSS  
XCS  
tXCS  
0
1
14  
15  
16  
SCK  
SI  
tSU  
tH  
SO  
tZ  
tV  
tDIS  
Figure 9: SPI Timing Diagram.  
Symbol Min Max Unit  
tXCSS  
tSU  
tH  
5
10  
42  
ns  
ns  
ns  
tZ  
42 ns  
ns  
ns  
42 ns  
ns  
tWL  
tWH  
tV  
tXCSH  
tXCS  
tDIS  
100  
100  
10  
2
XTALI cycles  
XTALI cycles  
1
Note: As tXCS must be at least 2 clock cycles, the maximum speed for the SPI bus is 1/4 of VS1001k’s  
internal clock speed. For details, see Application Notes for VS10XX.  
Version 4.11, 2003-09-18  
19  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7 Functional Description  
7.1 Main Features  
VS1001k is based on a proprietary digital signal processor, VS DSP. It contains all the code and data  
memory needed for MPEG audio decoding, together with serial interfaces, a multirate stereo audio DAC  
and analog output amplifiers and filters.  
VS1001k can play all MPEG 1 and 2 layer 3 files, as well as so-called MPEG 2.5 layer 3 extension  
files with all sample rates and bitrates. In addition, variable bitrate (VBR) is also supported. With  
VBR, and depending on the song, near-cd quality can be achieved with approximately 100 kbits/s for  
stereo music sampled at 44100 Hz, whereas old encoders required 128 kbits/s for the same task. As  
both commercial and free (http://www.mp3dev.org/) high-quality VBR encoders are nowadays widely  
available, MP3 format is getting better as it is maturing.  
7.2 Data Flow of VS1001k  
SM_BASS = 0  
A1ADDR = 0  
L
SDI  
Bitstream  
FIFO  
MP1/2/3  
decoding  
Bass/treble  
enhancer  
User  
application  
Volume  
control  
Audio  
FIFO  
S.rate.conv.  
and DAC  
R
16384 bits  
SM_BASS = 1  
A1ADDR != 0  
VOL  
512 stereo  
samples  
Figure 10: Data Flow of VS1001k.  
First, MP3 data is input through the SDI bus.  
After decoding, data may be sent to the Bass/treble enhancer depending on SCI register MODE’s bit  
SM BASS.  
Then, if SCI register AIADDR is non-zero, application code is executed from the address pointed to by  
AIADDR. For more details, see Chapters 7.5.10 and Application Notes for VS10XX.  
After the optional user application, the signal is fed to the volume control unit, which also copies the  
data to the Audio FIFO.  
The Audio FIFO holds the data that is read by the Audio interrupt (Chapter 9.5.1) and fed to the sample  
rate converter and DACs. The size of the audio FIFO is 512 stereo (2×16-bit) samples  
The sample rate converter converts all different sample rates to CLKI/512 and feeds the data to the DAC,  
which in order makes a stereo in-phase signal. This signal is then forwarded to the earphone amplifier.  
Version 4.11, 2003-09-18  
20  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.3 Serial Data Interface (SDI)  
The serial data interface is meant for transferring compressed MPEG audio data.  
Also several different tests may be activated through SDI as described in Chapter 8.  
7.4 Serial Control Interface (SCI)  
The serial control interface is compatible with the SPI bus specification. Data transfers are always 16-  
bits. The VS1001k is controlled by writing and reading the registers of the interface.  
The main controls of the control interface are:  
control of the operation mode  
uploading user programs  
access to header data  
status information  
access to decoded digital data  
feeding input data  
7.5 SCI Registers  
Name  
Type addr Function  
MODE  
STATUS  
RW  
RW  
-
RW  
R
R
W
W
0
1
2
3
4
5
6
7
mode control  
status of VS1001k  
internal register, never use  
clock freq + doubler  
decode time in seconds  
misc. audio data  
RAM write program  
base address for  
INT FCTLH  
CLOCKF  
DECODE TIME  
AUDATA  
WRAM  
WRAMADDR  
RAM write  
HDAT0  
HDAT1  
AIADDR  
R
R
RW  
8
9
read header data  
read header data  
10 start address of  
application  
VOL  
RESERVED  
AICTRL[x]  
RW  
-
11 volume control  
12 reserved for VS1002 use, don’t touch  
RW 13+x 2 application control  
registers  
x = [0 .. 1]  
All registers are filled with zeros at hardware reset.  
Version 4.11, 2003-09-18  
21  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.5.1 MODE (RW)  
MODE is used to control the operation of VS1001k.  
Bit Name  
Function  
Value Description  
0
1
2
SM DIFF  
differential  
0
1
0
1
0
1
0
0
1
0
0
0
1
0
1
0
1
0
1
0
1
normal in-phase audio  
left channel inverted  
normal playback  
fast forward on  
no reset  
reset  
Set to 0  
power on  
powerdown  
Set to 0  
SM FFWD  
SM RESET  
fast forward  
soft reset  
3
4
SM UNUSED1 set to 0  
SM PDOWN  
powerdown  
5
6
7
SM UNUSED2 set to 0  
SM UNUSED3 set to 0  
SM BASS  
Set to 0  
off  
on  
rising  
bass/treble enhancer  
8
9
SM DACT  
DCLK active  
edge  
falling  
SM BYTEORD Byte order on serial input bus  
MSB first  
MSB last  
slave  
master  
512 kHz  
10 SM IBMODE  
11 SM IBCLK  
input bus mode  
input bus clk when VS1001k is master  
1024 kHz  
When SM DIFF is set, the player inverts the left output. For a stereo input, this creates a virtual surround,  
and for a mono input this effectively creates a differential left/right signal.  
By setting SM FFWD the player starts to accept SCI data at a high speed, and just decodes the audio  
headers silently without playing any data. This can be used to fast-forward data with safe landing.  
Register DECODE TIME is updated during a fast-forward just as normal.  
By setting SM RESET to 1, the player is reset.  
SM UNUSED1 should always be set to 0.  
Bit SM PDOWN overrides any other: it turns VS1001k into powerdown mode, where the only opera-  
tional part is the control bus.  
SM UNUSED2 and SM UNUSED3 should always be set to 0.  
Bit SM BASS turns on the built-in Bass and Treble enhancer. The frequency response of the enhancer  
when the sample rate is 44.1 kHz is shown in Figure 11. For other sample frequencies the response  
frequence axis must be adjusted accordingly. Example: If the sample rate is 48 kHz, the 1 kHz frequency  
in the figure is actually 1 kHz × 48 kHz / 44.1 kHz = 1.09 kHz. For details of how much extra processing  
Version 4.11, 2003-09-18  
22  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
power is needed when activating this feature, see Application Notes for VS10XX.  
ampl/dB  
+3  
+2  
+1  
0
−1  
−2  
−3  
f/Hz  
10  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Figure 11: Built-In Bass/Treble Enhancer Frequency Response at 44.1 kHz.  
SM DACT defines the active edge of data clock for SDI.  
SM BYTEORD defines the data order inside a byte for SDI. Bytes are, however, still sent in the default  
order.  
SM IBMODE sets input bus to master mode. Master mode has not been tested, and its use is not recom-  
mended.  
SM IBCLK sets the bus clock speed when VS1001k is the master.  
Version 4.11, 2003-09-18  
23  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.5.2 STATUS (RW)  
STATUS contains information on the current status of the VS1001k. Bits 1 and 0 are used to control  
analog output volume: 0 = -0 dB, 1 = -6 dB, 3 = -12 dB. Bit 2 is analog powerdown bit. When set to 1,  
analog is put to powerdown.  
Note: writing to register VOL will automatically set the analog output volume, and muting if necessary.  
Thus, the user needn’t worry about this register.  
7.5.3 INT FCNTLH (-)  
INT FCTLH is not a user-accessible register.  
7.5.4 CLOCKF (RW)  
CLOCKF is used to tell if the input clock XTALI is running at something else than 24.576 MHz. XTALI  
is set in 2 kHz steps. Thus, the formula for calculating the correct value for this register is  
(XTALI is in Hz). Values may be between 0..32767, although hardware limits the highest allowed speed.  
Also, with lower-than 24.576 MHz speeds all sample rates and bit-stream widths are no longer available.  
Setting the MSB of CLOCKF to 1 activates internal clock-doubling. A clock of upto 15 MHz may be  
doubled depending on the voltage provided to the chip.  
Note: CLOCKF must be set before beginning decoding MP3 data; otherwise the sample rate will not be  
set correctly.  
Example 1: For a 26 MHz clock the value would be  
.
Example 2: For a 13 MHz external clock and using internal clock-doubling for a 26 MHz internal  
