XRT4500 [EXAR]

MULTIPROTOCOL SERIAL NETWORK INTERFACE IC; 多协议串行网络接口IC
XRT4500
型号: XRT4500
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
多协议串行网络接口IC

网络接口
文件: 总99页 (文件大小:1311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
SEPTEMBER 2002  
REV. 1.0.7  
FEATURES  
GENERAL DESCRIPTION  
Pin Programmable Multiprotocol Serial Interface  
The XRT4500 is a fully integrated multiprotocol serial  
interface. It supports all of the popular serial commu-  
nication interface standards such as ITU-T V.35, ITU-  
T V.36, EIA530A, RS232 (ITU-T V.28), ITU-T X.21  
and RS449. It can easily be interfaced with most  
common types of Serial Communications Controllers  
(SCCs). This device contains eight receivers and  
eight transmitters, in groups of six or seven. It is a  
complete solution containing all of the required  
source and load termination resistors in one 80-pin  
TQFP package. The XRT4500 operates at higher  
speeds (20MHz for V.35 and 256kbps for V.28).  
V.35, V.36, EIA-530 A, RS232 (V.28), V.10, V.11, X.21  
and RS449 Communication Interface Standards  
V.28, V.10, V.11 and V.35 Electrical Interfaces are  
‘CTR2’ Compliant  
Contains On-Chip Source and Load Termination  
Resistors  
Contains Eight Receivers and Eight Transmitters  
with Switchable DTE and DCE Modes  
Glitch Filters on the Control Signals (Selectable)  
+5V Single Power Supply with internal DC-DC  
The XRT4500 can be configured to operate in one of  
the seven interface standards in either DTE, or DCE  
modes of operation and power down mode. It fully  
supports echoed clock as well as clock and data in-  
version. Loopbacks are supported in DTE and DCE  
modes of operation. This feature eliminates the need  
for external circuitry for loopback implementation.  
Converter  
Full Support of Loopbacks, Data & Clock Inversion,  
and Echoed Clock in DTE and DCE Modes  
Full Support of Most Popular Types of HDLC Control-  
lers (Single, Double, and Triple Clocks supported)  
High-speed V.28 Driver: 256KHz  
Internal Oscillator for Standalone DTE Loopback  
Testing  
Control signals such as RI, RL, DCD, DTR, DSR are  
protected against glitches by internal filters. These fil-  
ters can be turned off. The XRT4500 provides an in-  
ternal oscillator (clock signal) which can be used to  
conduct standalone diagnostics of DTE equipment.  
Control Signals Can Be Registered and Non-regis-  
tered  
Control Signals Can Be Tri-stated for Bus-based  
Designs  
BLOCK DIAGRAM  
“Cable Safe” Operation Supported  
ESD Protection Over ± 1KV Range  
TTL Level Digital Inputs  
Electrical Interfaces  
Signals  
High Speed Transceiver  
TXD, RXD  
High Speed Data  
and Clock  
V.10, V.11, V.35, V.28  
RX1  
TX1  
TX2  
TX3  
TXC, RXC  
High Speed Data  
and Clock  
V.10, V.11, V.35, V.28  
V.10, V.11, V.35, V.28  
RX2  
RX3  
TTL/CMOS Digital Outputs  
SCTE Signals:  
DCE Transmitter,  
DTE Receiver  
APPLICATIONS  
Data Service Units (DSU)  
Channel Service Units (CSU)  
Routers  
Handshaking/Control Transceivers  
V.10, V.11, ---- , V.28  
RX4  
TX4  
TX5  
TX6  
RTS, CTS  
DTR, DSR  
Bridges  
V.10, V.11, ---- , V.28  
V.10, V.11, ---- , V.28  
RX5  
RX6  
Access Equipment  
DCD Signals:  
DCE Transmitter,  
DTE Receiver  
Diagnostic Transceivers  
RX7  
TX7  
TX8  
LL, RL, RI (TM)  
LL, RL, RI (TM)  
V.10, ---- , ---- , V.28  
V.10, ---- , ---- , V.28  
RX8  
Mode and Configuration  
Control  
Switching Regulator  
DC-DC Converter  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
BLOCK DIAGRAM  
47 H  
µ
1N5819  
0.5  
2.2 F  
µ
-6V  
+
26  
7
41  
56  
52  
42  
Isense  
43  
G N D _ R E G  
21  
22  
-
+
47µ  
Low ESR  
F
C P P  
VSS  
V SS  
SR_OUT  
C P M  
Vsense  
V SS_T123  
47  
51  
V D D  
16  
-6V  
+12V  
Charge Pump  
V PP  
µ
10 F  
+
Switching Regulator  
V D D _ R E G  
-
Mode Select  
4
31  
34  
M0  
M1  
M2  
DEC/DTE  
E C  
5
6
Decoder  
Latch  
Echo Clock  
44  
2 or 3 Clock Select 50  
LATCH  
2CK/3CK  
LP  
XRT4500  
Loopback  
18  
54  
55  
53  
24  
49  
500 KHz  
C L O C K  
45  
Invert Clock  
Invert Data  
MODE & CONFIGURATION  
CONTROL LOGIC  
CLK INV  
CLKFS  
DT INV  
O S C E N  
R E G  
32  
- 64 KHz  
Register  
Mode Control  
S L E W _ C N T L  
Rslew  
S L E W R A T E  
C O N T R O L  
39  
Register Mode  
Clock Input  
R E G _ C L K  
46  
2
E_232H  
V D D  
High Speed RS232 Enable  
RX1,2,3  
58  
60  
VDD_T123  
TX1D  
TX1,2,3  
Digital MUX 1  
78  
63  
61  
RX1A  
TX1A  
CM_TX1  
T
T
T
RX1  
TX1  
79  
1
0.1  
TX1B  
G N D  
62  
57  
RX1B  
RX1D  
TX1,2,3  
67  
TX2D  
77  
RX2A  
64  
66  
TX2A  
CM_TX2  
T
RX2  
TX2  
TX3  
0.1  
GND_T12  
76  
74  
65  
59  
TX2B  
RX2B  
RX2D  
TX1,2  
68  
TX3D  
TR3A  
CM_TR3  
0.1  
70  
69  
RX3  
T
71 TR3B  
72  
G N D  
73  
3
RX4,5,6,7,8  
RX3D  
G N D  
RX1,2,3  
8
TX4D  
TX4A  
20  
37  
Digital MUX 2  
RX4,5,6,7  
V D D  
RX4A  
11  
TX4  
TX5  
Filter  
RX4  
10  
TX4B  
38  
40  
RX4B  
RX4D  
15  
12  
TX5D  
TX5A  
36  
RX5A  
RX5  
Filter  
13  
9
35  
33  
TX5B  
V D D  
RX5B  
RX5D  
TX4,5,6,7,8  
29  
TR6A  
RX6  
Filter  
TX6  
TX7  
30  
28  
TR6B  
TX76D  
M U X  
32  
M U X  
RX67D  
27  
17  
Filter  
RX7  
TR7  
48  
25  
TX8D  
EN_OUT  
RX8I  
19  
14  
Filter  
RX8  
TX8O  
G N D  
TX8  
TX4,5,6,7,8  
23  
75  
RX8D  
V.11 (RX1,2,3) Termination 80  
Glitch Filter  
EN_TERM  
EN_FLTR  
2
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN OUT OF THE DEVICE  
RX1D  
V D D  
G N D  
M0  
M1  
M2  
BIAS  
TX4D  
V D D  
TX4B  
TX4A  
TX5A  
TX5B  
G N D  
TX5D  
VPP  
TX1D  
G N D  
V D D  
G N D  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VSS  
DTINV  
CKINV  
O S C E N  
SR_OUT  
V D D  
9
XRT4500  
80 Lead TQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
2CK/3CK  
REG_CLK  
EN_OUT  
V D D  
E-232  
CLKFS  
LATCH  
G N D  
TX8D  
LP  
TX8O  
I_SENSE  
V_SENSE  
V D D  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
XRT4500CV  
80 Pin TQFP  
0°C to +70°C  
3
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
Block Diagram........................................................................................................................................... 1  
FEATURES...................................................................................................................................... 1  
APPLICATIONS ................................................................................................................................ 1  
Block Diagram........................................................................................................................................... 2  
Pin Out of the Device ................................................................................................................................ 3  
Ordering Information ................................................................................................................................. 3  
TABLE OF CONTENTS ............................................................................................................ I  
PIN DESCRIPTIONS.......................................................................................................... 4  
ELECTRICAL CHARACTERISTICS .................................................................................................... 26  
TA = 25°C, VDD = 5V, VSS = -6V, VPP = 12V, Maximum Operating Frequency Unless Otherwise Specified  
28  
Power Supply Consumption.................................................................................................................... 29  
FIGURE 1. SUPPLY CURRENT VERSUS TEMPERATURE AND SUPPLY VOLTAGE, WITHOUT LOAD OR SIGNAL IN EIA-530 (V.11)  
MODE......................................................................................................................................................... 29  
FIGURE 2. SUPPLY CURRENT VERSUS TEMPERATURE AND SUPPLY VOLTAGE, WITH LOAD IN EIA-530 (V.11) MODE ... 30  
FIGURE 3. RS422 DRIVER TEST CIRCUIT................................................................................................................. 33  
FIGURE 4. RS422 DRIVER/RECEIVER AC TEST CIRCUIT........................................................................................... 33  
FIGURE 5. V.35 DRIVER/RECEIVER AC TEST CIRCUIT (TX1/RX1, TX2/RX2 ONLY) .................................................. 34  
FIGURE 6. V.10/V.28 DRIVER TEST CIRCUIT ............................................................................................................ 34  
FIGURE 7. V.10 (RS-423) V.28 (RS-232) RECEIVER TEST CIRCUIT ......................................................................... 34  
FIGURE 8. V.11, V.35 DRIVER PROPAGATION DELAYS.............................................................................................. 34  
FIGURE 9. V.11, V.35 RECEIVER PROPAGATION DELAYS.......................................................................................... 34  
FIGURE 10. V.10 (RS-423) V.28 (RS-232) DRIVER PROPAGATION DELAYS ............................................................. 35  
FIGURE 11. V.10, V.28 RECEIVER PROPAGATION DELAYS........................................................................................ 35  
