XRT4000 [EXAR]

Universal Multiprotocol Serial Interface; 通用多协议串行接口
XRT4000
型号: XRT4000
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Universal Multiprotocol Serial Interface
通用多协议串行接口

文件: 总46页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT4000  
Universal Multiprotocol  
Serial Interface  
November 1998-2  
FEATURES  
Software-configurable multiprotocol serial  
interface supporting:  
V.35, V.36, EIA-530 (A), RS232  
(V.28), X.21, RS449  
One chip fully integrated solution (Internal  
termination)  
Internal oscillator for standalone DTE loopback  
testing  
Control signals can be registered and non-  
registered  
Control signals can be tri-stated for bus-based  
designs  
“Fail Safe” operation supported  
ESD Protection Over + 2kV Range  
Contains 8 receivers and 8 transmitters for full  
DTE and DCE support  
Glitch filters on the control signals (Optional)  
+5V, +12V, -6V power supplies required  
Full support of loopbacks, data & clock inversion,  
and echoed clock in DTE and DCE modes  
Full support of most popular types of HDLC  
controllers (single, double, and triple clocks  
supported)  
APPLICATIONS  
Data Service Units (DSU)  
Routers  
Access Multiplexers  
GENERAL DESCRIPTION  
The XRT4000 is a fully integrated multiprotocol serial  
interface. It is a universal device because it supports  
all of the popular serial physical interfaces such as  
V.35, V.36, EIA-530 (A), RS232 (V.28), X.21 and  
RS449. Furthermore it can easily be interfaced with  
most common types of HDLC controllers. This  
device contains 8 receivers and 8 transmitters. It is  
a complete solution containing all of the required  
source and load terminations in one 100 pin TQFP  
package.  
operation and power down mode. It fully supports  
echoed clock as well as clock and data inversion. An  
elaborate set of loopbacks are supported in DTE and  
DCE modes of operation. This eliminates the need  
for external circuitry for loopback implementation.  
The control signals such as RI, RL, DCD, DTR, DSR  
are protected against glitches by internal filters.  
These filters can be disabled.  
XRT4000 has an  
internal oscillator which is used to create a clock  
signal needed to conduct standalone diagnostics of  
DTE equipment.  
XRT4000 can be configured to operate in one of the  
seven interfaces in either DTE and DCE modes of  
ORDER INFORMATION  
Part No.  
Package  
100 Pin TQFP  
Operating  
Temperature Range  
0°C to +70°C  
XRT4000CV  
Rev. 1.00  
EXAR Corporation, 48720 Kato Road, Fremont, CA 95538 (510) 668-7000 FAX (510) 668-7017  
XRT4000  
Figure 1. XRT4000 Functional Block Diagram  
Rev. 1.00  
- 2 -  
XRT4000  
Figure 2. XRT4000 RTMOD1 Block  
Figure 3. XRT4000 RTMOD2 Block  
Rev. 1.00  
- 3 -  
XRT4000  
Figure 4. XRT4000 RTMOD3 Block  
Figure 5. XRT4000 Control Block  
Note: Signals without pin numbers having names identical to those with pin numbers are CMOS level-shifted  
versions of TTL-compatible input signals.  
Rev. 1.00  
- 4 -  
XRT4000  
PIN CONFIGURATION  
V D D  
TX1D  
G N D  
V S S  
G N D  
M 0  
M 1  
V D D  
V D D  
M 2  
70  
G N D  
V S S  
EN_FLTR  
E N _ T E R M  
LATCH*  
DTINV*  
V S S  
CKINV*  
10  
V S S  
G N D  
EN_OSC*  
2CK/3CK*  
R E G _ C L K  
V R  
100-Pin  
TQFP  
XRT4000  
CLKFS  
TX4D  
V D D  
V P P  
TX4B  
TX4A  
N C  
N C  
N C  
60  
TX5A  
TX5B  
G N D  
N C  
V P P  
TX5D  
20  
V D D  
TX8D  
E_232H*  
V S S  
LP*  
TX8O  
V S S  
N/C  
G N D  
N/C  
V D D  
Rev. 1.00  
- 5 -  
XRT4000  
PIN DESCRIPTION  
Pin  
#
1
2
3
4
5
6
Symbol  
DTE  
Mode  
DCE  
Mode  
Type Function  
Digital VDD for Receiver 1  
VDD  
GND  
M0  
M1  
M2  
- Connect to +5V  
Digital GND for Receiver 1  
I
I
I
I
Mode Control  
Mode Control  
Mode Control  
- Mode Select Input 0; Internal 20Kpull-up  
- Mode Select Input 1; Internal 20Kpull-up  
- Mode Select Input 2; Internal 20Kpull-up  
EN_FLTR  
Enable Glitch Filter  
on Receiver 4, 5, 6, 7, 8 inputs.  
Internal 20Kpull-down  
Enable  
7
8
EN_TERM  
LATCH*  
I
I
input termination for Receiver 1, 2, 3 in V.11 Mode.  
Internal 20Kpull-down  
Mode Control Input Latch Enable Logic 0  
-
: Changes on  
M0, 1, 2, EN_FLTR, and EN_TERM pins cause mode  
changes (input latches in transparent state).  
Logic 1: Changes on these input pins do not cause mode  
changes (input latches in latched state). Internal 20Kpull-  
down  
9
VSS  
VSS  
GND  
CLKFS  
TX4D  
VDD  
TX4B  
TX4A  
TX5A  
TX5B  
GND  
TX5D  
TX8D  
LP*  
Digital VSS  
Analog VSS  
Digital GND  
Internal Clock Generated  
- 500kHz  
Transmitter 4  
for Transmitter 4, 5, 6. Connect to -6V  
for bias generation Connect to -6V  
for Transmitter 7, 8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
O
I
D_RTS  
D_CTS  
- Digital Data Input from equipment  
for Transmitter 4, 5, 6; Connect to +5V  
Digital VDD  
RTSB  
RTSA  
DTRA  
DTRB  
CTSB  
CTSA  
DSRA  
DSRB  
O
O
O
O
Transmitter 4  
Transmitter 4  
Transmitter 5  
Transmitter 5  
Digital GND  
Transmitter 5  
Transmitter 8  
- Positive Data Differential Output to line  
- Negative Data Differential Output to line  
- Negative Data Differential Output to line  
- Positive Data Differential Output to line  
for Transmitter 4, 5, 6  
D_DTR  
D_RL  
D_DSR  
D_RI  
I
I
I
- Digital Data Input from equipment  
- Digital Data Input from equipment  
Loopback Enable  
- Active low;  
Logic 0  
: Loopback  
enabled.  
Logic 1: Loopback disabled. Internal 20Kpull-up  
23  
24  
25  
26  
27  
TX8O  
VSS  
VDD  
EN_OUT*  
REG  
RLA  
RIA  
O
Transmitter 8  
Digital VSS  
Digital VDD  
Output Enable  
Register Control Logic 1  
- Single Ended Data Output to line  
for Transmitter 7, 8; Connect to -6V  
for Transmitter 7, 8; Connect to +5V  
I
I
for Receiver 5, 8; Internal 20Kpull-down  
-
: TX5D, TX8D signal values will  
be latched on the positive edge of REG_CLK, Logic 0: The  
Register flip-flop is bypassed therefore REG_CLK has no  
effect on these signals. Internal 20Kpull-down  
28  
29  
30  
31  
32  
33  
34  
VSS  
VDD  
VDD  
RX8D  
GND  
RX8I  
VSS  
Analog VSS  
Analog VDD  
Analog VDD  
for Receiver 4, 5, 6; Connect to -6V  
for Receiver 4, 5, 6; Connect to +5V  
for Receiver 7, 8; Connect to +5V  
- Digital Data Output to equipment  
D_RI  
RIA  
D_RL  
RLA  
O
I
Receiver 8  
Analog GND  
Receiver 8  
Analog VSS  
for Receiver 7, 8  
- Single Ended Data Input from line  
for Receiver 7, 8; Connect to -6V  
Note: An asterisk (*) following a pin symbol indicates that the pin is active low.  
Names begining with D_ are digital signals.  
Names ending with B and A are the positive and negative polarities of differential signals respectively.  
Rev. 1.00  
- 6 -  
XRT4000  
PIN DESCRIPTION (CONT’D)  
Pin  
#
35  
Symbol  
DTE  
Mode  
LLA  
DCE  
Mode  
LLA  
Type Function  
TR7  
I/O  
DTE Mode - Transmitter 7 - Single Ended Data Output to line  
DCE Mode - Receiver 7 - Single Ended Data Input from line  
Digital Input - Refer to Mode Control Table  
DTE Mode - Receiver 6 - Negative Data Differential Input  
from line  
36  
37  
TX76D  
TR6A  
D_LL  
DCDA  
D_DCD  
DCDA  
I
I/O  
DCE Mode - Transmitter 6 - Negative Data Differential  