frequency, the value would be  
.
Example 3: For a 24.576 MHz clock the value would be either  
, or just the  
default value . For this clock frequency, CLOCKF doesn’t need to be set at all.  
7.5.5 DECODE TIME (R)  
When decoding correct data, current decoded time is shown in this register in full seconds.  
Version 4.11, 2003-09-18  
24  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.5.6 AUDATA (R)  
When decoding correct data, the current bitrate in kbits/s can be found in bits 8..0 of AUDATA. For a  
variable bitrate bitstream, the current bitstream width is displayed. Bits 12..9 contains an index to the  
sample rate. The indices are shown in the table below. Bits 14..13 are not in use and always set to 0. Bit  
15 is 0 for mono data and 1 for stereo.  
Bits 12..9 Sample Rate/Hz  
0b0000  
0b0001  
0b0010  
0b0011  
0b0100  
0b0101  
0b0110  
0b0111  
0b1000  
0b1001  
Unknown  
44100  
48000  
32000  
22050  
24000  
16000  
11025  
12000  
8000  
7.5.7 WRAM (W)  
WRAM is used to upload application programs to program RAM. The start address must be initialized  
by writing to the WRAMADDR register prior to the first call of WRAM. value will be used. As 16 bits of  
data can be transferred with one WRAM write, and the program word is 32 bits, two consecutive writes  
are needed for each program word. The byte order is big-endian (i.e. MSBs first). After each full-word  
write, the internal pointer is autoincremented.  
7.5.8 WRAMADDR (W)  
WRAMADDR is used to set the program address for following WRAM writes. User program space is  
between addresses 0x4000 .. 0x43ff (with addresses 0x4000 .. 0x401f being reserved by the system),  
but for writes through the WRAM mechanism, they are visible at addresses 0x4000 higher. Thus, if the  
programmer wish to write his application to address 0x4167, he should write 0x4167 + 0x4000 = 0x8167  
to WRAMADDR.  
Version 4.11, 2003-09-18  
25  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.5.9 HDAT0 and HDAT1 (R)  
Bit  
Function  
Value Explanation  
2047 stream valid  
HDAT1[15:5]  
syncword  
ID  
HDAT1[4:3]  
HDAT1[2:1]  
HDAT1[0]  
3
2
1
0
3
2
1
0
1
0
ISO 11172-3 1.0  
MPG 2.0 (1/2-rate)  
MPG 2.5 (1/4-rate)  
MPG 2.5 (1/4-rate)  
I
II  
III  
reserved  
No CRC  
CRC protected  
ISO 11172-3  
reserved  
32/16/8 kHz  
48/24/12 kHz  
44/22/11 kHz  
additional slot  
normal frame  
not defined  
mono  
layer  
protect bit  
HDAT0[15:12] bitrate  
HDAT0[11:10] sample rate  
3
2
1
0
1
0
HDAT0[9]  
pad bit  
HDAT0[8]  
HDAT0[7:6]  
private bit  
mode  
3
2
1
0
dual channel  
joint stereo  
stereo  
HDAT0[5:4]  
HDAT0[3]  
extension  
copyright  
ISO 11172-3  
copyrighted  
free  
original  
copy  
CCITT J.17  
reserved  
50/15 microsec  
none  
1
0
1
0
3
2
1
0
HDAT0[2]  
original  
HDAT0[1:0]  
emphasis  
When read, HDAT0 and HDAT1 contain header information that is extracted from MPEG stream being  
currently being decoded. Right after resetting VS1001k, 0 is automatically written to both registers,  
indicating no data has been found yet.  
The “sample rate” field in HDAT0 is interpreted as follows: if the “ID” field in HDAT1 is ’1’, the highest  
sample rate is used. If “ID” is ’0’, half sample rate is used. For ’2’ and ’3’, the lowest sample rate is  
used.  
Note: The sample rate, stereo/mono and bitrate information can more easily be read from register AU-  
DATA.  
Version 4.11, 2003-09-18  
26  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
7. FUNCTIONAL DESCRIPTION  
7.5.10 AIADDR (RW)  
AIADDR indicates the start address of the application code written earlier through WRAMADDR and  
WRAM registers. If no application code is used, this register should not be initialized, or it should be  
initialized to zero. For more details, see Application Notes for VS10XX.  
7.5.11 VOL (RW)  
VOL is a volume control for the player hardware. For each channel, a value in the range of 0 .. 255  
may be defined to set its attenuation from the maximum volume level (in 0.5 dB steps). The left channel  
value is then multiplied by 256 and the values are added. Thus, maximum volume is 0 and total silence if  
65535. Example: for a volume of -2.0 dB for the left channel and -3.5 dB for the right channel: (4*256)  
+ 7 = 1031. Note, that at startup volume is set to full volume. Resetting the software does not reset the  
volume setting.  
Note: Setting the volume to total silence (255 for both left and right channels), will turn analog power  
off. This will save power, but also cause a slight snap in the earphones. If you want to turn the volume  
off but don’t want this snap, turn the volume only to 254 for both channels (0xFEFE).  
7.5.12 RESERVED (RW)  
This register has been reserved for future use.  
7.5.13 AICTRL[x] (RW)  
AICTRL[x] -registers ( x=[0 .. 1] ) can be used to access the user’s application program.  
7.6 Stereo Audio DAC  
The decoded digital data is transformed into analog format by an 18-bit oversampling multi-bit sigma-  
delta DA-converter. The oversampled output is low-pass filtered by an on-chip analog filter. The output  
rate of the DA-converter is always 1/4 of the clock rate, or 128 times the highest usable sample rate. For  
instance for a 24.576 MHz clock, the DA-converter operates at 128x48 kHz, which is 6.144 MHz. If the  
input sample rate is other than 48 kHz, it is internally converted to 48 kHz by the DAC. This removes the  
need for complex PLL-based clocking schemes and still allows the use of several sample rates with one  
fixed master clock frequency.  
The outputs can be separately muted by the user. If the output of the decoder is invalid or input data is  
not received fast enough, analog outputs are automatically muted. The analog outputs have buffers that  
are capable of driving 30 loads with a maximum of 50nF capacitance.  
Version 4.11, 2003-09-18  
27  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
8. OPERATION  
8 Operation  
8.1 Clocking  
The VS1001k chip operates typically on a single 24.576 MHz fundamental frequency master clock. This  
clock can be generated by external circuitry (connected to pin XTALI) or by the internal clock chrystal  
interface (pins XTALI and XTALO). This clock is sufficient to support a high quality audio output for  
almost all the standard sample rates and bit-rates (see Application Notes for VS10XX).  
Note: Oscillators above 24.576 MHz are usually so-called  
harmonic clocks, which have a fundamen-  
tal frequency of 1/3 of the nominal clock frequency. With such an oscillator, VS1001 would be running at  
the base frequency, if working at all. Thus, for instance, if you run VS1001 with a 32 MHz  
clock, you usually end up running the chip at 32 MHz / 3 = 10.67 MHz.  
harmonic  
8.2 Powerdown  
In powerdown mode the chip only monitors the control bus. The analog output drivers are turned off and  
the processor remains in hold-state.  
8.3 Hardware Reset  
When the XRESET -signal is driven low, VS1001k is reset and all the control registers and internal  
states are set to the initial values. XRESET-signal is asynchronous to any external clock. The reset mode  
doubles as a full-powerdown mode, where both digital and analog parts of VS1001k are in minimum  
power consumption stage, and where clocks are stopped. Also XTALO and XTALI are grounded.  
After a hardware reset (or at power-up), set the basic software registers such as VOL for volume (and  
CLOCKF if the input clock is anything else than 24.576 MHz) before starting decoding.  
8.4 Software Reset  
Between any two MP3 files, the decoder software has to be reset. This is done by activating bit 2 in SCI’s  
MODE register (Chapter 7.5.1). Then wait for at least 2 s, then look at DREQ. DREQ will stay down  
for at least 6000 clock cycles, which means an approximate 250 s delay if VS1001k is run at 24.576  
MHz. When DREQ goes up, write at least one zero to SDI. After this, you may continue playback as  
usual.  
If you want to make sure VS1001k doesn’t cut the ending of low-bitrate data streams, it is recommended  