TABLE 1: RECEIVER SPECIFICATIONS ....................................................................................................................... 35  
TABLE 2: TRANSMITTER SPECIFICATION.................................................................................................................... 36  
1.0 SYSTEM DESCRIPTION ..................................................................................................................... 37  
1.1 THE DIFFERENCE BETWEEN AN ELECTRICAL INTERFACE AND A COMMUNICATIONS INTERFACE 37  
TABLE 3: DTE MODE - CONTROL PROGRAMMING FOR DRIVER AND RECEIVER MODE SELECTION .............................. 38  
TABLE 4: DCE MODE - CONTROL PROGRAMMING FOR DRIVER AND RECEIVER MODE SELECTION.............................. 38  
1.2 THE SYSTEM ARCHITECTURE .................................................................................................................... 39  
1.2.1 THE “HIGH -SPEED TRANSCEIVER” BLOCK ......................................................................................................... 40  
FIGURE 12. HIGH-SPEED TRANSCEIVER BLOCK ........................................................................................................ 40  
1.2.2 THE “HANDSHAKING/CONTROL SIGNAL TRANSCEIVER” BLOCK .................................................................... 41  
FIGURE 13. HANDSHAKING/CONTROL TRANSCEIVER BLOCK...................................................................................... 41  
1.2.3 THE “DIAGNOSTIC OPERATION INDICATOR TRANSCEIVER” BLOCK............................................................... 42  
FIGURE 14. DIAGNOSTIC OPERATION INDICATOR TRANSCEIVER BLOCK ..................................................................... 42  
1.3 THE CONTROL BLOCK ................................................................................................................................. 43  
FIGURE 15. DIAGRAM OF THE XRT4500 CONTROL BLOCK........................................................................................ 43  
1.3.1 M[2:0] - THE (COMMUNICATION INTERFACE) MODE CONTROL SELECT PINS. ............................................... 44  
TABLE 5: THE RELATIONSHIP BETWEEN THE SETTINGS FOR THE M[2:0] BIT-FIELDS AND THE CORRESPONDING COMMUNICA-  
TION INTERFACE THAT IS SUPPORTED.......................................................................................................... 44  
1.3.2 DCE/DTE - THE DCE/DTE MODE SELECT PIN........................................................................................................ 45  
FIGURE 16. A SIMPLE ILLUSTRATION OF THE DCE/DTE INTERFACE .......................................................................... 45  
1.3.3 THE LP - LOOP-BACK ENABLE/DISABLE SELECT PIN ........................................................................................ 46  
FIGURE 17. ILLUSTRATION OF BOTH THE DTE AND DCE MODE XRT4500 OPERATING, WHEN THE LOOP-BACK MODE IS DIS-  
ABLED........................................................................................................................................................ 46  
FIGURE 18. ILLUSTRATION OF THE BEHAVIOR THE DTE MODE XRT4500, WHEN IT IS CONFIGURED TO OPERATE IN THE LOOP-  
BACK MODE............................................................................................................................................... 47  
FIGURE 19. ILLUSTRATION OF THE BEHAVIOR OF THE DCE MODE XRT4500, WHEN IT IS CONFIGURED TO OPERATE IN THE  
LOOP-BACK MODE...................................................................................................................................... 48  
1.3.4 THE EC* (ECHO CLOCK MODE - ENABLE/DISABLE SELECT INPUT PIN) .......................................................... 49  
FIGURE 20. ILLUSTRATION OF A TYPICAL “3-CLOCK DCE/DTE” INTERFACE ............................................................... 49  
FIGURE 21. ILLUSTRATION OF THE WAVE-FORMS OF THE SIGNALS THAT ARE TRANSPORTED ACROSS A “3-CLOCK DTE/DCE”  
INTERFACE................................................................................................................................................. 50  
I
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 22. ILLUSTRATION OF A “2-CLOCK DTE/DCE” INTERFACE ............................................................................51  
FIGURE 23. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS, (DATA RATE = 1.0MBPS, “DCE-  
TO-DTE” PROPAGATION DELAY = 160NS, “DTE-TO-DCE” PROPAGATION DELAY = 160NS)............................52  
FIGURE 24. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS (DATA RATE = 1.544MBPS, DCE-  
TO-DTE PROPAGATION DELAY = 160NS, DTE-TO-DCE PROPAGATION DELAY = 160NS) .............................52  
FIGURE 25. ILLUSTRATION OF THE “ECHO-CLOCK” FEATURE WITHIN THE XRT4500...................................................53  
FIGURE 26. ILLUSTRATION OF THE WAVE-FORMS, ACROSS A DCE/DTE INTERFACE, WHEN THE ECHO-CLOCK FEATURE  
(WITHIN THE XRT4500) IS USED AS DEPICTED IN FIGURE 25........................................................................54  
1.3.5 THE “2CK/3CK” (2-CLOCK/3-CLOCK MODE - ENABLE/DISABLE SELECT INPUT PIN)..................................... 54  
FIGURE 27. ILLUSTRATION OF THE DCE/DTE INTERFACE, WITH THE DCE MODE XRT4500 OPERATING IN THE “2-CLOCK”  
MODE ........................................................................................................................................................55  
1.3.6 THE “CLOCK INVERSION” (CK_INV) FEATURE..................................................................................................... 55  
FIGURE 28. ILLUSTRATION OF THE DCE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL................56  
FIGURE 29. ILLUSTRATION OF THE DTE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL................56  
FIGURE 30. ILLUSTRATION OF THE DCE MODE XRT4500, WHICH IS OPERATING IN THE “2-CLOCK” MODE, AND INVERTING  
THE “TXC” SIGNAL .....................................................................................................................................57  
1.3.7 THE LATCH MODE OF OPERATION ........................................................................................................................ 58  
1.3.8 THE REGISTERED MODE OF OPERATION ............................................................................................................. 58  
FIGURE 31. AN ILLUSTRATION OF THE EFFECTIVE INTERFACE BETWEEN THE XRT4500 AND THE SCC/MICROPROCESSOR  
WHEN THE “REGISTERED” MODE IS ENABLED...............................................................................................58  
FIGURE 32. AN ILLUSTRATION OF THE NECESSARY GLUE LOGIC REQUIRED TO DESIGN A FEATURE SIMILAR TO THAT OFFERED  
BY THE “REGISTERED” MODE, WHEN USING A DIFFERENT MULTI-PROTOCOL SERIAL NETWORK INTERFACE IC59  
1.3.9 THE INTERNAL OSCILLATOR .................................................................................................................................. 59  
FIGURE 33. ILLUSTRATION OF THE INTERNAL OSCILLATORS WITHIN THE XRT4500.....................................................60  
1.3.10 GLITCH FILTERS...................................................................................................................................................... 60  
1.3.11 DATA INVERSION .................................................................................................................................................... 60  
1.3.12 DATA INTERLUDE ................................................................................................................................................... 60  
2.0 RECEIVER AND TRANSMITTER SPECIFICATIONS .........................................................................60  
3.0 V.10\V.28 OUTPUT PULSE RISE AND FALL TIME CONTROL .........................................................60  
FIGURE 34. V.10 RISE/FALL TIME AS A FUNCTION OF RSLEW .................................................................................61  
FIGURE 35. V.28 SLEW RATE OVER ± 3 V OUTPUT RANGE WITH 3 KW IN PARALLEL WITH 2500 PF LOAD AS A FUNCTION  
OF RSLEW................................................................................................................................................61  
4.0 THE HIGH-SPEED RS232 MODE ........................................................................................................61  
5.0 INTERNAL CABLE TERMINATIONS ..................................................................................................62  
6.0 OPERATIONAL SCENARIOS ..............................................................................................................62  
7.0 APPLICATIONS INFORMATION .........................................................................................................62  
FIGURE 36. RECEIVER TERMINATION........................................................................................................................63  
TABLE 6: RECEIVER SWITCHES ................................................................................................................................63  