Output to line  
38  
39  
TR6B  
DCDB  
LOW  
DCDB  
HIGH  
I/O  
I
DTE Mode - Receiver 6 - Positive Data Differential Input from  
line  
DCE Mode - Transmitter 6 - Positive Data Differential Output  
to line  
DCE/DTE*  
DCE/DTE Select - Selects operating mode. Logic 0: DTE  
Mode. Logic 1: DCE Mode. Internal 20Kpull-up  
Digital Output - Refer to Mode Control Table  
Receiver 5 - Digital Data Output to equipment  
Enable Clock Mode - Active Low, Logic 0: Echoed Mode.  
Logic 1: Normal Mode. Internal 20Kpull-up  
Receiver 5 - Positive Data Differential Input from line  
Receiver 5 - Negative Data Differential Input from line  
Receiver 4 - Negative Data Differential Input from line  
Receiver 4 - Positive Data Differential Input from line  
Analog Output - Resistor connected between this pin and  
Ground controls transmitter output pulse rise and fall time in  
V.10 or V.28 mode as specified in Figures 15 and 16  
respectively.  
40  
41  
42  
RX67D  
RX5D  
EC*  
D_DCD  
D_DSR  
D_LL  
D_DTR  
O
O
I
43  
44  
45  
46  
47  
RX5B  
RX5A  
RX4A  
RX4B  
SLEW_  
CNTL  
DSRB  
DSRA  
CTSA  
CTSB  
DTRB  
DTRA  
RTSA  
RTSB  
I
I
I
I
O
48  
49  
50  
51  
52  
53  
54  
55  
RX4D  
GND  
NC  
NC  
GND  
NC  
D_CTS  
D_RTS  
O
Receiver 4 - Digital Data Output to equipment  
Digital GND for Receiver 4, 5, 6  
Analog GND for bias generator.  
VSS  
E_232H*  
Analog Substrate - Connect to -6V  
I
High Speed RS-232 Enable - Logic 0: Enables high speed  
RS-232 mode (drives 3Kin parallel with 1000pF at 256KHz).  
Internal 20Kpull-up  
56  
57  
58  
59  
60  
61  
62  
63  
VDD  
VPP  
NC  
NC  
NC  
NC  
VPP  
VR  
Analog VDD for bias generation circuit; Connect to +5V  
VPP - Connect to +12V supply  
VPP - Connect to +12V supply  
VR - Internally generated +2.2V Reference (Sources 20µA  
maximum)  
O
Note: An asterisk (*) following a pin symbol indicates that the pin is active low.  
Names begining with D_ are digital signals.  
Names ending with B and A are the positive and negative polarities of differential signals respectively  
Rev. 1.00  
- 7 -  
XRT4000  
Pin  
#
Symbol  
DTE  
Mode  
DCE  
Mode  
Type Function  
64  
65  
REG_CLK  
2CK/3CK*  
I
I
Clock - For Transmitter 5, 8 input register. Internal 20Kpull-up  
2 or 3 Clock Select - Internal 20Kpull-up  
Logic Don’t Care: 1 Clock When Mode = X.21 (M2, M1, M0= 011)  
Logic 0: 3 Clocks When Mode X.21 (M2, M1, M0 011)  
Logic 1: 2 Clocks When Mode X.21 (M2, M1, M0 011)  
Test Oscillator Enable - Active Low; Logic 0: Oscillator Enabled.  
Logic 1: Oscillator Disabled. Internal 20Kpull-up  
Invert Clock - Active Low; Logic 0: Clock Inverted.  
Logic 1: Clock not Inverted. Internal 20Kpull-up  
Invert Data - Active Low; Logic 0: Data Inverted.  
Logic 1: Data not Inverted. Internal 20Kpull-up  
Digital VSS for Transmitter 1, 2, 3 Output Drivers;  
Connect to -6V  
66  
67  
68  
69  
EN_OSC*  
CKINV*  
DTINV*  
VSS  
I
I
I
70  
71  
GND  
VDD  
Digital GND for Transmitter 1, 2, 3 Output Drivers  
Digital VDD for Transmitter 1, 2, 3 Output Drivers;  
Connect to +5V  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
VDD  
VSS  
GND  
Analog VDD for Transmitter 1, 2; Connect to +5V  
Analog VSS for Transmitter 1, 2; Connect to -6V  
Analog GND for Transmitter 1, 2 “T” termination  
Transmitter 1- Digital Data Input from equipment  
AC GND - Transmitter 1 Output Termination center tap in V.35 mode  
Transmitter 1 - Positive Data Differential Output to line  
Transmitter 1 - Negative Data Differential Output to line  
Transmitter 2 - Negative Data Differential Output to line  
Transmitter 2 - Positive Data Differential Output to line  
AC GND - Transmitter 2 Output Termination center tap in V.35 mode  
Transmitter 2 - Digital Data Input from equipment  
Digital VDD for Receiver and Transmitter 1, 2, 3; Connect to +5V  
DTE Mode - Input not used  
TX1D  
CM_TX1  
TX1B  
TX1A  
TX2A  
TX2B  
CM_TX2  
TX2D  
VDD  
D_TXD  
D_RXD  
I
O
O
O
O
O
O
I
TXDB  
TXDA  
SCTEA  
SCTEB  
RXDB  
RXDA  
RXCA  
RXCB  
D_SCTE  
D_X  
D_RXC  
D_TXC  
TX3D  
I
DCE Mode - Transmitter 3 - Digital Data Input from equipment  
Digital VSS for Receiver and Transmitter 1, 2, 3; Connect to -6V  
DTE Mode - AC GND - Transmitter 3 Output Termination center tap  
in V.35 mode  
85  
86  
VSS  
CM_TR3  
O
DCE Mode - AC GND - Receiver 3 Input Termination center tap in  
V.35 mode  
87  
TR3A  
TXCA  
TXCA  
I/O  
DTE Mode - Receiver 3 - Negative Data Differential Input from line.  
DCE Mode - Transmitter 3 - Negative Data Differential Output to  
line.  
Note: An asterisk (*) following a pin symbol indicates that the pin is active low.  
Names begining with D_ are digital signals.  
Names ending with B and A are the positive and negative polarities of differential signals respectively  
Rev. 1.00  
- 8 -  
XRT4000  
Pin  
#
88  
Symbol  
DTE  
Mode  
TXCB  
DCE  
Mode  
TXCB  
Type Function  
TR3B  
I/O  
DCE Mode - Transmitter 3 - Positive Data Differential  
Output to line  
DTE Mode - Receiver 3 - Positive Data Differential Input  
from line  
89  
90  
GND  
RX3D  
Analog GND for Receiver 1, 2, 3  
DTE Mode - Receiver 3- Digital Data Output to equipment  
DCE Mode - Not used  
Digital VDD for Receiver 2, 3; Connect to +5V  
Digital GND for Receiver 2, 3  
Receiver 2 - Digital Data Output to equipment  
Analog VSS for Receiver 1, 2, 3; Connect to -6V  
Receiver 2 - Positive Data Differential Input from line  
Receiver 2 - Negative Data Differential Input from line  
Receiver 2 - Negative Data Differential Input from line  
Receiver 2 - Positive Data Differential Input from line  
Analog VDD for Receiver 1, 2, 3; Connect to +5V  
Receiver 1 - Digital Data Output to equipment  
D_TXC  
D_RXC  
D_X  
O
O
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
VDD  
GND  
RX2D  
VSS  
RX2B  
RX2A  
RX1A  
RX1B  
VDD  
D_SCTE  
RXCB  
RXCA  
RXDA  
RXDB  
SCTEB  
SCTEA  
TXDA  
I
I
I
I
TXDB  
RX1D  
D_RXD  
D_TXD  
O
Note: An asterisk (*) following a pin symbol indicates that the pin is active low.  
Names begining with D_ are digital signals.  
Names ending with B and A are the positive and negative polarities of differential signals respectively.  
`
Rev. 1.00  
- 9 -  
XRT4000  
ELECTRICAL CHARCTERISTICS  
Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all ± 5%), TA = 25°C  
Sybol Parameter  
Supply Currents  
Min  
Typ  
Max  
Unitd  
Interface  
M0  
M1  
M2  
IDD  
ISS  
IPP  
VDD  
Supply  
Current  
20  
mA  
0
0
0
V.10, No Load  
(DCE  
Mode,  
90  
20  
mA  
mA  
0
1
0
0
0
0
V.10, Full Load  
All Digital  
Pins=GND  
EIA-530A, No Load  
or VDD)  
160  
55  
mA  
mA  
mA  
1
0
0
0
0
0
0
1
1
EIA-530A, Full Load  
V.35, No Load on V.28 Drivers  
55  
V.35, Full Load on V.28  
Drivers  
16  
16  
2
mA  
mA  
mA  
mA  
0
0
1
0
1
1
1
0
1
1
1
0
RS232, No Load  
RS232, Full Load  
Power Down Mode  
V.10, No Load  
VSS  
Supply  
Current  
30  
(DCE  
Mode,  
90  
30  
mA  
mA  
0
1
0
0
0
0
V.10, Full Load  
All Digital  
Pins=GND  
EIA-530A, No Load  
or VDD)  
50  
45  
55  
mA  
mA  
mA  
1
0
0
0
0
0
0
1
1
EIA-530A, Full Load  
V.35, No Load on V.28 Drivers  
V.35, Full Load on V.28  
Drivers  
16  
30  
2
mA  
mA  
mA  
mA  
0
0
1
0
1
1
1
0
1
1
1
0
RS232, No Load  
RS232, Full Load  
Power Down Mode  
V.10, No Load  
VPP  
10  
Supply  
Current  
(DCE  
Mode,  
10  
10  
mA  
mA  
0
1
0
0
0
0
V.10, Full Load  
All Digital  
Pins =  
GND  
EIA-530A, No Load  
or VDD)  
10  
10  
20  
mA  
mA  
mA  
1
0
0
0
0
0
0
1
1
EIA-530A, Full Load  
V.35, No Load on V.28 Drivers  
V.35, Full Load on V.28  
Drivers  
10  
25  
10  
mA  
mA  
mA  
0
0
1
1
1
1
1
1
1
RS232, No Load  
RS232, Full Load  
Power Down Mode  
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are  
referenced to device ground unless otherwise specified.  
Rev. 1.00  
- 10 -  
XRT4000  
ELECTRICAL CHARCTERISTICS (CONT’D)  
Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all ± 5%), TA = 25°C  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Conditions  
Logic Inputs and Outputs  
VIH  
VIL  
Logic Input High  
Voltage  
2
V
V
Logic Input Low  
Voltage  
0.8  
IIN  
Logic Input  
Current  
±250  
µA  
V
With 20kinternal pull-up/down resistor  
IO = -4mA  
VOH  
VOL  
IOSR  
IOZR  
Output High  
Voltage  
3
4.5  
0.3  
Output Low  
Voltage  
0.8  
60  
V
IO = 4mA  
Output Short-  
Circuit Current  
-60  
0
mA  
µA  
0V VO VDD  
Three-State  
Output Current  
±1  
5
M0 = Ml = M2 = VDD 0V VO VDD  
V.11 Driver  
VOD  
Differential Output  
Voltage  
V
V
Open Circuit  
RL = 50(Figure 6)  
±2  
Change in  
0.2  
3.0  
VOD  
RL = 50(Figure 6)  
Magnitude of  
Differential Output  
Voltage  
VOC  
Common Mode  
Output Voltage  
V
V
RL = 50(Figure 6)  
RL = 50(Figure 6)  
Change in  
0.2  
VOC  
Magnitude of  
Common Mode  
Output Voltage  
ISS  
IOZ  
Short-Circuit  
Current  
±150  
±100  
mA  
VO = GND  
Output Leakage  
Current  
±0.01  
µA  
-0.25V VO 0.25V, Power Off or  
Driver Disabled  
tr, tf  
TPLH  
TPHL  
t  
Rise or Fall Time  
Input to Output  
Input to Output  
4
50  
50  
0
13  
70  
70  
5
25  
110  
110  
15  
ns  
ns  
ns  
ns  
(Figures 7, 11)  
(Figures 7, 11)  
(Figures 7, 11)  
(Figures 7, 11)  
Inp. to Out.  
Difference, |TPLH  
- TPHL|  
TSKEW  
Output to Output  
Skew  
5
ns  
(Figures 7, 11)  
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are  
referenced to device ground unless otherwise specified.  
Rev. 1.00  
- 11 -  
XRT4000  
ELECTRICAL CHARCTERISTICS (CONT’D)  
Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all ± 5%), TA = 25°C  
Symbol  
V.11 Receiver  
VTH  
Parameter  
Min  
Typ  
Max  
Units  
Conditions  
Input Threshold  
Voltage  
-0.2  
0.2  
-7V VCM 7V  
-7V VCM 7V  
Input Hysteresis  
35  
±1  
60  
mV  
mA  
VTH  
IIN  
Input Current (A,  
B)  
±1.5  
-10V VA,B 10V  
RIN  
tr, tf  
TPLH  
TPHL  
Input Impedance  
Rise or Fall Time  
Input to Output  
Input to Output  
9
10  
20  
80  
80  
5
11  
kΩ  
ns  
ns  
ns  
ns  
-10V VA,B 10V  
(Figures 7, 12)  
(Figures 7, 12)  
(Figures 7, 12)  
(Figures 7, 12)  
50  
50  
0
120  
120  
15  
Inp. to Out.  
Difference, |TPLH  
- TPHL|  
t
V.35 Driver  
VOD  
Differential Output  
Voltage  
±0.44 ±0.55 ±0.66  
V
With Load, (Figure 12)  
VA, B = 0V  
IOH  
IOL  
IOZ  
Transmitter  
Output High  
Current  
-12  
10  
-11  
11  
-10  
12  
mA  
Transmitter  
Output Low  
Current  
mA  
VA, B = 0V  
Transmiter Output  
Leakage Current  
Rise or Fall Time  
±0.01  
±100  
µA  
-0.25 VA,B 0.25V  
5
55  
55  
5
ns  
ns  
ns  
ns  
(Figures 8, 11)  
(Figures 8, 11)  
(Figures 8, 11)  
(Figures 8, 11)  
tr, tf  
TPLH  
TPHL  
25  
25  
0
85  
85  
15  
Input to Output  
Input to Output  
Inp. to Out.  
Difference, |TPLH  
- TPHL|  
t
5
ns  
V
(Figures 8, 11)  
TSKEW  
Output to Output  
Skew  
V.35 Receiver  
-0.2  
0.2  
60  
-2V = (VA + VB)/2 = 2V (Figure 8)  
VTH  
Differential Input  
Threshold Volt.  
35  
mV  
mA  
-2V = (VA + VB)/2 = 2V (Figure 8)  
-10V = VA, B = 10V  
Input Hysteresis  
VTH  
±60  
IIN  
Input Current  
(A,B)  
175  
-10V = VA, B = 10V  
RIN  
Input Impedance  
(A, B)  
20  
80  
100  
5
ns  
ns  
ns  
ns  
(Figures 8, 12)  
(Figures 8, 12)  
(Figures 8, 12)  
(Figures 8, 12)  
tr, tf  
TPLH  
TPHL  
t  
Rise or Fall Time  
Input to Output  
Input to Output  
Input to Output  
Difference, ITPLH  
- TPHLI  
120  
120  
15  
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are  
referenced to device ground unless otherwise specified.  
Rev. 1.00  
- 12 -  
XRT4000  
ELECTRICAL CHARCTERISTICS (CONT’D)  
Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all ± 5%), TA = 25°C  
Symbol  
V.10 Driver  
VO  
Parameter  
Min  
Typ  
Max  
±6.0  
Units  
Conditions  
±4.0  
±3.6  
V
V
Output Voltage  
Open Circuit, RL = 3.9k  
RL = 450(Figure 9)  
±100  
±100  
mA  
ISS  
IOZ  
Short-Circuit  
Current  
VO = GND  
±0.1  
µA  
µs  
µs  
µs  
Input Leakage  
Current  
-0.25 VO 0.25V, Power Off or  
Driver Disabled  
0
5
5
5
tr, tf  
TPLH  
TPHL  
Rise or Fall Time  
Input to output  
Input to output  
(Figures 9, 13), RL = 450, CL = 100pF  
RSLEW_CNTL = 10k  
(Figures 9, 13), RL = 450, CL = 100pF  
RSLEW_CNTL = 10k  
(Figures 9, 13), RL = 450, CL = 100pF  
RSLEW_CNTL = 10k  
V.10 Receiver  
VTH  
Receiver Input  
Threshold Voltage  
-0.2  
0.2  
60  
V
AVTH  
IIN  
Receiver Input  
Hysteresis  
35  
±1  
mV  
mA  
kΩ  
±1.5  
Receiver Input  
Current  
-10 VA 10V  
-10 VA 10V  
RIN  
Receiver Input  
Impedance  
9
10  
11  
tr, tf  
TPLH  
Rise or Fall Time  
Input to Output  
Input to Output  
20  
ns  
ns  
ns  
(Figures 10, 14)  
(Figures 10, 14)  
(Figures 10, 14)  
100  
100  
TPHL  
V.28 Driver  
VO  
Output Voltage  
±6  
V
Open Circuit  
±5  
±5.5  
RL = 3k (Figure 9)  
ISS  
IOZ  
Short-Circuit  
Current  
±100  
mA  
µA  
VO = GND  
Input Leakage  
Current  
±0.01 ±100  
-0.25 VCM 0.25V, Power Off or  
Driver Disabled  
SR  
Slew Rate  
4.0  
30.0  
(Figures 9, 13), RL = 3k, CL = 2500pF  
(Figures 9, 13), RL = 3k, CL = 2500pF  
(Figures 9, 13), RL = 3k, CL = 2500pF  
V/µs  
µs  
TPLH  
TPHL  
Input to output  
Input to output  
2
2
4
4
µs  
V.28 Receiver  
VTHL  
Input Low  
1.4  
1.4  
0.4  
5
0.8  
V
Threshold Voltage  
VTLH  
AVTH  
RIN  
Input High  
Threshold Voltage  
2.0  
0.1  
3
V
Receiver Input  
Hysteresis  
1.0  
7
V
Receiver Input  
Impedance  
kΩ  
-15 VA 15V  
tr, tf  
TPLH  
TPHL  
Rise or Fall Time  
Input to Output  
Input to Output  
20  
ns  
ns  
ns  
(Figures 10, 14)  
(Figures 10, 14)  
(Figures 10, 14)  
120  
180  
Rev. 1.00  
- 13 -  
XRT4000  
The following tests circuits and timing diagrams are referenced in the preceding Electrical Characteristics  
Tables.  
Figure 6. RS422 Driver Test Circuit  
Figure 7. RS422 Driver/Receiver AC Test Circuit  
Figure 8. V.35 Driver/Receiver AC Test Circuit (TX1/RX1, TX2/RX2 Only)  
Figure 9. V.10/V.28 Driver Test Circuit  
Figure 10. V.10/V.28 Receiver Test Circuit  
Rev. 1.00  
- 14 -  
XRT4000  
Figure 11. V.11, V.35 Driver Propagation Delays  
V1 = 0V for V.35, 2.5V for V.11  
Figure 12. V.11, V.35 Receiver Propagation Delays  
Figure 13. V.10, V.28 Driver Propagation Delays  
V1 = 1.8V for V.28, 0.1V for V.10  
V2 = 1.0V for V.28. -0.1V for V.10  
Figure 14. V.10, V.28 Receiver Propagation Delays  
Rev. 1.00  
- 15 -  
XRT4000  
SYSTEM DESCRIPTION  
It is important to describe the difference  
RTMOD1 Block  
between an electrical specification and  
a
physical interface specification. An electrical  
specification defines the electrical characteristics  
of a transmitter or receiver. These include  
voltage, current, impedance levels, rise/fall  
times and other similar parameters. Popular  
electrical interfaces are V.10, V.11, V.35 and  
V.28. A serial physical interface specification,  
however, describes an interface in its entirety.  
This description includes the names and  
functions of all involved signals, the electrical  
parameters of each of the signals, and the  
connector type. Popular serial interface types  
include V.35, RS232 (V.28), RS449, EIA-530(A),  
X.21, and V.36. The XRT4000 contains a  
sufficient number of receivers, transmitters and  
transceivers to transport all of the signals  
required for a physical serial interface. It has  
control circuitry that can configure each driver  
and receiver to the appropriate electrical levels  
required by the specification for the selected  
serial interface.  
RTMOD1 is intended for the high speed data  
and clock signals of a selected interface. This  
block contains receivers RX1 and RX2,  
transmitters TX1 and TX2, and bi-directional  
transceiver TR3 which is composed of TX3 and  
RX3. All of these devices may be programmed  
with the electrical levels required for V.35, V.11,  
V.10, or V.28 operating modes. In V.35 mode,  
each transmitter has a common mode pin that is  
connected to the center of the internal  
termination. This pin should be bypassed to  
ground with an external capacitor in order to  
provide the best possible driver output stage  
balance. In a system application, the TX1-RX1  
pair and TX2-RX2 pair handle the TXD-RXD and  
TXC-RXC  
high-speed  
interface  
signals  
respectively. Transceiver TR3 is dedicated to  
the SCTE signal for both DCE and DTE modes  
of operation. It functions as a receiver for the  
DTE mode and as a transmitter during the DCE  
mode.  
Figure 1 is a top level block diagram that shows  
how the eight receivers and eight transmitters  
present in the XRT4000 are grouped in three  
modules named RTMOD1, RTMOD2, and  
RTMOD3. A forth module labeled CONTROL  
programs these receivers and transmitters with  
the appropriate electrical levels for operation  
with most popular standard serial interfaces  
such as V.35, RS232, RS449, EIA-530(A), X.21,  
and V.36. These interfaces are fully compliant  
RTMOD2 Block  
RTMOD2 contains receivers RX4 and RX5,  
transmitters TX4 and TX5, and transceiver TR6  
which is composed of TX6 and RX6. These  
devices may be programmed with the electrical  
levels required for V.11, V.10, or V.28 operating  
modes. The RX4-TX4 pair are dedicated for  
RTS and CTS signals while RX5-TX5 are  
intended for DTR and DSR signals. Transceiver  
TR3 handles the DCD signal which requires a  
transmitter in the DCE and a receiver in-the-  
DTE mode.  
with  
international  
NET1  
and  
NET2  
specifications.  
Figures 2, 3, 4, and 5 are a set of functional  
block diagrams that give more detailed  
information about the four modules shown in the  
top-level diagram. The eight receivers and  
transmitters are grouped in three different  
categories according to the type of signals  
transmitted or received. The categories are  
denoted as RTMOD1 (Figure 2), RTMOD2  
(Figure 3), RTMOD3 (Figure 4), and CONTROL  
(Figure 5).  
RTMOD3 Block  
RTMOD3 contains transceiver TR7, which is  
composed of TX7 and RX7, receiver RX8 and  
transmitter TX8. These devices, which may be  
programmed with the electrical levels required  
for V.10, or V.28 operating modes, are intended  
for the LL, RL and RI signals.  
Rev. 1.00  
- 16 -  
XRT4000  
CONTROL Block  
Power Requirements  
The CONTROL block contains the configuration  
and bias generation circuitry required by  
RTMOD1, RTMOD2, and RTMOD3. It includes  
TTL to CMOS level shifters for the control signal  
inputs which have either an internal 20 kpull-  
up or pull-down resistor as shown in Figure 5  
and as described in the pin description. This  
block also includes a reference voltage source,  
bias voltage and current generators, and a slew  
rate control circuit that is used in the V.10 and  
Table 3, which contains the maximum and  
minimum peak supply currents for each of the 3  
supply voltages, provides the information  
necessary for determining a system power  
budget.  
Notice that maximum current is  
required in the V.11 mode when TX1, TX2, and  
TX3 are terminated with 100. Minimum current  
consumption occurs when none of the  
transmitters are terminated and the device is not  
in the V.35 mode.  
V.28 modes.  
The physical interface  
configuration is done by three control pins called  
M0, M1 and M2. The logic levels present on  
these three inputs are internally latched during a  
positive transition of the LATCH* signal. The  
functions of the eight possible combinations of  
M0, M1 and M2 are described in Tables 1 and 2.  
Receiver and Transmitter Specifications  
Tables 4 and 5, which are for the XRT4000  
receiver and transmitter sections respectively,  
summarize the electrical requirements for V.35,  
V.11, V.10, and RS232 interfaces. These tables  
provide virtually all of the electrical information  
necessary to describe these 4 interfaces in a  
concise form.  
Rev. 1.00  
- 17 -  
XRT4000  
CONTROL  
INPUTS  
DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DTE MODE  
INTERFACE  
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8 STANDARD  
M2 M1 M0 TXD RXD SCTE RXC  
-
TXC RTS CTS DTR DSR  
-
DCD  
LL  
TM  
RL  
RI  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off 10  
Off 11  
Off 11  
Off 11  
Off 35  
Off 11  
Off 28  
10  
11  
11  
11  
28  
11  
28  
Off  
10  
11  
11  
11  
28  
11  
28  
Off  
10  
10  
11  
11  
28  
11  
28  
Off  
10  
10  
11  
11  
28  
11  
28  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
10  
11  
11  
Off  
28  
11  
28  
Off  
10  
10  
10  
Off  
28  
10  
28  
Off  
Off  
Off  
Off  
10  
10  
10  
10 V.10  
10 EIA-530-A  
10 EIA-530, RS449, V.36  
Off Off Off X.21  
Off  
Off  
Off  
Off  
28  
10  
28  
28 V.35  
10 RESERVED  
28 RS232  
Off Off Off  
Off Off POWER DOWN  
Table 1. DTE Mode - Control Programming for Driver and Receiver Mode Selection  
CONTROL  
INPUTS  
DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DCE MODE  
INTERFACE  
STANDARD  
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8  
M2 M1 M0 RXD TXD RXC SCTE TXC  
-
CTS RTS DSR DTR DCD  
-
TM  
LL  
RI  
RL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
10  
11  
11  
11  
35  
11  
28  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
10  
11  
11  
11  
28  
11  
28  
Off  
10  
11  
11  
11  
28  
11  
28  
Off  
10  
10  
11  
11  
28  
11  
28  
Off  
10  
10  
11  
11  
28  
11  
28  
Off  
10  
11  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
10  
10  
10  
Off  
28  
10  
28  
Off  
10  
10  
10  
Off  
28  
10  
28  
Off  
10 V.10  
10 EIA-530-A  
10 EIA-530, RS449, V.36  
Off X.21  
11  
OFF  
28  
28 V.35  
11  
10 RESERVED  
28 RS232  
28  
Off  
Off POWER DOWN  
Table 2. DCE Mode - Control Programming for Driver and Receiver Mode Selection  
Table  
Representation  
Corresponding  
Electrical Level  
Type  
Signal  
Note: For the above tables:  
35  
11  
10  
28  
V.35  
V.11  
V.10  
Differential  
Differential  
Single Ended  
Single Ended  
V.28/RS232  
Rev. 1.00  
- 18 -  
XRT4000  
Supply  
Maximum Current  
TX1-TX3 Drivers Terminated  
with 100in V.11 Mode  
160 mA  
Minimum Current  
None of the Drivers Terminated  
(Non-V.35 Mode)  
15 mA  
VDD (+5V)  
VSS (-6V)  
VPP (+12V)  
120 mA  
40 mA  
20 mA  
10 mA  
Table 3. Maximum and Minimum Peak Supply Currents  
V.35  
V.11  
V.10  
RS232  
Single-Ended or Differential  
DIFF  
DIFF  
Single-Ended Single-Ended  
Max Signal Level  
± 660 mV  
± 6 V  
± 6 V  
± 15 V  
Min Signal Level  
± 440 mV  
± 2 V  
± 300 mV  
± 7 V  
± 300 mV  
Note 1  
± 10 V  
± 12 V  
N/A  
± 3 V  
Common-Mode Voltage  
Max Signal Peak Operation  
Max Signal Peak no Damage  
Rin Differential  
N/A  
± 2.66 V  
N/A  
± 10 V  
± 12 V  
Note 2  
N/A  
± 15 V  
± 25 V  
N/A  
100 Ω±10%  
150 Ω±15%  
> 8K Ω  
Rin Common-Mode  
N/A  
N/A  
DC Rin Each Input to Ground  
Clock Frequency  
> 8K Ω  
20MHz  
> 8K Ω  
120KHz  
3K < DC Rin < 7 K Ω  
20 MHz  
256KHz  
Table 4. Receiver Specifications  
Note 1: ± 7 V on Receivers 1-6, not applicable for Receivers 7-8  
Note 2: 100 to 150 Ohms terminated.  
Rev. 1.00  
- 19 -  
XRT4000  
V.35  
V.11  
V.10  
RS232  
Single-Ended or Differential  
Max Signal Level  
DIFF  
± 660 mV  
RL= 100Ω  
DIFF  
|V0| < 6 V  
RL=3900Ω  
Single-Ended  
4 < |V0| < 6 V  
RL=3900Ω  
Single-Ended  
± 6 V  
3000< RL <  
7000Ω  
Min Signal Level  
± 440 mV  
RL= 100Ω  
2V < |VT|  
>0.5 V0  
RL=100Ω  
|Vos| < 3V  
|VT| > 0.9 V0  
RL= 450Ω  
± 5 V  
3000< RL <  
7000Ω  
Offset Voltage  
N/A  
100Ω ± 10%  
150Ω ± 15%  
N/A  
N/A  
N/A  
N/A  
Rout Differential  
N/A  
N/A  
100Ω  
N/A  
Rout Common-Mode  
Rout Power Off  
N/A  
N/A  
N/A  
> 300Ω  
< 30 V/µs  
256 KHz  
Output Slew Rate/Tr,Tf  
Clock Frequency  
20 ns  
20 ns  
20 MHz  
1ms  
20 MHz  
120 KHz  
Table 5. Transmitter Specification  
V.10\V.28 Output Pulse Rise and Fall Time  
Therefore, no external resistors and/or switches  
are necessary to implement the proper line  
termination. The schematic diagrams given in  
Figures 17 and 18 show the effective receiver  
and transmitter terminations respectively for  
each mode of operation. When a specific  
electrical interface is selected by M0, M1 and  
M2, the termination required for that interface is  
also automatically chosen. The XRT4000  
eliminates double termination problems and  
makes point to multipoint operation possible in  
the V.11 mode by providing the option for  
disabling the internal input termination on high  
speed receivers.  
SLEW_CNTL (pin 47) is an analog output that  
controls transmitter pulse rise and fall time for  
the V.10 and V.28 modes.  
Connecting a  
resistor, RSLEW, having a value between 0 and  
200 kfrom this pin to ground controls the  
rise/fall times for V.10 and the slew rate for V.28  
as shown in Figures 15 and 16 respectively.  
High-Speed RS232 Mode  
When E_232H* (pin 55) is set to logic 0 in  
RS232 mode, the transmitters are put is a  
special high-speed RS232 mode that can drive  
loads of 3000in parallel with 1000pF at  
speeds up to 256 KHz.  
Glitch Filters  
Occasional  
extraneous  
glitches  
on  
control/handshake signal inputs such as CTS,  
RTS, DTR and DSR can have damaging effects  
on the integrity of a connection. The XRT4000  
is equipped with lowpass filters on the input of  
each of the receivers for the control and  
Power Down Mode  
All transmitters and receivers may be powered  
down by either setting the pins for control bits  
M0, M1 and M2 to logic 1 or by leaving them  
open.  
handshake signals.  
These filters eliminate  
glitches which are narrower than 10µs. The  
user may disable these filters by setting  
EN_FLTR to logic 0.  
Internal Cable Terminations  
XRT4000 has fully integrated receiver and  
transmitter cable terminations for high speed  
signals (RXD, TXD, RXC, TXC, SCTE).  
Rev. 1.00  
- 20 -  
XRT4000  
Clock Inversion  
Transmit Clock signal, TXC, has an inversion  
option for both DTE and DCE modes of  
operation. The user can invert the polarity of the  
TXC by setting CKINV* to logic 0. In the DTE  
mode, the incoming TXC signal from the line will  
be inverted before it is routed to the system. In  
DCE mode, the incoming TXC signal from the  
system will be inverted before it is sent over the  
line toward the remote DTE. This feature allows  
a phase correction when there is a long cable  
delay between the DTE and DCE. This  
correction may be necessary in order to obtain  
the desired clock-to-data phase relationship.  
Similarly, the outputs of the receivers (RX5 and  
RX8) can be disabled by setting the EN_OUT*  
input high. This allows these drivers to be  
connected directly to a microcontroller bus since  
they can be enabled during read cycles and  
disabled in other times.  
This feature eliminates the need for external  
registers when a microcontroller is used to  
control (reading and writing) DSR/DTR and  
RL/RI signals.  
Loopbacks  
Data Inversion  
XRT4000 contains internal logic to place the  
interface in a loopback mode for test purposes.  
The loopback feature is supported in both DTE  
and DCE modes of operation and it can be  
invoked by setting the LP* input at logic 0.  
Possible loopback implementations are depicted  
in the scenarios located at the end of this  
document.  
Similar to TXC, there is a provision in the  
XRT4000 to invert the TXD and RXD signals.  
Once the Setting the DTINV* input to logic 0  
enables an inverter at the output of RX1 and  
input of TX1.  
Registered Mode of Operation  
The XRT4000 has integrated registers allowing  
users the option of clocking the values of  
DSR/DTR and RL/RI signals. This can be done  
if the registered mode of operation is selected  
(REG=1). In this case, the values of these  
signals will be latched on the positive edge of  
the REG_CLK signal. In the normal mode (REG  
= 0), the registers on the path of the DSR/DTR  
and RL/RI are bypassed and REG_CLK will  
have no effect.  
Rev. 1.00  
- 21 -  
XRT4000  
3
1 10  
100  
10  
1
3
1 10  
10  
100  
R (K Ohms)  
Figure 15. V.10 Rise Time as a Function of RSLEW  
10  
1
0.1  
0.01  
3
1 10  
10  
100  
R (K Ohms)  
Figure 16. V.28 Slew Rate Over ± 3 V Output Range  
with 3 kin Parallel with 2500 pF Load as a Function of RSLEW  
Rev. 1.00  
- 22 -  
XRT4000  
Echoed Clock  
This mode is invoked if EN_OSC* is set to logic  
0. This connects an internally generated clock  
signal (32 kHz - 64 kHz) to the RX2D/RX3D  
output. A standalone system test may be  
performed by combining this feature with the  
appropriate loopback mode.  
The XRT4000 can interface with serial  
controllers which have two or three clock pins.  
Furthermore, it can handle interfaces (e.g. X.21)  
which have only one clock.  
Information  
contained in the Pin Description for the EC* and  
2CK/3CK* pins shows how the user can select  
the number of available clocks by applying the  
appropriate logic levels to these inputs.  
Operational Scenarios  
Visualizing features such as clock/data  
Self-contained DTE Loopback Testing  
inversion, echoed clock, and loopbacks, in DTE  
and DCE modes makes configuring the  
XRT4000 a non-trivial task. A series of 48  
system level application diagrams located at the  
end of the data sheet called “Scenarios” assist  
users in understanding the benefits of these  
different features. The internal XRT4000  
connections required for a particular scenario  
are made through MUX1 and MUX2 that are  
shown on the block diagrams given in Figures 2  
and 3 respectively. Table 6 contains the signal  
routing information versus control input logic  
level for MUX1 and Table 7 contains similar  
information for MUX2.  
Equipment having a DTE interface obtains  
timing information from another interface (DCE).  
RXC and TXC are clocks which are sourced by  
the DCE. A DTE device uses them to clock  
data in/out of the interface. The SCTE clock is  
generated by DTE using TXC or RXC which are  
originated in the DCE.  
In summary, a DTE  
equipment is a timing slave.  
Occasionally it is beneficial to conduct testing of  
a DTE interface without connecting it to its DCE  
counterpart. Lack of a synchronization source  
will make the standalone testing of DTE  
equipment not possible. The XRT4000 has an  
on-board oscillator which can be used as a  
timing source while the DCE connection is  
missing. This feature allows users to conduct  
loopback testing on isolated equipment with a  
DTE interface.  
Rev. 1.00  
- 23 -  
XRT4000  
APPLICATIONS INFORMATION  
the V.11 specification, it is necessary to prevent  
reflections that would corrupt signals on high-  
speed clock and data lines. The differential  
receiver input resistance without the optional  
termination is 20 knominal.  
Traditional interfaces either require different  
transmitters and receivers for each electrical  
standard, or use complicated termination  
switching methods to change modes of  
operation. Mechanical switching schemes,  
which are expensive and inconvenient, include  
relays, and custom cables with the terminations  
located in the connectors. Electrical switching  
circuits using FETs are difficult to implement  
because the FET must remain off when the  
signal voltage exceeds the supply voltage and  
when the interface power is off.  
V.28 (RS232) Interface  
Figure 19 shows a typical V.28 (RS232)  
interface. This configuration uses an  
unbalanced cable to connect the transmitter  
TXA output to the receiver RXA input. The “B”  
outputs and inputs that are present on the  
differential transmitters and receivers contained  
in the XRT4000 are not used. The system  
ground provides the signal return path. The  
receiver “B” input is internally connected to a 1.4  
V reference source to provide a 1.4 V threshold.  
The receiver input resistance is 5 knominal  
and no other cable termination is normally used  
for the V.28 mode.  
The XRT4000 uses innovative, patented circuit  
design techniques to solve the termination  
switching problem. This device includes internal  
circuitry that may be controlled by software to  
provide the correct terminations for V.10  
(RS423), V.11 (RS422), V.28 (RS232), and V.35  
electrical interfaces. The schematic diagrams  
given in Figures 17 and 18 conceptually show  
the switching options for the high-speed receiver  
input and transmitter output terminations  
respectively. Additionally, Tables 4 and 5  
provide a summary of receiver and transmitter  
specifications respectively for the different  
electrical modes of operation.  
V.35 Interface  
Figure 21 shows a typical V.35 interface. This  
configuration uses a balanced cable to connect  
the transmitter TXA and TXB outputs to the  
receiver RXA and RXB inputs respectively. The  
XRT4000 internal terminations meets the  
following V.35 requirements. The receiver  
differential input resistance is 100 Ω ± 10 and  
the shorted-terminal resistance (RXA and RXB  
connected together) to ground is 150 Ω ± 15 .  
The transmitter differential output resistance is  
100 Ω ± 10 and the shorted-terminal  
V.10 (RS423) Interface  
Figure 19 shows a typical V.10 (RS423)  
interface. This configuration uses an  
unbalanced cable to connect the transmitter  
TXA output to the receiver RXA input. The “B”  
outputs and inputs that are present on the  
differential transmitters and receivers contained  
in the XRT4000 are not used. The system  
ground provides the signal return path. The  
receiver input resistance is 10 knominal and  
no other cable termination is normally used for  
the V.10 mode.  
resistance (TXA and TXB connected together)  
to ground is 150 Ω ± 15.  
The junction of the 3 resistors (CMTX) on the  
transmit termination is brought out to pins 76  
and 81 for TX1 and TX2 respectively. Figure 21  
shows how capacitor C having a value of 100 to  
1000 pF bypasses this point to ground to reduce  
common mode noise. This capacitor shorts  
current caused by differential driver rise and fall  
time or propagation delay miss-match directly to  
ground. If it was not present, the flow of this  
current through the 125 resistor to ground  
would cause common mode voltage spikes at  
the TXA and TXB outputs.  
V.11 (RS422) Interface  
Figure 11 shows a typical V.11 (RS422)  
interface. This configuration uses a balanced  
cable to connect the transmitter TXA and TXB  
outputs to the receiver RXA and RXB inputs  
respectively. The XRT4000 includes provisions  
for adding a 125 terminating resistor for the  
V.11 mode. Although this resistor is optional in  
Rev. 1.00  
- 24 -  
XRT4000  
RXxA  
RXxB  
R9  
4K  
R1  
20  
R10  
4K  
To  
Receiver  
R2  
20  
S3  
R3  
85  
R11 R12  
6K 6K  
R8  
10K  
S2  
S1  
S4  
R4  
30  
R4  
30  
R6  
125  
Mode  
Switches  
S2 S3  
S1  
S4  
V.35  
Closed  
Open  
Open  
Open  
Open  
Closed  
Open  
Open  
Open  
Open  
Open  
Closed  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
V.11 Terminated  
V.11 Unterminated  
V.10  
V.28  
Figure 17. Receiver Termination  
TXxB  
TXxA  
S2  
S1  
R1  
50  
R2  
50  
R3  
125  
Mode  
Switches  
S1  
S2  
V.35  
Closed  
Open  
Closed  
Open  
V.11/V.10/V.28  
Rev. 1.00  
- 25 -  
XRT4000  
Figure 18. Transmitter Termination  
Figure 19. Typical V.10 or V.28 Interface (R1 = 10 Kin V.10 and 5 Kin V.28)  
Figure 20. Typical V.11 Interface (Termination Resistor, R1, is Optional.)  
Figure 21. Typical V.35 Interface  
Note: All Resistors shown above are internal to the XRT4000.  
Rev. 1.00  
- 26 -  
XRT4000  
Scenario Number  
Logic Level Applied to  
Control Input Name/Pin Number  
Signal Source for  
Output Name/Pin Number  
DCE/  
DTE*  
EC*  
2CK/  
3CK*  
LP*  
CK  
INV*  
DT  
INV*  
EN  
_OSC*  
RX1D  
TX1B-TX1A  
RX2D  
TX2B-TX2A  
RX3D  
TR3B-TR3A  
39  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
0
0
42  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
1
0
65  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
22  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
0
0
67  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
X
X
68  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
X
X
66  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
100  
77,78  
TX1D  
93  
RX2B-RX2A  
RX2B-RX2A  
TX2D  
80,79  
TX2D  
90  
88,87  
1
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TR3B-TR3A  
X
2
TX1D  
TX2D  
X
TX3D  
3
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TX2D  
TR3B-TR3A  
X
4
TX1D  
TX2D  
X
TX3D  
5
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TX2D  
(TR3B-TR3A)*  
X
6
TX1D  
TX2D  
X
(TX3D)*  
7
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
X
(TR3B-TR3A)*  
X
8
TX1D  
TX2D  
X
(TX3D)*  
9
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
TR3B-TR3A  
X
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
TX1D  
TX2D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX2D  
X
TR3B-TR3A  
X
TX1D  
TX2D  
TX3D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
X
(TR3B-TR3A)*  
X
TX1D  
TX2D  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX2D  
X
(TR3B-TR3A)*  
X
TX1D  
TX2D  
TX3D  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX2D  
X
RX2B-RX2A  
X
TX1D  
TX2D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX2D  
X
TR3B-TR3A  
X
TX1D  
TX2D  
RX2B-RX2A  
X
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
(TX2D)*  
(RX2B-RX2A)*  
X
TX1D  
TX2D  
X
X
RX1B-RX1A  
NOTE 1  
TX1D  
TX2D  
X
(RX2B-RX2A)*  
X
TX1D  
TX2D  
TX2D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
X
TX1D  
X
TR3B-TR3A  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
X
TX1D  
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
(TR3B-TR3A)*  
TX3D  
(TR3B-TR3A)* (TR3B-TR3A)*  
X
TX1D  
TX3D  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
(TR3B-TR3A)*  
X
TX1D  
RX2B-RX2A  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
X
TX3D  
X
TR3B-TR3A  
X
TX1D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
X
TX1D  
TX3D  
X
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
(TR3B-TR3A)*  
X
TX1D  
TX3D  
X
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
(TR3B-TR3A)*  
TX3D  
(TR3B-TR3A)*  
X
TX1D  
TX3D  
X
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
RX2B-RX2A  
X
X
X
X
X
X
X
X
TX1D  
TX3D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
RX2B-RX2A  
TX1D  
TX3D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
(TX3D)*  
(RX2B-RX2A)*  
TX1D  
TX3D  
X
X
RX2B-RX2A  
X
RX1B-RX1A  
NOTE 1  
INVERT  
RX2B-RX2A  
TX3D  
TX1D  
TX3D  
INVERT  
UNCHANGED UNCHANGED UNCHANGED UNCHANGED  
UNCHANGED UNCHANGED UNCHANGED UNCHANGED  
UNCHANGED UNCHANGED 32-64 kHz UNCHANGED  
32-64 kHz  
32-64 kHz  
UNCHANGED  
UNCHANGED  
Table 6. MUX1 Connection Table  
Table entries are inputs to MUX1.  
Column headings are outputs.  
Signal names ending with A or B are analog inputs or outputs.  
Rev. 1.00  
- 27 -  
XRT4000  
Signal names ending with D are digital inputs or outputs.  
* Indicates signal complement. X is don’t care.  
Note 1: Refer to Figure 22 located on the next page for signal definition.  
Figure 22. Signal Definition for Scenario Number 48  
Scenario  
Number  
Control Input/  
Pin Number  
Signal Source for  
Output Name/Pin Number  
DCE/  
DTE*  
LP*  
RX4D  
TX4B-TX4A  
RX5D  
TX5B-TX5A  
RX67D  
TR6B-TR6A  
TR7  
39  
0
22  
0
48  
15,16  
RX4B-RX4A  
TX4D  
41  
18,17  
TR6B-TR6A  
TX5D  
40  
TX5D  
38,37  
35  
TX76D  
TX76D  
X
1
2
3
4
TX4D  
TX5D  
X
X
0
1
RX4B-RX4A  
TX4D  
RX5B-RX5A  
TX76D  
TR6B-TR6A  
TR7  
1
0
RX4B-RX4A  
TX4D  
RX5B-RX5A  
TX5D  
RX5B-RX5A  
TX76D  
1
1
RX4B-RX4A  
RX5B-RX5A  
TR7  
X
Table 7. MUX2 Connection Table  
Table entries are inputs to MUX2. Column headings are outputs.  
Signal names ending with A or B are analog inputs or outputs. Signal names ending with D are digital  
inputs or outputs.  
Rev. 1.00  
- 28 -  
XRT4000  
Notes:  
Operating Modes for the XRT4000 Device  
1. The “line” signals are drawn with both a  
“solid” line and a “dashed” line. Both lines  
are used to transmit and receive “differential”  
The XRT4000 Multiprotocol Serial Interface  
device can be configured to operate in a  
wide variety of modes or “scenarios”. This  
document illustrates some of these  
“scenarios” and provides the reader with the  
following information associated with each of  
these scenarios.  
mode signals.  
However, the “solid” line  
indentifies the signal that should be used,  
when operating the Transmitter in the  
“Single-Ended” mode.  
2. Each scenarios includes a table that indicates  
how to configure the XRT4000 device into  
each of these modes, by specifying the  
appropriate logic states for EC*, 2CK/3CK*,  
LP*, CKINV*, DTINV*, and EN_OSC*.  
Which pins (on the “DCE Mode” XRT4000  
and “DTE Mode” XRT4000 devices) are  
used to propagate various data or clock  
signals.  
Which signals are to be used when  
operating the XRT4000 devices in the  
“differential” or “single-ended” modes.  
How does one configure the “DCE Mode”  
and “DTE Mode” XRT4000 device to  
operate in these scenarios.  
3. In all, 48 scenarios have been defined for the  
XRT4000 device. Currently, this document  
only lists  
a subset of these scenarios.  
Further versions of the XRT4000 data sheet  
will include this information for all 48  
scenarios.  
Rev. 1.00  
- 29 -  
XRT4000  
Scenarios 1 & 2  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE  
79  
80  
96  
95  
SCTE  
TXC  
87  
88  
87  
84  
82  
90  
RX3  
TXC  
RXC  
TX3  
TXC  
88  
79  
80  
96  
95  
RXC  
RXD  
93  
RX2  
TX2  
SCTE  
78  
77  
97  
98  
75  
100  
RXD  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenarios 1 & 2)  
T4000 (DTE)  
T4000 (DCE)  
Pin Number  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
State  
Pin Number  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
1
1
1
1
Rev. 1.00  
- 30 -  
XRT4000  
Scenario 3  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE  
96  
79  
80  
SCTE  
TXC  
95  
TXC  
RXC  
RXD  
87  
88  
87  
88  
84  
82  
75  
90  
RX3  
TX3  
TXC  
79  
80  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 3)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
0
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 31 -  
XRT4000  
Scenario 4  
97  
98  
TXD  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE 96  
79  
80  
SCTE  
TXC  
95  
TXC 87  
87  
88  
84  
82  
75  
90  
RX3  
TX3  
TXC  
88  
79  
80  
RXC  
RXD  
96  
95  
93  
RX2  
RXC  
RXD  
SCTE  
TX2  
TX1  
97  
98  
78  
77  
100  
RX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 4)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
0
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 32 -  
XRT4000  
Scenario 5  
97  
98  
TXD  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE  
96  
95  
79  
80  
SCTE  
TXC  
TXC  
87  
88  
87  
88  
90  
84  
82  
75  
RX3  
TX3  
TXC  
79  
RXC  
RXD  
96  
95  
93  
RX2  
RX1  
RXC  
RXD  
TX2  
SCTE  
80  
78  
77  
97  
98  
100  
TX1  
TXD  
T4000 (DTE)  
T4000 (DCE)  
HDLC (R)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 5)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 33 -  
XRT4000  
Scenario 6  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE  
79  
80  
96  
95  
SCTE  
TXC  
TXC  
RXC  
RXD  
87  
88  
87  
84  
82  
75  
90  
RX3  
TX3  
TXC  
88  
79  
80  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenarios 1 & 2)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
1
0
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 34 -  
XRT4000  
Scenario 7  
TXD  
78  
77  
97  
98  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
SCTE 96  
SCTE  
TXC  
95  
TXC  
87  
88  
87  
84  
90  
RX3  
TX3  
TXC  
88  
79  
80  
96  
95  
RXC  
RXD  
82  
75  
93  
RX2  
RX1  
RXC  
RXD  
TX2  
SCTE  
97  
98  
78  
77  
100  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenarios 7)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
0
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 35 -  
XRT4000  
Scenario 8  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
SCTE 96  
79  
80  
SCTE  
TXC  
95  
TXC 87  
87  
88  
90  
84  
82  
75  
RX3  
TX3  
TXC  
88  
79  
96 RXC  
93  
RX2  
RXC  
RXD  
SCTE  
TX2  
TX1  
95  
80  
97 RXD 78  
98  
100  
RX1  
TXD  
77  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
1 Clock (X.21)  
No Loopback  
Loopback  
No Invert  
Invert  
Input Pin Settings (Scenario 8)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
0
0
0
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 36 -  
XRT4000  
Scenarios 9 & 10  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
TXC  
RXC  
RXD  
87  
88  
87  
88  
84  
82  
75  
90  
RX3  
TXC  
TX3  
TXC  
79  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
80  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenarios 9 & 10)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
1
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
1
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 37 -  
XRT4000  
Scenario 12  
TXD 97  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
98  
96  
95  
79  
80  
SCTE  
TXC  
87  
88  
87  
88  
84  
82  
75  
90  
RX3  
TXC  
TX3  
TXC  
79  
80  
RXC  
RXD  
96  
95  
93  
RX2  
RXC  
RXD  
SCTE  
TX2  
TX1  
97  
98  
78  
77  
100  
RX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 12)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
0
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
1
0
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 38 -  
XRT4000  
Scenario 13  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
TXC  
87  
88  
87  
90  
84  
82  
75  
RX3  
TXC  
TX3  
TXC  
88  
79  
80  
RXC  
RXD  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 13)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
1
1
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
1
0
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 39 -  
XRT4000  
Scenario 14  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
TXC  
87  
88  
87  
84  
90  
RX3  
TXC  
TX3  
TXC  
88  
79  
80  
RXC  
RXD  
96  
95  
82  
75  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 14)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
1
1
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
1
1
0
1
1
2CK/3CK*  
LP*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 40 -  
XRT4000  
Scenario 16  
TXD 97  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
98  
96  
95  
79  
80  
SCTE  
TXC 87  
87  
88  
90  
84  
82  
75  
RX3  
TXC  
TX3  
TXC  
88  
RXC 79  
96  
95  
93  
RX2  
RXC  
RXD  
SCTE  
TX2  
TX1  
80  
RXD  
97  
98  
78  
77  
100  
RX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 16)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
1
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
1
0
0
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 41 -  
XRT4000  
Scenario 17 & 18  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
87  
88  
87  
88  
84  
82  
75  
90  
RX3  
TXC  
TX3  
TXC  
RXC  
RXD  
79  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
80  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 17 & 18)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
X
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
X
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 42 -  
XRT4000  
Scenario 20  
TXD 97  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
98  
96  
95  
79  
80  
SCTE  
87  
88  
87  
88  
84  
82  
75  
90  
RX3  
TXC  
TX3  
TXC  
79  
80  
RXC  
RXD  
96  
95  
93  
RX2  
RXC  
RXD  
SCTE  
TX2  
TX1  
97  
98  
78  
77  
100  
RX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 20)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
X
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
X
0
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 43 -  
XRT4000  
Scenario 21  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
87  
88  
87  
90  
84  
82  
75  
RX3  
TXC  
TX3  
TXC  
88  
79  
80  
RXC  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
RXD  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 21)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
X
1
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
X
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 44 -  
XRT4000  
Scenario 22  
TXD  
97  
98  
78  
77  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
TXC  
87  
88  
87  
84  
82  
75  
90  
RX3  
TX3  
TXC  
88  
79  
80  
RXC  
96  
95  
93  
RX2  
RXC  
RXD  
TX2  
SCTE  
RXD  
78  
77  
97  
98  
100  
RX1  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 22)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
X
1
1
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
X
1
0
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 45 -  
XRT4000  
Scenario 23  
TXD  
78  
77  
97  
98  
75  
82  
100  
93  
TXD  
RX1  
RX2  
RXD  
RXC  
TX1  
TX2  
79  
80  
96  
95  
SCTE  
87  
88  
87  
84  
82  
90  
RX3  
TXC  
TX3  
TXC  
88  
79  
80  
96  
95  
RXC  
RXD  
93  
RX2  
RX1  
RXC  
RXD  
TX2  
SCTE  
97  
98  
78  
77  
75  
100  
TX1  
TXD  
T4000 (DCE)  
HDLC (R)  
T4000 (DTE)  
HDLC (L)  
Options  
DTE  
DCE  
Normal  
Echo Mode  
3 Clocks  
2 Clocks  
No Loopback  
Loopback  
No Invert  
Invert  
1 Clock (X.21)  
Input Pin Settings (Scenario 23)  
T4000 (DTE)  
T4000 (DCE)  
Name  
DCE/DTE*  
EC*  
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Pin Number  
Name  
DCE/DTE*  
EC*  
State  
Pin Number  
State  
39  
42  
65  
22  
67  
68  
66  
0
1
X
0
0
1
1
39  
42  
65  
22  
67  
68  
66  
1
1
X
1
1
1
1
2CK/3CK*  
LP*  
CKINV*  
DTINV*  
EN_OSC*  
Rev. 1.00  
- 46 -  

相关型号:

XRT4000CV

Universal Multiprotocol Serial Interface
EXAR

XRT4500

MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
EXAR

XRT4500CV

MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
EXAR

XRT5620CP-F

Digital Transmission Interface, T-1(DS1), Bipolar, PDIP18
EXAR

XRT5675D

PCM Transmitter
ETC

XRT5676IP-F

PCM Receiver, CEPT PCM-30/E-1, PDIP8,
EXAR

XRT5683A

PCM Line Interface Chip
EXAR

XRT5683AIP-F

PCM Line Interface Chip
EXAR

XRT56L22

Low Power Repeater/Receiver
EXAR

XRT56L22D

暂无描述
EXAR

XRT56L22N

Digital Transmission Interface, CEPT PCM-30/E-1, CDIP18,
EXAR

XRT56L85

Low Power PCM Line Interface
EXAR