to feed 2048 zeros to the SDI bus before activating the reset bit (DREQ must be respected just as with  
normal SDI data). This will make sure all frames have been decoded before resetting the chip.  
Version 4.11, 2003-09-18  
28  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
8. OPERATION  
8.5 Play/Decode  
This is the normal operation mode of VS1001k. The SDI data is decoded. Decoded samples are converted  
to analog domain by the internal DAC, If there are errors in the decoding process, the error flags of SCI’s  
HDAT0 and HDAT1 are set accordingly. In case there are serious errors in the input data, decoding is  
still continued, but the analog outputs are muted.  
When there is no valid input for decoding, VS1001k goes into idle mode (lower power consumption than  
during decoding) and actively monitors the serial data input for valid data. The data input does not need  
to be clocked (DCLK) when no data is sent.  
The software needs to be reset between MPEG audio stream files. See for the Chapter “Testing” to see  
how it is done.  
8.6 Sanity Checks  
Although VS1001k checks extensively for bad MP3 streams, it may happen that it encounters a bitstream  
that makes the firmware’s recovery code fail. This may particularly happen during fast forward and fast  
backwards operations, where the data where the microcontroller lands the MP3 decoder may not be a  
valid header.  
The microcontroller should keep a look at the data speeds VS1001k requires. If data input either stops  
completely (DREQ always inactive) for a whole second, or if VS1001k requires more than 60 KiB data  
in any single second, it is the responsibility of the microcontroller to either reset the software. If that  
doesn’t help, a hardware reset should be issued.  
8.7 PCM Mode  
VS1001k can be used as a Digital-to-Analog converter (DAC) by feeding PCM data. A convenient way  
to use VS1001k as a DAC is to load SDI PCM Extension for VS1001k software from VLSI Solution’s  
home page at http://www.vlsi.fi/vs1001/software/.  
The SDI PCM Extension makes it possible for the user to use SDI to feed 8-bit or 16-bit PCM samples  
in mono or stereo at any sample rate upto 48 kHz (with nominal 24.576 MHz operating frequency).  
8.8 Testing  
There are several test modes in VS1001k, which allow the user to perform memory tests, SCI bus tests,  
and several different sine wave tests ranging from 250 Hz to 1500 Hz.  
All tests are started in a similar way: VS1001 is hardware reset, and then a test command is sent to the  
SDI bus. Each test is started by sending a 4-byte special command sequence, followed by 4 zeros. The  
sequences are described below.  
Version 4.11, 2003-09-18  
29  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
8. OPERATION  
8.8.1 Memory Test  
Memory test mode is initialized with the 8-byte sequence 0x4D 0xEA 0x6D 0x54 0 0 0 0. After this  
command (and its required 4 zeros), wait for 500000 clock cycles. The result can be read from the SCI  
register HDAT0, and ’one’ bits are interpreted as follows:  
Bit(s) Meaning  
0
1
2
3
4
5
6
7
Good X ROM  
Good Y ROM (high)  
Good Y ROM (low)  
Good Y RAM  
Good X RAM  
Good Instruction RAM (high)  
Good Instruction RAM (low)  
Unused  
All tests are non-destructive and interrupts are disabled during testing. Thus, no user software or data is  
harmed by the tests.  
Instruction ROM cannot be tested with software.  
8.8.2 SCI Test  
Sci test is initialized with the 8-byte sequence 0x53 0x70 0xEE 0 0 0 0, where  
number to test. The content of the given register is read and copied to HDAT0. If the register to be tested  
is HDAT0, the result is copied to HDAT1.  
is the register  
Example: if is 48, contents of SCI register 0 (MODE) is copied to HDAT0.  
Version 4.11, 2003-09-18  
30  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
8. OPERATION  
8.8.3 Sine Test  
Sine test is initialized with the 8-byte sequence: 0x53 0xEF 0x6E 0 0 0 0, where (48..119) defines  
the sine test to use. If we define  
may be used:  
and  
, the following tables  
FsIdx  
Fs  
FSin  
Length of Sin  
0
1
2
3
4
5
6
7
8
44100 Hz  
48000 Hz  
32000 Hz  
22050 Hz  
24000 Hz  
16000 Hz  
11025 Hz  
12000 Hz  
8000 Hz  
0
1
2
3
4
5
6
7
32.000 samples  
16.000 samples  
10.667 samples  
8.000 samples  
6.400 samples  
5.333 samples  
4.571 samples  
4.000 samples  
Example: Sine test is called with a test value of 62. 62-48 = 14, FsIdx = 5 and FSin = 1. From the tables  
we get the sample rate 16000 Hz, and the sine wave length, which is 16 samples. Thus, we’ll get a 1 kHz  
voice.  
To exit the sine test, send the sequence 0x45 0x78 0x69 0x74 0 0 0 0.  
Note: The sine test signals go through the digital volume control, so it is possible to test channels  
separately.  
Version 4.11, 2003-09-18  
31  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
9. WRITING SOFTWARE  
9 Writing Software  
9.1 When to Write Software  
User software is required when a user wishes to add some own functionality like DSP effects or tone  
controls to VS1001k. Some tone controls are available from VLSI Solution, but if a user wishes to go  
further than that or use VS1001k in some unexpected way, this is how to do it.  
However, most of the users of VS1001k don’t need to worry about writing their own code, or this chapter.  
9.2 The Processor Core  
VS DSP is a 16/32-bit DSP processor core that can very well also be used as an all-purpose processor.  
The VLSI Solution’s free VSKIT Software Package contains all the tools and documentation needed to  
write, simulate and debug Assembly Language or Extended ANSI C programs for the VS DSP processor  
core.  
The VSKIT Software Package is available on request from VLSI Solution.  
9.3 User’s Memory Map  
User’s Memory Map is shown in Figure 12.  
9.4 Hardware Registers  
All hardware registers are located in X memory.  
9.4.1 SCI Registers, 0x4000  
All SCI registers described in Chapter 7.5 can be found here between 0x4000..0x40FF.  
9.4.2 Serial Registers, 0x4100  
SER DATA (0x4100) contains the last data value read from the data bus. The LSB of SER DREQ  
(0x4101) defines the status of the DREQ signal.  
Version 4.11, 2003-09-18  
32  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
9. WRITING SOFTWARE  
Instruction (32−bit)  
X (16−bit)  
Y (16−bit)  
Stack  
Stack  
0000  
0000  
0097  
0097  
User  
Space  
0780  
07FF  
0780  
07FF  
User  
Space  
1380  
13FF  
1380  
13FF  
System Vectors  
4000  
4000  
4020  
4020  
User  
Instruction  
Space  
Hardware  
Registers  
43FF  
43FF  
8000  
8020  
8000  
Instruction  
Shadow  
Memory  
Instruction 8020  
Shadow  
Memory  
MSBs  
LSBs  
83FF  
83FF  
Figure 12: User’s Memory Map.  
9.4.3 DAC Registers, 0x4200  
DAC data should be written at each audio interrupt to DAC LEFT (0x4200) and DAC RIGHT (0x4201)  
as signed values. INT FCTLL (0x4202) is not a user-serviceable register.  
9.4.4 Interrupt Registers, 0x4300  
INT ENABLE (0x4300) controls the interrupts. Bit 0 switches the DAC interrupt on (1) and off (0), bit 1  
controls the SCI interrupt, and bit 2 controls the DATA interrupt. It may take upto 6 clock cycles before  
changing this register has any effect.  
By writing any value to INT GLOB DIS (0x4301) adds one to the interrupt counter and effectively  
disables all interrupts. It may take upto 6 clock cycles before writing this register has any effect.  
Writing any value to INT GLOB ENA (0x4302) subtracts one from the interrupt counter. If the interrupt  
counter becomes zero, interrupts selected with INT ENABLE are restored. An interrupt routine should  
always write to this register as the last thing it does, because interrupts automatically add one to the  
interrupt counter, but subtracting it back to its initial value is on the responsibility of the user. It may take  
upto 6 clock cycles before writing this register has any effect.  
By reading INT COUNTER (0x4303) the user may check if the interrupt counter is correct or not. If the  
register is not 0, interrupts are disabled. This register may not be written to.  
Version 4.11, 2003-09-18  
33  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
9. WRITING SOFTWARE  
9.5 System Vector Tags  
The System Vector Tags are tags that may be replaced by the user to take control over several decoder  
functions.  
9.5.1 AudioInt, 0x4000..0x4001  
Normally contains the following VS DSP assembly code:  
j dac_int  
stx mr1,(i6)+1 ; sty i7,(i6)  
The user may, at will, replace the first instruction with either a or  
command to gain control over  
the audio interrupt. It is not recommended to change the instruction at 0x4001.  
9.5.2 SpiInt, 0x4002..0x4003  
Normally contains the following VS DSP assembly code:  
j spi_int  
stx mr1,(i6)+1 ; sty i7,(i6)  
The user may, at will, replace the first address with either a j or jmpi command to gain control over the  
SCI interrupt. It is not recommended to change the instruction at 0x4003.  
9.5.3 DataInt, 0x4004..0x4005  
Normally contains the following VS DSP assembly code:  
j data_int  
stx mr1,(i6)+1 ; sty i7,(i6)  
The user may, at will, replace the first address with either a j or jmpi command to gain control over the  
MP3 data interrupt. It is not recommended to change the instruction at 0x4005.  
9.5.4 UserCodec, 0x4008..0x4009  
Normally contains the following VS DSP assembly code:  
jr  
nop  
Version 4.11, 2003-09-18  
34  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
9. WRITING SOFTWARE  
If the user wants to take control away from the standard decoder, the first instruction should be replaced  
with an appropriate jump command to user’s own code.  
Unless the user is feeding MP3 data at the same time, the system activates the user program in less than  
1 ms. After this, the user should steal interrupt vectors from the system, and then insert user programs.  
9.6 System Vector Functions  
The System Vector Functions are pointers to some functions that the user may call to help implementing  
his own applications.  
9.6.1 WriteIRam(), 0x4010  
VS DSP C prototype:  
void WriteIRam(register i0 u int16 *addr, register a1 u int16 msW, register a0 u int16 lsW);  
This is the only supported way to write to the User Instruction RAM. This is because Instruction RAM  
cannot be written when program control is in RAM. Thus, the actual implementation of this function is  
in ROM, and here is simply a tag to that routine.  
Note: Instruction RAM is shadowed 0x4000 addresses higher in the X and Y RAMs. Thus, if you want  
to write to instruction address 0x4020,  
must be 0x4020 + 0x4000 = 0x8020.  
9.6.2 ReadIRam(), 0x4011  
VS DSP C prototype:  
u int32 ReadIRam(register i0 u int16 *addr);  
This is the only supported way to read from the User Instruction RAM. This is because Instruction RAM  
cannot be read when program control is in RAM. Thus, the actual implementation of this function is in  
ROM, and here is simply a tag to that routine.  
A1 contains the MSBs and a0 the LSBs of the result.  
Note: Instruction RAM is shadowed 0x4000 addresses higher in the X and Y RAMs. Thus, if you want  
to read from instruction address 0x4020,  
must be 0x4020 + 0x4000 = 0x8020.  
Version 4.11, 2003-09-18  
35  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
9. WRITING SOFTWARE  
9.6.3 DataWords(), 0x4012  
VS DSP C prototype:  
u int16 DataWords(void);  
If the user has taken over the normal operation of the system by switching the pointer in UserCodec  
to point to his own code, he may read data from the Data Interface through this and the following two  
functions. This function returns the number of data words (each containing two bytes of data) that can be  
read. If there is not enough data available, data acquisition functions GetDataByte() and GetDataWords()  
may NOT be called!  
9.6.4 GetDataByte(), 0x4013  
VS DSP C prototype:  
u int16 GetDataByte(void);  
Reads and returns one data byte from the Data Interface.  
Before calling this function, always check first that there are at least 1 word waiting with function Data-  
Words().  
9.6.5 GetDataWords(), 0x4014  
VS DSP C prototype:  
void GetDataWords(register i0 y u int16 *d, register a0 u int16 n);  
Read data byte pairs and copy them in big-endian format (first byte to MSBs) to .  
Before calling this function, always check first that there are at least 1+ words waiting with function  
DataWords().  
Version 4.11, 2003-09-18  
36  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
10. VS1001 VERSION CHANGES  
10 VS1001 Version Changes  
This chapter describes changes between different generations of VS1001.  
Note: VS1001k is the final, production version of VS1001.  
10.1 Changes Between VS1001h and Production Version VS1001k, 2001-08  
When the chip is reset with pin XRESET, XTALO and XTALI are driven to ground.  
Running with normal clock earlier required slightly different clock generation than for clock-  
doubled (see Chapters 4 and 5). This is no longer the case.  
Lots of new SCI register MODE bits: SM DIFF, SM FFWD, SM BASS. For details, see Chap-  
ter 7.5.1.  
Default is now to only decode MP3.  
20..60 mV DAC offset corrected.  
A firmware bug made it impossible to decode 320 kbits/s MP3 data. This has been corrected.  
A hardware bug made it practically impossible to load code to RAM. This has been corrected.  
10.2 Changes Between VS1001g and VS1001h, 2001-05  
Analog voltage requirements have been lowered. Now full gain can be achieved with a 2.7 V  
analog input voltage, whereas 3.4 V was needed before.  
10.3 Changes Between VS1001d to VS1001g, 2001-03  
Clock is now adjustable, in VS1001d only 24.576 MHz could be used.  
Clock doubler added.  
VS1001d played 48 kHz instead of 12 or 24 kHz, this is corrected.  
Version 4.11, 2003-09-18  
37  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
11. DOCUMENT VERSION CHANGES  
11 Document Version Changes  
This chapter describes the most important changes to this document.  
11.1 Changes Between Version 4.10 and 4.11 for VS1001k, 2003-09  
Minor modifications to front page.  
Moved all Application Notes to a separate document, VS10XX Application Notes.  
11.2 Changes Between Version 4.08 and 4.10 for VS1001k, 2003-07  
Added LQFP-48 packaging, Chapter 3.3.  
Removed package figure for BGA-49 and provided an URL instead.  
11.3 Changes Between Version 4.07 and 4.08 for VS1001k, 2003-03  
Removed MP1 and MP2 functionality due to firmware problems.  
Removed Chapter Errata.  
11.4 Changes Between Version 4.06 and 4.07 for VS1001k, 2003-03  
Removed DAC mode. A more efficient and convenient way for PCM playback files is presented  
in Chapter 8.7.  
11.5 Changes Between Version 4.05 and 4.06 for VS1001k, 2002-09  
Added discussions of fundamental frequency and  
harmonic clocks to Chapter 8.1.  
11.6 Changes Between Version 4.03 and 4.05 for VS1001k, 2002-08  
Clarified Chapter 8.8, Testing.  
Added Application Note: Quick Startup / Seeing If Analog Works.  
Added comments on how DREQ works with DAC mode to Chapter DAC Mode.  
Replaced A1CTRL with AICTRL and A1ADDR with AIADDR throughout the datasheet.  
Added list of not connected pins, and replaced incorrect “Pin Type” description for GBUF from  
PWR to AO in Chapter 3.2, Packages and Pin Descriptions / BGA-49.  
HDAT1[0] polarity was wrong in Chapter 7.5.9, corrected.  
Version 4.11, 2003-09-18  
38  
VS1001K  
VLSI  
DATASHEET  
y
Solution  
12. CONTACT INFORMATION  
12 Contact Information  
VLSI Solution Oy  
Hermiankatu 6-8 C  
FIN-33720 Tampere  
FINLAND  
Fax: +358-3-316 5220  
Phone: +358-3-316 5230  
Email: sales@vlsi.fi  
URL: http://www.vlsi.fi/  
Note: If you have questions, first see http://www.vlsi.fi/vs1001/faq/ .  
Version 4.11, 2003-09-18  
39  

相关型号:

VS1002D

MP3 AUDIO CODEC
ETC

VS1003

MP3 / WMA AUDIO CODEC
ETC

VS1003B-L

芬兰VLSI厂家生产的音频编解码芯片
CONSONANCE

VS1005

此产品是芬兰VLSI刚刚研发成功的音频编解码芯片样品
ETC

VS100AE

CAMERA MONOCHROME
ETC

VS100B

Single output 10W~150W
LAMBDA

VS100B-12

Single output 10W~150W
LAMBDA

VS100B-12

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-15

Single output 10W~150W
LAMBDA

VS100B-15

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-24

Single output 10W~150W
LAMBDA

VS100B-24

AC-DC Regulated Power Supply Module, 1 Output, 103.2W
INFINEON