FIGURE 37. TRANSMITTER TERMINATION ..................................................................................................................64  
TABLE 7: TRANSMITTER SWITCHES...........................................................................................................................64  
FIGURE 38. TYPICAL V.10 OR V.28 INTERFACE (R1 = 10 KW IN V.10 AND 5 KW IN V.28) ........................................64  
FIGURE 39. TYPICAL V.11 INTERFACE (TERMINATION RESISTOR, R1, IS OPTIONAL.)..................................................64  
FIGURE 40. TYPICAL V.35 INTERFACE ......................................................................................................................65  
TABLE 8: MUX1 CONNECTION TABLE.......................................................................................................................65  
TABLE 9: MUX2 CONNECTION TABLE (RX4-RX7, TX4-TX7), OUTPUT VERSUS INPUT ..............................................67  
FIGURE 41. SCENARIO A, MUX2, (DCE/DTE = 0, LP = 0).......................................................................................68  
FIGURE 42. SCENARIO B, MUX2, (DCE/DTE = 0, LP = 1), LOOP BACK NOT ENABLED .............................................69  
FIGURE 43. SCENARIO C, MUX2, (DCE/DTE = 1, LP = 0).......................................................................................70  
FIGURE 44. SCENARIO D, MUX2, (DCE/DTE = 1, LP = 1), LOOP BACK NOT ENABLED.............................................71  
FIGURE 45. SERIAL INTERFACE SIGNALS AND CONNECTOR PIN-OUT .........................................................................72  
FIGURE 46. SERIAL INTERFACE CONNECTOR DRAWINGS...........................................................................................73  
FIGURE 47. EIA-530 CONNECTION DIAGRAM FOR XRT4500 ....................................................................................74  
FIGURE 48. RS-232 CONNECTION DIAGRAM FOR XRT4500 .....................................................................................75  
Scenarios 1 & 2 Normal: ‘3-clock’ DCE/DTE Interface Operation...........................................................76  
Input Pin Settings ....................................................................................................................................76  
Scenario 3 &2 DTE Loop-Back Mode......................................................................................................77  
Input Pin Settings ....................................................................................................................................77  
Scenario 4 ...............................................................................................................................................78  
Comments: DCE Loop-Back Mode .........................................................................................................78  
II  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
Input Pin Settings.................................................................................................................................... 78  
Scenario 5 & 2......................................................................................................................................... 79  
Comments: TXC Clock Inversion in DTE Mode...................................................................................... 79  
Input Pin Settings.................................................................................................................................... 79  
Scenario 6............................................................................................................................................... 80  
Comments: TXC Clock Inversion in DCE Mode...................................................................................... 80  
Input Pin Settings.................................................................................................................................... 80  
Scenario 7 & 2......................................................................................................................................... 81  
Input Pin Settings.................................................................................................................................... 81  
Scenario 8............................................................................................................................................... 82  
Input Pin Settings.................................................................................................................................... 82  
Scenario 9 & 10....................................................................................................................................... 83  
Comments: 2 Clock Mode Operation Within the ‘DCE Mode’. This feature is Useful For Applications .. 83  
That Interface to a Device Which Does Not Supply ‘SCTE’ Clock Signal............................................... 83  
Input Pin Settings.................................................................................................................................... 83  
Scenario 12............................................................................................................................................. 84  
Input Pin Settings.................................................................................................................................... 84  
Scenario 13 & 10..................................................................................................................................... 85  
Input Pin Settings.................................................................................................................................... 85  
Scenario 14............................................................................................................................................. 86  
Comments: TXC Clock Inversion and 2 Clock Mode Operation Within The DCE Mode. This Scenario Can  
be Used to Resolve the 2 Clock Propagation Delay Timing Violation Issue........................................... 86  
Input Pin Settings.................................................................................................................................... 86  
Scenario 16............................................................................................................................................. 87  
Input Pin Settings.................................................................................................................................... 87  
Scenario 17 & 18..................................................................................................................................... 88  
Comments: X:21 Mode Operation........................................................................................................... 88  
Input Pin Settings (1 clock mode) ........................................................................................................... 88  
Scenario 20............................................................................................................................................. 89  
Input Pin Settings (1 clock mode) ........................................................................................................... 89  
Scenario 21............................................................................................................................................. 90  
Input Pin Settings (1 clock mode) ........................................................................................................... 90  
Scenario 22............................................................................................................................................. 91  
Input Pin Settings (1 clock mode) ........................................................................................................... 91  
Scenario 23............................................................................................................................................. 92  
Input Pin Settings (1 clock mode) ........................................................................................................... 92  
Scenario 48............................................................................................................................................. 93  
Input Pin Settings (1 clock mode) ........................................................................................................... 93  
REVISIONS ................................................................................................................................... 96  
III  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
1
RX1D  
D_RXD  
D_TXD  
O
Receiver 1 Digital Output – Digital Data Output to terminal  
equipment  
This output pin is the digital (TTL/CMOS level) representation of  
the line signal that has been received via the RX1A (pin 78) and  
RX1B (pin 79) input pins.  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DCE Mode – TXD Digital Output Signal  
This output pin functions as the TXD Digital Output signal (which  
should be input to the Terminal Equipment).  
DTE Mode – RXD Digital Output Signal  
This output pin functions as the RXD Digital Output signal (which  
should be input to the Terminal Equipment).  
2
3
4
VDD  
GND  
M0  
Analog VDD for Receiver 1, 2, 3  
I
I
Analog GND for Receiver 1, 2, 3 and Transmitter 3  
Mode Control – Mode Select Input 0  
This input pin, along with M1 and M2 are used to configure the  
XRT4500 to operate in the desired “Communication Interface”  
Mode. Table 3 and Table 4 present the relationship between  
the states of the M2, M1 and M0 input pins and the correspond-  
ing communication interface modes selected.  
This input pin (along with M1 and M2) is internally latched into  
the XRT4500, upon the rising edge of the “LATCH” signal. At this  
point, changes in this input pin will not effect the “internally  
latched” state of this pin.  
This input pin contains an Internal 20Kpull-up to VDD.  
5
M1  
I
Mode Control – Mode Select Input 1  
This input pin, along with M0 and M2 are used to configure the  
XRT4500 to operate in the desired “Communication Interface”  
Mode. Table 3 and Table 4 present the relationship between the  
states of the M2, M1 and M0 input pins and the corresponding  
communication interface modes selected.  
This input pin (along with M0 and M2) is internally latched into the  
XRT4500 device, upon the rising edge of the “LATCH” signal. At  
this point, changes in this input pin will not effect the “internally  
latched” state of this pin.  
This input pin contains an Internal 20Kpull-up to VDD.  
4
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE MODE  
DCE  
TYPE FUNCTION  
6
M2  
I
Mode Control – Mode Select Input 2  
This input pin, along with M0 and M1 are used to configure the  
XRT4500 to operate in the desired “Communication Interface”  
Mode. Table 3 and Table 4 present the relationship between  
the states of the M2, M1 and M0 input pins and the correspond-  
ing communication interface modes selected.  
This input pin (along with M0 and M1) is internally latched into  
the XRT4500 device, upon the rising edge of the “LATCH” sig-  
nal. At this point, changes in this input pin will not effect the  
“internally latched” state of this pin.  
This input pin contains an Internal 20Kpull-up to VDD.  
7
8
VSS  
-6V Power: This supply voltage is internally generated by the  
Switching Regulator Circuit within the XRT4500. The -6V is used  
by TX 4, 5, 6, 7, 8.  
TX4D  
D_RTS  
D_CTS  
I
Transmitter 4 – Digital Data Input from Terminal Equipment  
The XRT4500 accepts binary TTL Level data stream, via this  
input pin, converts it into either a V.10, V.11 or V.28 format and  
outputs it via the TX4A and TX4B output pins.  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DCE Mode – CTS (Clear to Send) Input  
If the XRT4500 is operating in the DCE Mode, then this input pin  
should be tied to the CTS Output pin of the Terminal Equipment.  
DTE Mode – RTS (Request to Send) Input  
If the XRT4500 is operating in the DTE Mode, then this input pin  
should be tied to the RTS output pin of the Terminal Equipment.  
9
VDD  
Analog VDD – For Transmitters 4, 5, 6, 7 and 8  
10  
TX4B  
RTSB  
CTSB  
O
Transmitter 4 – Positive Data Differential Output to Line  
The XRT4500 accepts a TTL binary data stream from the Termi-  
nal Equipment via the TX4D (pin 8) input pin. The XRT4500 will  
convert this data into either the V.10, V.11 or V.28 modes, and  
will output it via this pin and TX4A (pin 11).  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DTE or DCE mode.  
DTE Mode – Positive Polarity portion of RTS Line Signal.  
DCE Mode – Positive Polarity portion of CTS Line Signal.  
Note: This output pin is not used if the XRT4500 has been con-  
figured to operate in either the V.28/EIA-232 or V.10 Modes.  
5
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
11  
TX4A  
RTSA  
CTSA  
O
Transmitter 4 – Negative Data Differential Output to Line  
The XRT4500 accepts a TTL binary data stream from the Terminal  
Equipment via the TX4D (pin 8) input pin. The XRT4500 will convert  
this data into either the V.10, V.11 or V.28 modes, and will output it  
via this pin and TX4B (pin 10). The exact function of this output pin  
depends upon whether the XRT4500 device is operating in the  
DTE or DCE mode.  
DTE Mode – Negative Polarity portion of the RTS Line Signal.  
DCE Mode – Negative Polarity portion of the CTS Line Signal.  
Note: If the XRT4500 has been configured to operate in either  
the V.28/EIA-232 or V.10 Modes, then all of the data will be out-  
put (to the line) in a single-rail manner via this output pin.  
12  
TX5A  
DTRA  
DSRA  
O
Transmitter 5 – Negative Data Differential Output to Line  
The XRT4500 accepts a TTL binary data stream via the TX5D (pin  
15) input pin. The XRT4500 will convert this data into either the  
V.10, V.11 or V.28 modes, and will output it via this pin and TX5B  
(pin 13). The exact function of this output pin depends upon  
whether the XRT4500 device is operating in the DTE or DCE mode.  
DTE Mode – Negative Polarity portion of the DTR Line Signal.  
Transmitter 5 accepts a TTL level binary data stream (as the  
Data Terminal Read – DTR) from the terminal equipment.  
DCE Mode – Negative Polarity portion of the DSR Line Signal.  
Note: If the XRT4500 has been configured to operate in either  
the V.28/EIA-232 or V.10 Modes, then all of the data will be out-  
put (to the line) in a single-rail manner via this output pin.  
13  
TX5B  
DTRB  
DSRB  
O
Transmitter 5 – Positive Data Differential Output to Line  
The XRT4500 accepts a TTL binary data stream via the TX5D (pin  
15) input pin. The XRT4500 will convert this data into either the  
V.10, V.11 or V.28 modes, and will output it via this pin and TX5A  
(pin 12). The exact function of this output pin depends upon  
whether the XRT4500 device is operating in the DTE or DCE mode.  
DTE Mode – Positive Polarity portion of DTR Line signal.  
DCE Mode – Positive Polarity portion of DSR Line signal.  
Note: This output pin is not used if the XRT4500 has been con-  
figured to operate in either the V.28/EIA-232 or V.10 Modes.  
14  
GND  
Analog GND – For Transmitters 4, 5, 6, 7, and 8.  
6
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
15  
TX5D  
D_DTR  
D_DSR  
I
Transmitter 5 – Digital Data Input from Terminal Equipment  
This input pin accepts a TTL level binary data stream, from the  
local terminal equipment, and outputs it, in either a V.10, V.11 or  
V.28 manner, via the TX5A (pin 12) and TX5B (pin 13) output  
pins. The exact role that this input pin plays depends upon  
whether the XRT4500 is operating in the DTE or DCE Modes.  
DTE Mode – Data Terminal Ready (DTR) Input Pin  
If the XRT4500 is operating in the DTE mode, then this input pin  
should be tied to the DTR output pin of the terminal equipment.  
DCE Mode – Data Set Ready (DSR) Input Pin  
If the XRT4500 is operating in the DCE mode, then this input pin  
should be tied to the DSR output pin of the terminal equipment.  
Note: If the XRT4500 has been configured to operate in the  
“Registered” Mode, then data applied to this input pin will be  
latched (into the XRT4500) upon the rising edge of the  
REG_CLK input signal.  
16  
17  
VPP  
+12V Power: This supply voltage is internally generated by the  
Charge Pump Circuit within the XRT4500 device. If +12V is  
available, then the external components can be eliminated.  
TX8D  
D_RL  
D_RI  
I
Transmitter 8 – Digital Data Input from Terminal Equipment  
This input accepts a TTL level binary data stream, from the local  
terminal equipment, and outputs it, in either a V.10 or V.28 man-  
ner via the TX8O (pin 19) output pin.  
DCE Mode – Ring Indicator (or Test Mode) Input Pin  
If the XRT4500 has been configured to operate in the  
DCE Mode – This input pin should be connected to either the  
“RI” (Ring Indicator) or the “TM” (Test Mode) indicator output pin  
of the Terminal Equipment.  
DTE Mode – Remote Loop-back Indicator Input Pin  
If the XRT4500 has been configured to operate in the  
DTE Mode – This input pin should be connected to the “RL”  
(Remote Loop-back) indicator output pin of the Terminal Equip-  
ment.  
Note: If the XRT4500 has been configured to operate in the  
“Registered” Mode, then data applied to this input pin will be  
latched (into the XRT4500) upon the rising edge of the  
REG_CLK input signal.  
7
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
18  
LP  
I
Loopback Command Input Pin – Active Low:  
This active-low input pin permits the user to configure the  
XRT4500 into a “Loop-Back” Mode. The exact loop-back will  
depend upon whether the XRT4500 is operating in the DTE or  
DCE Modes.  
Setting this input pin to “LOW” enables the Loop-back Operation.  
Setting this input pin to “HIGH” disables the Loop-back Operation.  
This input pin contains an Internal 20Kpull-up to VDD.  
19  
TX8O  
RLA  
RIA  
O
Transmitter 8 – Single Ended Data Output to Line  
The XRT4500 accepts a TTL level binary data stream, from the  
local terminal equipment via the “TX8D” input pin (pin 17), and  
outputs it, in either a V.10 or V.28 manner via this output pin. The  
exact role that this output pin plays depends upon whether the  
XRT4500 is operating in the DTE or DCE Modes.  
If the XRT4500 is configured to operate in the DCE Mode:  
This output pin will typically drive the state of either the “RI”  
(Ring Indicator) or “TM” (Test Mode) signals to the Remote  
Terminal Equipment.  
If the XRT4500 is configured to operate in the DTE Mode:  
This output pin will typically drive the state of the “RL” (Remote  
Loop-back) signal to the Remote Terminal Equipment.  
20  
21  
VDD  
CPP  
Analog VDD – For Receivers 4, 5, 6, 7 and 8.  
Charge Pump Capacitor Pin: A 2.2µF tantalum capacitor must  
be connected between pin 21 and pin 22.  
22  
CPM  
Charge Pump Capacitor Pin: A 2.2µF tantalum capacitor must  
be connected between pin 21 and pin 22.  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
8
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
23  
RX8D  
D_RI  
D_RL  
O
Receiver 8 – Digital Data Output to Terminal Equipment  
The XRT4500 receives a line signal (in either the V.10 or V.28  
manner) via the RX8I input pin (Pin 25). The XRT4500 then con-  
verts this data into a digital format (e.g., a CMOS level binary  
data stream) and outputs it via this pin. The exact functionality of  
this output pin depends upon whether the XRT4500 is operating  
in the DCE or DTE Modes.  
DCE Mode – Remote Loop-back Indicator Output  
If the XRT4500 has been configured to operate in the DCE  
Mode – This output pin should be connected to the “RL” (Remote  
Loop-back) indicator input pin (of the Terminal Equipment).  
DTE Mode – Ring Indicator (or Test Mode Indicator) Output  
If the XRT4500 has been configured to operate in the DTE  
Mode – This output pin should be connected to either the “RI”  
(Ring Indicator) or “TM” (Test Mode) input pin of the Terminal  
Equipment.  
Notes: This output pin is tri-stated if the EN_OUT* input pin (pin  
48) is “HIGH”. If the XRT4500 has been configured to operate in  
the “Registered” Mode, then data will be outputted via this pin,  
upon the rising edge of the REG_CLK clock signal.  
24  
REG  
I
Register Mode Control Select Input Pin:  
This input pin permits the user to configure the XRT4500 to  
operate in either the “Registered” Mode or in the “non-Regis-  
tered” Mode. If the XRT4500 has been configured to operate in  
the “Registered” Mode, then the following will happen.  
• Data at the “TX5D” and “TX8D” input pins (Pins 15 & 17) will  
be latched into the XRT4500 circuitry upon the rising edge of  
the clock signal applied at the “REG_CLK” input pin.  
• Data will be output via the “RX5D” and “RX8D” pins, upon the  
rising edge of the clock signal applied at the “REG_CLK” input  
pin.  
If the XRT4500 has been configured to operate in the “Non-Reg-  
istered” Mode, then the “REG_CLK” clock signal will have no  
effect on the processing of signals via the “TX5D”, “TX8D”,  
“RX5D” and “RX8D” pins.  
Setting the “REG” input to “HIGH” configures the XRT4500 to  
operate in the “Registered” Mode.  
Setting the “REG” input to “LOW” configures the XRT4500 to  
operate in the “Non-Registered” Mode.  
This pin contains an internal 20Kpull-down to ground.  
9
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
25  
RX8I  
RIA  
RLA  
I
Receiver 8 – Line Input Pin:  
This input pin accepts either a V.10 or V.28 type signal from the  
line. Receiver 8 will then convert this signal into a “CMOS” level  
(digital) signal and output this signal to the Terminal Equipment  
via the RX8D output pin (Pin 23). The exact function of this out-  
put pin depends upon whether the XRT4500 device is operating  
in the DTE or DCE mode.  
DTE Mode – The RI line signal  
DCE Mode – The RL line signal  
Notes:  
1. For some DTE applications, this input pin would accept  
the “RI” (Ring Indicator) line signal (in either the V.10 or  
V.28 format) form the DCE Terminal Equipment.  
2. For some DCE applications, this input pin would accept the  
“RL” (Remote Loop-back”) line signal (in either the V.10 or  
the V.28 format) from the DTE Terminal Equipment.  
26  
27  
VSS  
TR7  
-6V Power: This supply voltage is internally generated by the  
Switching Regulator Circuit within the XRT4500. The -6V is used  
by receivers 4, 5, 6, 7 and 8. If a -6V supply is available, then the  
external components can be eliminated.  
LLA  
LLA  
I/0  
Transceiver # 7 I/O Pins  
The exact function of this pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Modes.  
DTE Mode – Transmitter 7 – Single Ended Data Output to Line  
Transceiver 7 accepts a CMOS level signal via the “TX76D” input  
pin (pin 28). This digital data is converted into either a V.10 or  
V.28 electrical signal; which is then output (via this pin), on the  
line to the Remote Terminal Equipment.  
DCE Mode – Receiver 7 – Single Ended Data Input from Line  
This input pin accepts the line signal, from the Remote Terminal  
Equipment, in a “single-ended” manner. This line signal is con-  
verted into a CMOS level signal and is output (to the local Termi-  
nal Equipment) via the “RX67D” output pin (Pin 32).  
28  
TX76D  
D_LL  
D_DCD  
I
Digital Input – Refer to Mode Control Tables, Table 3 & Table 4 .  
10  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
29  
TR6A  
DCDA  
DCDA  
I/O  
Transceiver # 6 Line Signal I/O Pin:  
The exact function of this pin depends upon whether the  
XRT4500 has been configured to operate in the DCE or DTE  
Mode.  
DTE Mode: Negative Polarity Input of DCD (Data Carrier  
Detect) Signal:  
This input pin (along with TR6B, pin 30) accepts the line signal,  
from the remote terminal equipment, in either a Single-Ended or  
Differential manner. This line signal is converted to CMOS level  
signals and is outputted (to the local terminal equipment) via the  
RX67D output pin (Pin 32).  
DCE Mode: Negative Polarity Output Signal (of DCD-Data  
Carrier Detect) to the Line:  
Transceiver 6 accepts TTL level binary data stream, via the  
“TX67D” (pin 28) input pin. This output pin, along with “TR6B”  
(pin 30) will output this data to the Remote Terminal Equipment).  
via an Analog Line Signal.  
30  
TR6B  
DCDB  
DCDB  
I/O  
Transceiver #6 Line Signal I/O Pin  
The exact function of this pin, depends upon whether the  
XRT4500 has been configured to operate in the DCE or DTE  
Mode.  
DTE Mode: Receiver 6 – Positive Polarity Input of DCD (Data  
Carrier Detect) Signal:  
This input pin (along with TR6A, pin 29) accepts the line signal,  
from the remote terminal equipment, in a Differential manner.  
This line is converted to CMOS signal levels and is output (to the  
local terminal equipment) via the RX67D output pin (Pin 32).  
DCE Mode: Transmitter 6 – Positive Polarity Output of DCD  
(Data Carrier Data Signal) Pin:  
Transceiver 6 accepts a TTL level binary data stream, via the  
TX67D (pin 28) input pin. This output pin (along with TR6A, pin  
29) will output this data (to the remote terminal equipment) via  
an Analog line signal.  
NOTE: This I/O pin is not used if the XRT4500 has been config-  
ured to operate in the V.28/EIA-232 Communications Interface  
Mode.  
11  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
31  
DCE/DTE  
LOW  
HIGH  
I
DCE/DTE Mode Select:  
This input pin permits the user to configure the XRT4500 to  
operate in either the DCE Mode or in the DTE Mode.  
Logic 0: DTE Mode Operation  
When the XRT4500 is configured to operate in the “DTE” Mode,  
then “Transceiver # 3” will be configured to function as a  
Receiver.  
Logic 1: DCE Mode Operation  
When the XRT4500 is configured to operate in the “DCE” Mode,  
then “Transceiver # 3” will be configured to function as a Trans-  
mitter. This input pin contains an internal 20Kpull-up to VDD.  
32  
RX67D  
D_DCD  
D_LL  
O
Transceiver 6/7 Digital Output Pin:  
The exact function of this pin depends upon whether the  
XRT4500 has been configured to operate in the DCE or DTE  
Mode.  
DTE Mode – Data Carrier Detect (DCD) Output Pin  
When the XRT4500 is operating in the DTE Mode, this trans-  
ceiver functions as a “line receiver”. This line receiver accepts  
either a V.10, V.28 or V.11 line signal via the TR6A and TR6B  
pins (pins 29 and 30) and converts this line signal into a CMOS  
level binary data stream. This binary data stream is output via  
this pin. For DTE applications, this output pin should be con-  
nected to the “DCD” input pin of the “Terminal Equipment”.  
DCE Mode – Local Loop-back (LL) Indicator Output Pin  
When the XRT4500 is operating in the DCE Mode, this trans-  
ceiver functions as a “line receiver”. This line receiver accepts  
either a V.10, or V.28 line signal via the TR7 input pin (pin 27)  
and converts this line signal into a CMOS level binary data  
stream. This binary data stream is output via this pin. For DCE  
applications, this input pin should be connected to the “LL” input  
pin of the “Terminal Equipment”.  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
12  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
33  
RX5D  
D_DSR  
D_DTR  
O
Receiver 5 – Digital Data Output to Terminal Equipment  
The XRT4500 accepts a line signal (in either the V.10, V.11 or  
V.28 manner) via the RX5A and RX5B input pins (Pins 35 & 36).  
The XRT4500 then converts this data into digital format (e.g., a  
CMOS level binary data stream) and outputs it to the Terminal  
Equipment via this pin.  
The exact role that this pin plays depends upon whether the  
XRT4500 device is operating in the DCE or DTE modes.  
DTE Mode – Data Set Ready (DSR) Output Pin  
For DTE applications, this output pin should be connected to the  
“DSR” input of the Terminal Equipment.  
DCE Mode – Data Terminal Ready (DTR) Output Pin  
For DCE applications, this output pin should be connected to the  
“DTR” input pin of the Terminal Equipment.  
Note:  
1. This output pin is tri-stated if the EN_OUT input pin (pin 48)  
is “HIGH”.  
2. If the XRT4500 has been configured to operate in the  
“Registered” Mode, then data will be outputted via this pin  
upon the rising edge of the “REG_CLK” clock signal.  
34  
EC  
I
Echo Clock Mode Select Input Pin  
This input pin permits the user to enable or disable the “Echo-  
Clock” Mode feature within the XRT4500 device. If the user con-  
figures the XRT4500 to operate in the “Echo-Clock” Mode, then  
the RX3D output pin (Pin 73) will be internally looped into the  
“TX2D” input pin (Pin 67).  
Setting this input pin “LOW” enables the “Echo-Clock” Mode.  
Setting this input pin “HIGH” disables the “Echo-Clock” Mode.  
Note: The “Echo-Clock” Mode feature is only available if the  
XRT4500 is operating in the DTE Mode.  
This input pin contains an internal 20Kpull-up to VDD.  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
13  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
35  
RX5B  
DSRB  
DTRB  
I
Receiver 5 – Positive Data Differential Input from Line  
The XRT4500 will accept either a V.10, V.11 or V.28 type signal via  
this input pin, along with RX5A (Pin 36) and will generate a result-  
ing CMOS level binary data stream, via the RX5D (Pin 33) output  
pin. The exact function of this input pin depends upon whether the  
XRT4500 device is operating in the DTE or DCE mode.  
DTE Mode – Positive polarity portion of the DSR line signal.  
DCE Mode – Positive polarity portion of the DTR line signal.  
Note: This output pin is not used if the XRT4500 has been con-  
figured to operate in either the V.28/EIA-232 or V.10 Modes.  
36  
RX5A  
DSRA  
DTRA  
I
Receiver 5 – Negative Data Differential Input from Line  
The XRT4500 will accept either a V.10, V.11 or V.28 type signal  
via this input pin, along with RX5B (pin 35) and will generate a  
resulting CMOS level binary data stream, via the RX5D (Pin 33)  
output pin. The exact function of this input pin depends upon  
whether the XRT4500 device is operating in the DTE or DCE  
mode.  
DTE Mode – Negative polarity portion of the DSR line signal.  
DCE Mode – Negative polarity portion of the DTR line signal.  
Note: If the XRT4500 has been configured to operate in either  
the V.28/EIA-232 or V.10 Modes, then all of the data will be out-  
put (to the line) in a single-rail manner via this output pin.  
37  
RX4A  
CTSA  
RTSA  
I
Receiver 4 – Negative Data Differential Input from Line  
The XRT4500 will accept either a V.10, V.11 or V.28 type signal  
via this input pin, along with RX4B (pin 38) and will generate a  
resulting CMOS level binary data stream, via the RX4D output  
pin (Pin 40). The exact function of this input pin depends upon  
whether the XRT4500 device is operating in the DTE or DCE  
mode.  
Note: If the XRT4500 has been configured to operate in either  
the V.28/EIA-232 or V.10 Modes, then all of the data will be out-  
put (to the line) in a single-rail manner via this output pin.  
38  
RX4B  
CTSB  
RTSB  
I
Receiver 4 – Positive Data Differential Input from Line  
The XRT4500 will accept either a V.10, V.11 or V.28 type signal  
via this input pin, along with RX4A (pin 37) and will generate a  
resulting CMOS level binary data stream, via the RX4D output  
pin (Pin 40). The exact function of this input pin depends upon  
whether the XRT4500 device is operating in the DTE or DCE  
mode.  
NOTE: This output pin is not used if the XRT4500 has been con-  
figured to operate in either the V.28/EIA-232 or V.10 Modes.  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
14  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE MODE  
DCE  
TYPE FUNCTION  
39  
SLEW_CNTL  
O
V.28/V.10 Slew-Rate Control Pin – This pin permits the user to  
specify the slew rate of the V.10 or V.28 output driver. The user  
accompanies this by connecting a resistor (of a specific value)  
between this pin and ground.  
Figure 34 presents a plot which depicts the relationship  
between the ‘Rise/Fall Time’ of a V.10 output signal (from the  
XRT4500) and the value of this resistor.  
Figure 35 presents a plot which depicts the relationship  
between the slew-rate (expressed in terms of V/µs) of a V.28 out-  
put signal (from the XRT4500) and the value of this resistor.  
40  
RX4D  
D_CTS  
D_RTS  
O
Receiver 4 – Digital Data Output to Terminal Equipment  
This output pin is the digital (CMOS level) representation of the  
line signal that is applied to the RX4A (pin 37) and RX4B (pin 38)  
input pins.  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DCE Mode – CTS (Clear to Send) Output Signal  
For DCE Mode applications, this output pin should be connected  
to the “CTS” input pin of the Terminal Equipment.  
DTE Mode – RTS (Request to Send) Output Signal  
For DTE Mode applications, this output pin should be connected  
to the “RTS” input pin of the Terminal Equipment.  
41  
42  
43  
44  
Vsense  
Isense  
I
I
Switching Regulator – Voltage sense input  
Switching Regulator – Current sense input  
Switching Regulator Ground  
GND_REG  
LATCH  
I
Mode Control Input Latch Enable – Logic 0:  
This input pin permits the user to latch the states of the Mode  
Control Input pins (4, 5, and 6) (M0, M1, and M2) into the  
XRT4500 circuitry. This feature frees up the signals (driving the  
Mode Control Input pins) for other purposes.  
Driving this input, from “low” to “high” latches the contents of the  
Mode Control pins of the XRT4500 (into the XRT4500 circuitry).  
For the duration that the LATCH input pin is “high”, the user can  
change the state of the signals controller the M0, M1 and M2  
input pins, without effecting the operation of the XRT4500.  
45  
CLKFS  
O
Internally Generated 500kHz Clock – This clock signal is inter-  
nally used to drive both the switching regulator and the digital  
‘Glitch’ filters. The user is advised to leave this pin floating.  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
15  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
46  
E_232H  
I
High Speed RS-232 Enable – Logic 0 enables high speed RS-  
232 mode (drives 3Kin parallel with 1000pF at 256 KHz).  
Internal 20Kpull-up to VDD.  
This input pin permits the user to either enable or disable the  
‘High-Speed RS-232 Driver’ feature. The non high speed mode  
provides a 120 Kbps clock rate.  
Note: This pin setting applies to all ‘RS-232/V.28 Drivers’ within  
the XRT4500.  
47  
48  
VDD  
Analog VDD for the Internal Switching Regulator  
EN_OUT  
I
Output Enable Pin for Receiver 5 and 8  
This active-low output pin permits the user to tri-state the  
“RX5D” and “RX8D” output pins (Pins 23 & 33).  
Setting this input pin “low” causes the XRT4500 to tri-state the  
“RX5D” and “RX8D” output pins. Conversely, setting this input  
pin “high” enables the “RX5D” and the “RX8D” output drivers for  
signal transmission to the local Terminal Equipment.  
This input pin contains an internal 20kpull-down resistor to  
ground.  
49  
REG_CLK  
I
Register Mode Clock Input Signal:  
If the XRT4500 has been configured to operate in the “Regis-  
tered” Mode, then a rising clock edge at this input causes the  
XRT4500 to do the following.  
Data at the TX5D and TX8D input pins (Pins 15 & 17) will be  
latched into the XRT4500 circuitry.  
Data will be outputted via the RX5D and RX8D pins (Pins 23  
& 33).  
This input pin has no function when the XRT4500 is operating in  
the “Non-Registered” Mode. The user configures the XRT4500  
to operate in the “Registered” Mode, by pulling the “REG” input  
pin to VDD  
.
This input pin contains an internal 20kpull-up to VDD  
.
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
16  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
50  
2CK/3CK  
I
2 or 3 Clock Select Input Pin  
This input pin permits the XRT4500 to operate in either the “2  
Clock” or “3 Clock” Mode. If the XRT4500 is configured to oper-  
ate in the ‘2-Clock’ mode, then the XRT4500 will synthesize the  
‘RX2D’ Clock signal, from the clock signal applied at the ‘TX3D’  
input pin. Conversely, if the XRT4500 is configured to operate in  
the ‘3 Clock’ Mode, then the XRT4500 will synthesize the ‘RX2D’  
Clock signal from the live signal received via ‘RX2A’ and ‘RX2B’  
input pin. Setting this input pin “high” configures the XRT4500 to  
operate in the “2 Clock” Mode. Conversely, setting this input pin  
“low” configures the XRT4500 to operate in the “3 Clock” Mode.  
Note:  
1. This input pin is ignored if the XRT4500 is configured to  
support the X.21 Communications Interface.  
Logic Don’t Care: 1 Clock When in the X.21 Mode (M2, M1, M0 = 011)  
X.21 (M2, M1, M0 011)  
X.21 (M2, M1, M0 011)  
Logic 0: 3 Clocks When Mode  
Logic 1: 2 Clocks When Mode  
NOTE:  
2. This input pin is ignored if the XRT4500 is configured to  
operate in the DTE Mode.  
This input pin contains an internal 20kpull-up to VDD  
.
51  
52  
VDD_REG  
SR_OUT  
Analog VDD – Charge pump and switching regulator output  
drivers  
O
Switching Regulator – Inductor driver output  
NOTE: Signal names beginning with D_ are digital signals.  
NOTE: Signal names ending with B and A are the positive  
and negative polarities of differential signals respectively.  
17  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
53  
OSCEN  
I
Test Oscillator Enable – Active Low;  
This active-low input pin permits the user to enable or disable the  
“Internal Oscillator” within the XRT4500. If the user enables this fea-  
ture then the XRT4500 will begin generating a clock signal via both  
the RX2D and RX3D output pins. The frequency of this clock signal  
ranges between 32kHz and 64kHz.  
This clock signal can be used to support “Stand-Alone DTE Diag-  
nostic” Testing.  
Setting this input to “0” enables the “Internal Oscillator”.  
Setting this input to “1” disables the “Internal Oscillator”.  
Note: The “Internal Oscillator” is only available if the XRT4500 is  
operating in the DTE Mode.  
If LP = “0” The Clock Signal (32 - 64kHz) is available on Rx3D.  
If LP = “0” and EC = “0” the clock signal is available on RX2D.  
pull-up to V  
.
NOTE: This input pin contains an internal 20k  
DD  
54  
CLKINV  
I
Invert Clock Input Pin – This ‘Active -Low’ input pin permits the  
user to either enable or disable the ‘Clock/Inversion’ feature. The  
exact manifestation of the ‘Clock Inversion’ feature depends upon  
whether the XRT4500 is operating in the ‘DCE’ or ‘DTE’ Mode.  
If the XRT4500 is operating in the DTE Mode, then the RX3D output  
signal (which is receiving the TXC signal) will be inverted before it is  
outputted to the terminal equipment.  
If the XRT4500 is operating in the DCE Mode, then the TX3D input  
signal (which is transmitting the TXC signal) will be inverted before it  
converted into the analog format and is output to the line.  
Setting this input pin ‘Low’ enables the ‘Clock Inversion’ feature.  
Conversely, setting this input pin ‘High’ disables this feature.  
pull-up to V  
.
NOTE: This input pin contains an internal 20k  
DD  
55  
DTINV  
I
Invert Data – Active Low; Logic 0: Data Inverted.  
pull-up V  
Logic 1: Data not Inverted. Internal 20K  
.
DD  
56 VSS_T123  
-6V Power Supply Signal: This supply voltage is internally gener-  
ated by the Switching Regulator Circuit within the XRT4500.  
57  
GND  
Digital Ground: for transmitters 1, 2, and 3  
Analog VDD: for transmitters 1, 2, and 3  
Analog Ground: Transmitters 1 and 2  
58 VDD_T123  
59  
GND_T12  
18  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
60  
TX1D  
D_TXD  
D_RXD  
I
Transmitter 1 – Digital Data Input from Terminal Equipment.  
The exact role that this input pin plays depends upon whether  
the XRT4500 is operating in the DTE or DCE Modes.  
DTE Mode – TXD (Transmit Data) Input:  
The DTE Terminal Equipment is expected to apply the TXD  
(Transmit Data) to this input pin.  
The XRT4500 will convert this binary data stream into either the  
V.35, V.11, or V.28 format and will output this data via the TX1A  
and TX1B output pin.  
DCE Mode – RXD (Receive Data) Input:  
The DCE Terminal Equipment is expected to apply the RXD  
(Receive Data) to this input pin.  
The XRT4500 will convert this binary data stream into either the  
V.35, V.11 or V.28 format and will output this data via the TX1A  
and TX1B output pins.  
61  
62  
CM_TX1  
TX1B  
O
O
AC GND- Transmitter 1 Output Termination center tap in V.35  
Mode. Connect a 0.1µF capacitor to ground.  
TXDB  
RXDB  
Transmitter 1 – Positive Data Differential Output to line.  
The exact function of this output pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Modes.  
DTE Mode: Transmit Data (TXD) – Positive Polarity Output  
Line Signal  
Transmitter 1 accepts a TTL Level binary data stream (as the  
Transmit Data” – TXD) from the DTE Terminal Equipment.  
Transmitter 1 converts this digital data into any of the following  
electrical formats: V.10, V.11, V.28 and V.35, prior to transmis-  
sion to the line.  
If this data is being converted into either the V.11 or V.35 format,  
then this pin outputs the positive-polarity portion of the “TXD”  
data to the line. If this data is being converted into either the V.10  
or V.28 formats, then this pin is inactive.  
DCE Mode: Receive Data (RXD) – Positive Polarity Output  
Line Signal  
Transmitter 1 accepts a CMOS (or TTL) level signal binary data  
stream (as the “Receive Data” – RXD) from the DCE Terminal  
Equipment. Transmitter 1 converts this digital data into any of the  
following electrical formats: V.10, V.11, V.28 and V.35 prior to  
transmission to the line.  
If this data is being converted into either the V.11 or V.35 format,  
then this pin outputs the positive polarity portion of the “RXD”  
data to the line. If this data is being converted into either the V.10  
or V.28 formats, then this pin is inactive.  
19  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
63  
TX1A  
TXDA  
RXDA  
O
Transmitter 1 – Negative Data Differential Output to Line  
The exact function of this output pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Modes.  
DTE Mode: Transmit Data (TXD) – Negative Polarity Output  
Signal  
Transmitter 1 accepts a TTL level binary data stream (as the  
Transmit Data” – TXD) from the DTE Terminal Equipment. Trans-  
mitter 1 converts this digital data into any of the following electrical  
formats: V.10, V.11, V.28 and V.35 prior to transmission to the line.  
If this data is being converted into either the V.11 or V.35 format,  
then this pin outputs the negative-polarity portion of the “TXD”  
data to the line. If this data is being converted into either the V.10  
or V.28 formats, then this pin outputs this data to the line in a sin-  
gle-ended manner.  
DCE Mode: Receive Data (RXD) – Negative Polarity Output  
Line Signal  
Transmitter 1 accepts a TTL level binary data stream (as the  
“Receive Data” – RXD) from the DCE Terminal Equipment.  
Transmitter 1 converts this digital data into any of the following  
electrical formats: V.10, V.11, V.28 and V.35 prior to transmission  
to the line.  
If this data is being converted into either the V.11 or V.35 format,  
then this pin outputs the negative-polarity portion of the “RXD”  
data to the line. If this data is being converted into either the V.10  
or V.28 formats, then this pin outputs this data to the line in a sin-  
gle-ended manner.  
20  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
64  
TX2A  
SCTEA  
RXCA  
O
Transmitter 2 – Negative Data Differential Output to Line  
The exact function of this output pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DTE Mode Transmit Clock Echo (SCTE) – Negative Polarity  
Output Signal  
Transmitter 2 accepts a TTL level binary data system (as the  
Transmit Clock Echo’ – SCTE) from the DTE terminal equip-  
ment. Transmitter 2 converts this digital data into any of the fol-  
lowing electrical formats: V.10, V.11, V.28 or V.35 prior to  
transmission to the line.  
If this data is being converted into the V.11 or V.35 electrical format  
then this pin outputs the ‘Negative Polarity’ portion of the ‘SCTE’  
data to the line. If this data is being converted into the V.10 or V.28  
electrical format, tthen this pin outputs this data to the line in a  
single-ended manner.  
DCE Mode Receive Clock (RXC) