SP3232EBCY-LTR [EXAR]

True 3.0V to 5.5V RS-232 Transceivers;
SP3232EBCY-LTR
型号: SP3232EBCY-LTR
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

True 3.0V to 5.5V RS-232 Transceivers

文件: 总22页 (文件大小:977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP3222EB/SP3232EB  
True +3.0V to +5.5V RS-232 Transceivers  
FEATURES  
■ Meets true EIA/TIAꢀ232ꢀF Standards  
from a +3.0V to +5.5V power supply  
■ 250kbps Transmission Rate Under Load  
■ 1ꢁA Low Power Shutdown with  
Receivers active (SP3222EB)  
■ Interoperable with RSꢀ232 down to a  
+2.7V power source  
V
CC  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
C1+  
V+  
GND  
C1-  
T1OUT  
SP3232EB  
C2+  
C2-  
V-  
R1IN  
■ Enhanced ESD Specifications:  
+15kV Human Body Model  
R1OUT  
T1IN  
+15kV IEC61000ꢀ4ꢀ2 Air Discharge  
+8kV IEC61000ꢀ4ꢀ2 Contact Discharge  
7
8
10  
9
T2OUT  
R2IN  
T2IN  
R2OUT  
Now Available in Lead Free Packaging  
DESCRIPTION  
The SP3222EB/SP3232EB series is an RSꢀ232 transceiver solution intended for portable or  
handꢀheld applications such as notebook or laptop computers. The SP3222EB/SP3232EB  
series has a highꢀefficiency, chargeꢀpump power supply that requires only 0.1ꢁF capacitors  
in 3.3V operation. This charge pump allows the SP3222EB/SP3232EB series to deliver true  
RSꢀ232performancefromasinglepowersupplyrangingfrom+3.0Vto+5.5V.TheSP3222EB/  
SP3232EB are 2ꢀdriver/2ꢀreceiver devices. The ESD tolerance of the SP3222EB/SP3232EB  
devices is over +/ꢀ15kV for both Human Body Model and IEC61000ꢀ4ꢀ2 Air discharge test  
methods. The SP3222EB device has a lowꢀpower shutdown mode where the devices' driver  
outputs and charge pumps are disabled. During shutdown, the supply current falls to less  
than 1ꢁA.  
SELECTION TABLE  
Device  
Power  
RSꢀ232  
RSꢀ232  
External  
Shutdown  
TTL  
# of  
Supplies  
Drivers Receivers Components  
3ꢀState  
Pins  
SP3222EB  
SP3232EB  
+3.0V to  
+5.5V  
2
2
2
2
4 Capacitors  
4 Capacitors  
Yes  
Yes  
18, 20  
+3.0V to  
+5.5V  
No  
No  
16  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
V .......................................................ꢀ0.3V to +6.0V  
V+CC(NOTE 1).......................................ꢀ0.3V to +7.0V  
Vꢀ (NOTE 1)........................................+0.3V to ꢀ7.0V  
V+ + |Vꢀ| (NOTE 1)...........................................+13V  
ICC (DC VCC or GND current).........................+100mA  
Power Dissipation per package  
20ꢀpin SSOP (derate 9.25mW/oC above +70oC)..............750mW  
18ꢀpin SOIC (derate 15.7mW/oC above +70oC)..............1260mW  
20ꢀpin TSSOP (derate 11.1mW/oC above +70oC).............890mW  
16ꢀpin SSOP (derate 9.69mW/oC above +70oC)...............775mW  
16ꢀpin Wide SOIC (derate 11.2mW/oC above +70oC)........900mW  
16ꢀpin TSSOP (derate 10.5mW/oC above +70oC)..............850mW  
16ꢀpin nSOIC (derate 13.57mW/oC above +70oC)...........1086mW  
Input Voltages  
TxIN, EN..............................................ꢀ0.3V to +6.0V  
RxIN...................................................................+15V  
Output Voltages  
TxOUT.............................................................+13.2V  
RxOUT, .......................................ꢀ0.3V to (VCC +0.3V)  
Short-Circuit Duration  
Maximum Junction Temperature .......................................+125°C  
Thermal Resistance ΘJA ..............................................100.4°C/W  
Thermal Resistance ΘJC ................................................19.0°C/W  
TxOUT....................................................Continuous  
Storage Temperature......................ꢀ65°C to +150°C  
NOTE 1: V+ and Vꢀ can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
NOTE 2: Driver Input hysteresis is typically 250mV.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
C1 ꢀ C4 = 0.1ꢁF.  
,
PARAMETER  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
DC CHARACTERISTICS  
Supply Current  
0.3  
1.0  
1.0  
10  
mA  
ꢁA  
no load, VCC = 3.3V,  
AMB = 25oC, TxIN = GND or VCC  
T
Shutdown Supply Current  
SHDN = GND, VCC = 3.3V,  
TAMB = 25oC, TxIN = Vcc or GND  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
GND  
0.8  
V
TxIN, EN, SHDN, Note 2  
Input Logic Threshold HIGH  
Input Logic Threshold HIGH  
Input Leakage Current  
2.0  
2.4  
Vcc  
Vcc  
+1.0  
V
Vcc = 3.3V, Note 2  
Vcc = 5.0V, Note 2  
TxIN, EN, SHDN,  
V
+0.01  
+0.05  
ꢁA  
T
AMB = +25oC, VIN = 0V to VCC  
Output Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
+10  
0.4  
ꢁA  
V
Receivers disabled, VOUT = 0V to VCC  
IOUT = 1.6mA  
V
CC ꢀ0.6 VCC ꢀ0.1  
V
IOUT = ꢀ1.0mA  
+5.0  
+5.4  
V
All driver outputs loaded with 3kꢂ to  
GND, TAMB = +25oC  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
,
C1 ꢀ C4 = 0.1ꢁF. Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C.  
PARAMETER  
MIN.  
TYP. MAX. UNITS CONDITIONS  
DRIVER OUTPUTS (continued)  
Output Resistance  
300  
mA  
ꢁA  
VCC = V+ = Vꢀ = 0V, VOUT=+2V  
VOUT = 0V  
Output ShortꢀCircuit Current  
Output Leakage Current  
+35  
+60  
+25  
VCC = 0V or 3.0V to 5.5V, VOUT  
+12V, Drivers disabled  
=
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
Input Threshold LOW  
Input Threshold HIGH  
Input Threshold HIGH  
Input Hysteresis  
ꢀ15  
0.6  
0.8  
15  
V
V
1.2  
1.5  
1.5  
1.8  
0.3  
5
Vcc = 3.3V  
Vcc = 5.0V  
Vcc = 3.3V  
Vcc = 5.0V  
V
2.4  
2.4  
V
V
V
Input Resistance  
3
7
kꢂ  
TIMING CHARACTERISTICS  
Maximum Data Rate  
250  
kbps  
RL = 3kꢂ, CL = 1000pF, one  
driver active  
Receiver Propagation Delay, tPHL  
Receiver Propagation Delay, tPLH  
0.15  
0.15  
ꢁs  
ꢁs  
Receiver input to Receiver  
output, CL = 150pF  
Receiver input to Receiver  
output, CL = 150pF  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
ns  
ns  
ns  
| tPHL ꢀ tPLH |, TAMB = 25°C  
Receiver Skew  
50  
ns  
| tPHL ꢀ tPLH |  
TransitionꢀRegion Slew Rate  
30  
V/ꢁs  
Vcc = 3.3V, RL = 3kꢂ,  
CL = 1000pF, TAMB = 25°C,  
measurements taken from ꢀ3.0V  
to +3.0V or +3.0V to ꢀ3.0V  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 1000kbps data rate, all  
drivers loaded with 3kꢂ, 0.1ꢁF charge pump capacitors, and TAMB = +25°C.  
30  
25  
20  
15  
10  
5
6
4
- Slew  
+ Slew  
TxOUT+  
2
T1 at 250Kbps  
0
T2 at 15.6Kbps  
All TX loaded 3K // CLoad  
T1 at 250Kbps  
-2  
-4  
-6  
T2 at 15.6Kbps  
TxOUT-  
All TX loaded 3K // CLoad  
0
0
500 1000  
2000 3000 4000 5000  
0
1000  
2000  
3000  
4000  
5000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 1. Transmitter Output Voltage vs Load  
Capacitance  
Figure 2. Slew Rate vs Load Capacitance  
16  
14  
12  
10  
8
35  
T1 at Full Data Rate  
30  
25  
20  
15  
10  
5
250Kbps  
T2 at 1/16 Data Rate  
All TX loaded 3K // CLoad  
125Kbps  
6
1 Transmitter at 250Kbps  
20Kbps  
1 Transmitter at 15.6Kbps  
4
All transmitters loaded with 3K // 1000pf  
2
0
2.7  
3
3.5  
4
4.5  
5
0
0
1000  
2000  
3000  
4000  
5000  
Supply Voltage (V)  
Load Capacitance (pF)  
Figure 3. Supply Current VS. Load Capacitance  
when Transmitting Data  
Figure 4. Supply Current VS. Supply Voltage  
6
TxOUT+  
4
2
T1 at 250Kbps  
T2 at 15.6Kbps  
0
All TX loaded 3K // 1000 pF  
-2  
-4  
-6  
TxOUT-  
2.7  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
Figure 5. Transmitter Output Voltage vs Supply  
Voltage  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
4
PIN FUNCTION  
PIN NUMBER  
SP3222EB  
SP3232EB  
NAME  
EN  
FUNCTION  
SOIC  
SSOP  
TSSOP  
Receiver Enable. Apply Logic LOW for normal operation.  
Apply logic HIGH to disable the receiver outputs (highꢀZ state)  
1
1
C1+  
V+  
Positive terminal of the voltage doubler chargeꢀpump capacitor  
+5.5V output generated by the charge pump  
Negative terminal of the voltage doubler chargeꢀpump capacitor  
Positive terminal of the inverting chargeꢀpump capacitor  
Negative terminal of the inverting chargeꢀpump capacitor  
ꢀ5.5V output generated by the charge pump  
RSꢀ232 driver output.  
2
3
2
3
1
2
C1ꢀ  
4
4
3
C2+  
C2ꢀ  
5
5
4
6
6
5
Vꢀ  
7
7
6
T1OUT  
T2OUT  
R1IN  
R2IN  
15  
8
17  
8
14  
7
RSꢀ232 driver output.  
RSꢀ232 receiver input  
14  
9
16  
9
13  
8
RSꢀ232 receiver input  
R1OUT TTL/CMOS receiver output  
R2OUT TTL/CMOS receiver output  
13  
10  
12  
11  
16  
17  
15  
10  
13  
12  
18  
19  
12  
9
T1IN  
T2IN  
GND  
VCC  
TTL/CMOS driver input  
TTL/CMOS driver input  
Ground.  
11  
10  
15  
16  
+3.0V to +5.5V supply voltage  
Shutdown Control Input. Drive HIGH for normal device operation.  
Drive LOW to shutdown the drivers (highꢀZ output) and the onꢀ  
board power supply  
SHDN  
N.C.  
18  
20  
No Connect  
11, 14  
Table 1. Device Pin Description  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
5
PINOUT  
EN  
1
2
3
4
5
6
20  
19  
18  
17  
16  
15  
SHDN  
EN  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
SHDN  
V
CC  
C1+  
V+  
V
CC  
C1+  
V+  
GND  
GND  
C1-  
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
SP3222EB  
C2+  
C2-  
V-  
SP3222EB  
C2+  
C2-  
V-  
R1OUT  
R1OUT  
7
14  
13  
N.C.  
T1IN  
7
12  
T1IN  
T2OUT 8  
11  
10  
R2IN  
T2OUT 8  
R2IN  
9
12 T2IN  
N.C.  
T2IN  
10  
R2OUT  
11  
9
R2OUT  
nSOIC  
SSOP/TSSOP  
Figure 6. Pinout Configurations for the SP3222EB  
V
CC  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
C1+  
V+  
GND  
C1-  
T1OUT  
SP3232EB  
C2+  
C2-  
V-  
R1IN  
R1OUT  
T1IN  
7
8
10  
9
T2OUT  
R2IN  
T2IN  
R2OUT  
Figure 7. Pinout Configuration for the SP3232EB  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
6
TYPICAL OPERATING CIRCUITS  
VCC  
VCC  
+
+
+
+
19  
17  
0.1µF  
0.1µF  
C5  
C1  
0.1µF  
C5  
C1  
VCC  
VCC  
2
3
2
3
C1+  
C1+  
V+  
V-  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
*C3  
C4  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
*C3  
C4  
4
5
C1-  
4
5
C1-  
7
C2+  
SP3222EB  
7
C2+  
SP3222EB  
nSOIC  
+
+
SSOP  
TSSOP  
C2  
0.1µF  
C2  
6
C2-  
6
C2-  
T1OUT  
T2OUT  
17  
8
T1OUT  
T2OUT  
13 T1IN  
15  
8
12 T1IN  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
12  
T2IN  
11  
T2IN  
16  
15  
10  
R1IN  
R1OUT  
R2OUT  
14  
13  
10  
R1IN  
R1OUT  
R2OUT  
5kΩ  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
9
R2IN  
9
5kΩ  
5kΩ  
1 EN  
1 EN  
20  
18  
SHDN  
SHDN  
GND  
18  
GND  
16  
*can be returned to  
either VCC or GND  
*can be returned to  
either VCC or GND  
Figure 8. SP3222EB Typical Operating Circuits  
VCC  
+
16  
0.1µF  
0.1µF  
C5  
C1  
VCC  
2
6
1
C1+  
V+  
V-  
+
+
+
+
*C3  
C4  
0.1µF  
0.1µF  
3
4
C1-  
C2+  
SP3232EB  
0.1µF  
C2  
5
C2-  
T1OUT  
T2OUT  
14  
7
11 T1IN  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
10  
T2IN  
12  
9
R1IN 13  
R1OUT  
R2OUT  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
8
5kΩ  
GND  
15  
*can be returned to  
either VCC or GND  
Figure 9. SP3232EB Typical Operating Circuit  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
7
DESCRIPTION  
The SP3222EB/SP3232EB transceivers  
meet the EIA/TIAꢀ232 and ITUꢀT V.28/V.24  
communication protocols and can be impleꢀ  
mented in batteryꢀpowered, portable, or  
handꢀheld applications such as notebook  
or palmtop computers. The SP3222EB/  
SP3232EB devices feature Exar's propriꢀ  
etary onꢀboard charge pump circuitry that  
generates ±5.5V for RSꢀ232 voltage levels  
from a single +3.0V to +5.5V power supply.  
This series is ideal for +3.3Vꢀonly systems,  
mixed+3.3Vto+5.5Vsystems,or+5.0Vꢀonly  
systems that require true RSꢀ232 perforꢀ  
mance.TheSP3222EB/SP3232EB devices  
can operate at a data rate of 250kbps when  
fully loaded.  
The drivers can guarantee a data rate of  
250kbps fully loaded with 3kꢂ in parallel  
with 1000pF, ensuring compatability with  
PCꢀtoꢀPC communication software.  
Theslewrateofthedriverisinternallylimited  
to a maximum of 30V/ꢁs in order to meet the  
EIA standards (EIA RSꢀ232D 2.1.7, Paraꢀ  
graph 5). The transition of the loaded output  
fromHIGHtoLOWalsomeetthemonotonicꢀ  
ity requirements of the standard.  
Figure 10 shows a loopback test circuit  
used to test the RSꢀ232 Drivers. Figure  
11 shows the test results of the loopback  
circuit with all drivers active at 120kbps  
with RSꢀ232 loads in parallel with a  
1000pF capacitor. Figure 12 shows the  
test results where one driver was active  
at 250kbps and all drivers loaded with an  
RSꢀ232 receiver in parallel with 1000pF  
capacitors. A solid RSꢀ232 data transmisꢀ  
sion rate of 250kbps provides compatibility  
with many designs in personal computer  
peripherals and LAN applications.  
The SP3222EB and SP3232EB are 2ꢀ  
driver/2ꢀ receiver devices ideal for portable  
or handꢀheld applications. The SP3222EB  
featuresa1ꢁA shutdownmodethatreduces  
power consumption and extends battery life  
in portable systems. Its receivers remain  
active in shutdown mode, allowing external  
devices such as modems to be monitored  
using only 1ꢁA supply current.  
The SP3222EB driver's output stages are  
turned off (triꢀstate) when the device is in  
shutdown mode. When the power is off, the  
SP3222EB device permits the outputs to be  
driven up to +/ꢀ12V. The driver's inputs do  
nothavepullꢀupresistors. Designersshould  
connect unused inputs to Vcc or GND.  
THEORY OF OPERATION  
The SP3222EB/SP3232EB series is made  
up of three basic circuit blocks:  
1. Drivers  
2. Receivers  
3. The Exar proprietary charge pump  
In the shutdown mode, the supply current  
falls to less than 1ꢁA, where SHDN = LOW.  
When the SP3222EB device is shut down,  
the device's driver outputs are disabled (triꢀ  
stated) and the charge pumps are turned off  
with V+ pulled down to Vcc and Vꢀ pulled to  
GND. The time required to exit shutdown is  
typically 100ꢁs. Connect SHDN to Vcc if the  
shutdown mode is not used.  
Drivers  
The drivers are inverting level transmitters  
that convert TTL or CMOS logic levels to  
+5.0V EIA/TIAꢀ232 levels with an inverted  
sense relative to the input logic levels.  
Typically, the RSꢀ232 output voltage swing  
is +5.4V with no load and +5V minimum fully  
loaded. The driver outputs are protected  
against infinite shortꢀcircuits to ground withꢀ  
out degradation in reliability. Driver outputs  
will meet EIA/TIAꢀ562 levels of +/ꢀ3.7V with  
supply voltages as low as 2.7V.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
8
DESCRIPTION  
Receivers  
VCC  
The Receivers convert EIA/TIAꢀ232 levels  
to TTL or CMOS logic output levels. The  
SP3222EB receivers have an inverting  
triꢀstate output. These receiver outputs  
(RxOUT) are triꢀstated when the enable  
control EN = HIGH. In the shutdown mode,  
the receivers can be active or inactive. EN  
hasnoeffectonTxOUT.Thetruthtablelogic  
oftheSP3222EBdriverandreceiveroutputs  
can be found in Table 2.  
+
+
0.1µF  
0.1µF  
C5  
C1  
VCC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
SP3222EB  
SP3232EB  
C2+  
+
C2  
0.1µF  
C2-  
TxOUT  
TxIN  
LOGIC  
INPUTS  
RxIN  
RxOUT  
EN*  
LOGIC  
OUTPUTS  
5kΩ  
*SHDN  
SHDN  
EN  
TxOUT  
RxOUT  
VCC  
0
0
1
1
0
1
0
1
Triꢀstate  
Triꢀstate  
Active  
Active  
Triꢀstate  
Active  
GND  
1000pF  
* SP3222EB only  
Active  
Triꢀstate  
Figure 10. SP3222EB/SP3232EB Driver Loopback  
Test Circuit  
Table 2. SP3222EB Truth Table Logic for Shutdown  
and Enable Control  
Since receiver input is usually from a transꢀ  
mission line where long cable lengths and  
system interference can degrade the signal,  
the inputs have a typical hysteresis margin  
of 300mV. This ensures that the receiver  
is virtually immune to noisy transmission  
lines. Should an input be left unconnected,  
an internal 5kꢂ pulldown resistor to ground  
will commit the output of the receiver to a  
HIGH state.  
Figure 11. Loopback Test results at 120kbps  
Charge Pump  
The charge pump is an Exarꢀpatended  
design (U.S. 5,306,954) and uses a unique  
approach compared to older lessꢀefficient  
designs.Thechargepumpstillrequiresfour  
external capacitors, but uses a fourꢀphase  
voltage shifting technique to attain symꢀ  
metrical 5.5V power supplies. The internal  
power supply consists of a regulated dual  
charge pump that provides output voltages  
of +/ꢀ5.5V regardless of the input voltage  
(Vcc) over the +3.0V to +5.5V range.  
Figure 12. Loopback Test results at 250kbps  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
9
DESCRIPTION  
Inmostcircumstances,decouplingthepower  
supply can be achieved adequately using  
a 0.1ꢁF bypass capacitor at C5 (refer to  
fi g ures 8 and 9)  
Phase 4  
— V transfer — The fourth phase of  
the cDloDck connects the negative terminal  
of C2 to GND, and transfers this positive  
generated voltage across C2 to C4, the  
VDD storage capacitor. This voltage is  
regulated to +5.5V. At this voltage, the inꢀ  
ternal oscillator is disabled. Simultaneous  
with the transfer of the voltage to C4, the  
positive side of capacitor C is switched  
to V and the negative1 side is conꢀ  
nectCeCd to GND, allowing the charge  
pump cycle to begin again. The charge  
pump cycle will continue as long as the  
operational conditions for the internal  
oscillator are present.  
In applications that are sensitive to powerꢀ  
supply noise, decouple Vcc to ground with a  
capacitorofthesamevalueaschargeꢀpump  
capacitor C1. Physically connect bypass  
capcitors as close to the IC as possible.  
The charge pump operates in a discontinuꢀ  
ous mode using an internal oscillator. If the  
output voltages are less than a magnitude  
of 5.5V, the charge pump is enabled. If the  
outputvoltages exceedamagnitudeof5.5V,  
the charge pump is disabled. This oscillator  
controls the four phases of the voltage shiftꢀ  
ing. A description of each phase follows.  
Since both V+ and Vare separately generꢀ  
ated from VCC, in a no–load condition V+  
and Vwill be symmetrical. Older charge  
pump approaches that generate Vfrom  
V+ will show a decrease in the magnitude  
of Vcompared to V+ due to the inherent  
inefficiencies in the design.  
Phase 1  
— VSS charge storage — During this phase  
oftheclockcycle,thepositivesideofcapaciꢀ  
tors C1 and C2 are initially charged to VCC.  
Cl+ is then switched to GND and the charge  
in C1is transferred to C . Since C2+ is conꢀ  
nected to V , the volta2ge potential across  
capacitor C2CCis now 2 times VCC.  
The clock rate for the charge pump typically  
operatesatgreaterthan250kHz. Theexterꢀ  
nal capacitors can be as low as 0.1ꢁF with  
a 16V breakdown voltage rating.  
Phase 2  
— V transfer — Phase two of the clock  
connSeSctsthenegativeterminalofC to theVSS  
storagecapacitorandthepositivet2erminalof  
C2 to GND. This transfers a negative generꢀ  
ated voltage to C3. This generated voltage is  
regulated to a minimum voltage of ꢀ5.5V.  
Simultaneous with the transfer of the voltꢀ  
age to C3, the positive side of capacitor C1  
is switched to VCC and the negative side is  
connected to GND.  
Phase 3  
— VDD charge storage — The third phase of  
the clock is identical to the first phase — the  
charge transferred in C1 produces –VCC in  
the negative terminal of C , which is applied  
to the negative side of ca1pacitor C2. Since  
C + is at V , the voltage potential across C2  
is22 timesCVCCC.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
10  
DESCRIPTION  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 13. Charge Pump — Phase 1  
V
CC  
= +5V  
C
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
1
C
2
+
C
3
-5.5V  
Figure 14. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
GND  
GND  
1
2
b) C2-  
-6V  
Ch1 2.00V Ch2 2.00V M 1.00ms Ch1 5.48V  
Figure 15. Charge Pump Waveforms  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
1
C
2
SS  
C
–5V  
–5V  
3
Figure 16. Charge Pump — Phase 3  
V
= +5V  
CC  
+5.5V  
C
4
+
+
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
1
C
2
V
SS  
C
3
Figure 17. Charge Pump — Phase 4  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
11  
DESCRIPTION  
ESD TOLERANCE  
thesystemisrequiredtowithstandanamount  
of static electricity when ESD is applied to  
points and surfaces of the equipment that  
are accessible to personnel during normal  
The SP3222EB/SP3232EB series incorꢀ  
porates ruggedized ESD cells on all driver  
output and receiver input pins. The ESD  
structure is improved over our previous  
family for more rugged applications and  
environments sensitive to electroꢀstatic  
discharges and associated transients. The  
improved ESD tolerance is at least +15kV  
without damage nor latchꢀup.  
usage. The transceiver IC receives most  
of the ESD current when the ESD source is  
appliedtotheconnectorpins. Thetestcircuit  
for IEC61000ꢀ4ꢀ2 is shown on Figure 19.  
TherearetwomethodswithinIEC61000ꢀ4ꢀ2,  
the Air Discharge method and the Contact  
Discharge method.  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electricallychargedpersonreadytoconnect  
a cable onto the rear of the system only to  
fi n danunpleasantzapjustbeforetheperson  
touches the back panel. The high energy  
potential on the person discharges through  
anarcingpathtotherearpanelofthesystem  
before he or she even touches the system.  
This energy, whether discharged directly or  
throughair,ispredominantlyafunctionofthe  
discharge current rather than the discharge  
voltage. Variableswithanairdischargesuch  
asapproachspeedoftheobjectcarryingthe  
ESD potential to the system and humidity  
will tend to change the discharge current.  
For example, the rise time of the discharge  
current varies with the approach speed.  
There are different methods of ESD testing  
applied:  
a) MILꢀSTDꢀ883, Method 3015.7  
b) IEC61000ꢀ4ꢀ2 AirꢀDischarge  
c) IEC61000ꢀ4ꢀ2 Direct Contact  
The Human Body Model has been the  
generally accepted ESD testing method  
for semiꢀconductors. This method is also  
specified in MILꢀSTDꢀ883, Method 3015.7  
forESDtesting.ThepremiseofthisESDtest  
is to simulate the human body’s potential to  
store electroꢀstatic energy and discharge it  
to an integrated circuit. The simulation is  
performed by using a test model as shown  
in Figure 18. This method will test the IC’s  
capability to withstand an ESD transient  
during normal handling such as in manuꢀ  
facturing areas where the ICs tend to be  
handled frequently.  
The Contact Discharge Method applies the  
ESDcurrentdirectlytotheEUT. Thismethod  
was devised to reduce the unpredictability  
of the ESD arc. The discharge current rise  
time is constant since the energy is directly  
transferred without the airꢀgap arc. In situꢀ  
ations such as hand held systems, the ESD  
charge can be directly discharged to the  
The IECꢀ61000ꢀ4ꢀ2, formerly IEC801ꢀ2, is  
generallyusedfortestingESDonequipment  
and systems. For system manufacturers,  
theymustguaranteeacertainamountofESD  
protection since the system itself is exposed  
totheoutsideenvironmentandhumanpresꢀ  
ence. ThepremisewithIEC61000ꢀ4ꢀ2isthat  
R
S
R
C
SW1  
SW2  
Device  
Under  
Test  
C
DC Power  
Source  
S
Figure 18. ESD Test Circuit for Human Body Model  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
12  
DESCRIPTION  
Contact-Discharge Model  
R
R
R
V
C
S
SW1  
SW2  
Device  
Under  
Test  
C
DC Power  
Source  
S
and  
add up to 330Ω for IEC1000-4-2.  
R
V
R
S
Figure 19. ESD Test Circuit for IEC61000ꢀ4ꢀ2  
equipment from a person already holding  
the equipment. The current is transferred  
on to the keypad or the serial port of the  
equipment directly and then travels through  
the PCB and finally to the IC.  
The higher CS value and lower R value in  
the IEC61000ꢀ4ꢀ2 model are moreSstringent  
than the Human Body Model. The larger  
storage capacitor injects a higher voltage  
to the test point when SW2 is switched on.  
The lower current limiting resistor increases  
the current charge onto the test point.  
The circuit models in Figures 18 and 19 repꢀ  
resentthetypicalESDtestingcircuitusedfor  
allthreemethods. TheCS is initiallycharged  
with the DC power supply when the first  
switch (SW1) is on. Now that the capacitor  
is charged, the second switch (SW2) is on  
while SW1 switches off. The voltage stored  
in the capacitor is then applied through R ,  
the current limiting resistor, onto the devicSe  
under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under  
test receives a duration of voltage.  
30A  
15A  
0A  
For the Human Body Model, the current  
limitingresistor(RS)andthesourcecapacitor  
(CS) are 1.5kꢂ an 100pF, respectively. For  
IECꢀ61000ꢀ4ꢀ2, the current limiting resistor  
(R ) and the source capacitor (CS) are 330ꢂ  
anS150pF, respectively.  
t = 0ns  
t = 30ns  
t →  
Figure 20. ESD Test Waveform for IEC61000ꢀ4ꢀ2  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC61000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
+15kV  
+15kV  
+15kV  
+15kV  
+8kV  
+8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
13  
PACKAGE: 20 PIN SSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
14  
PACKAGE: 16 PIN SSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
15  
PACKAGE: 16 PIN WSOIC  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
16  
PACKAGE: 18 PIN WSOIC  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
17  
PACKAGE: 16 PIN nSOIC  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
18  
PACKAGE: 16 PIN TSSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
19  
PACKAGE: 20 PIN TSSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
20  
ORDERING INFORMATION  
Part Number  
Temp. Range  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
Package  
SP3222EBCAꢀL  
SP3222EBCAꢀL/TR  
SP3222EBCTꢀL  
SP3222EBCTꢀL/TR  
SP3222EBCYL  
SP3222EBCYL/TR  
SP3222EBEAꢀL  
SP3222EBEAꢀL/TR  
SP3222EBETꢀL  
20 Pin SSOP  
20 Pin SSOP  
18 Pin WSOIC  
18 Pin WSOIC  
20 Pin TSSOP  
20 Pin TSSOP  
20 Pin SSOP  
20 Pin SSOP  
18 Pin WSOIC  
18 Pin WSOIC  
20 Pin TSSOP  
20 Pin TSSOP  
SP3222EBETꢀL/TR  
SP3222EBEYL  
SP3222EBEYL/TR  
Part Number  
Temp. Range  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
ꢀ40°C to +85°C  
Package  
SP3232EBCAꢀL  
SP3232EBCAꢀL/TR  
SP3232EBCNꢀL  
SP3232EBCNꢀL/TR  
SP3232EBCTꢀL  
16 Pin SSOP  
16 Pin SSOP  
16 Pin NSOIC  
16 Pin NSOIC  
16 Pin WSOIC  
16 Pin WSOIC  
16 Pin TSSOP  
16 Pin TSSOP  
16 Pin SSOP  
16 Pin SSOP  
16 Pin NSOIC  
16 Pin NSOIC  
16 Pin WSOIC  
16 Pin WSOIC  
16 Pin TSSOP  
16 Pin TSSOP  
SP3232EBCTꢀL/TR  
SP3232EBCYL  
SP3232EBCYL/TR  
SP3232EBEAꢀL  
SP3232EBEAꢀL/TR  
SP3232EBENꢀL  
SP3232EBENꢀL/TR  
SP3232EBETꢀL  
SP3232EBETꢀL/TR  
SP3232EBEYL  
SP3232EBEYL/TR  
Note: "/TR" is for tape and Reel option. "ꢀL" is for lead free packaging  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
21  
REVISION HISTORY  
DATE  
REVISION DESCRIPTION  
11/02/05  
09/09/09  
ꢀꢀ  
Legacy Sipex Datasheet  
1.0.0  
Convert to Exar Format, Update ordering information and  
change revision to 1.0.0.  
06/07/11  
03/14/13  
8/14/14  
1.0.1  
1.0.2  
1.0.3  
Remove obsolete devices per PDN 110510ꢀ01 and change  
ESD rating to IECꢀ61000ꢀ4ꢀ2.  
Correct type error to RX input voltage range and TX transiꢀ  
tion region slew rate condition.  
Add Max Junction temperature and package thermal inforꢀ  
mation.  
Notice  
EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reliꢀ  
ability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are  
only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully  
checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can  
reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for  
use in such applications unless EXAR Corporation receives, in writting, assurances to its satisfaction that: (a) the risk of injury or damage has been  
minimized ; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.  
Copyright 2014 EXAR Corporation  
Datasheet August 2014  
Send your serial transceiver technical inquiry with technical details to: serialtechsupport@exar.com  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • 510ꢀ668ꢀ7017 • www.exar.com  
SP3222EB/SP3232EB_103_081414  
22  

相关型号:

SP3232EBCY/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEA

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEA-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MO-153AC, SSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEA-L

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA-L/TR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX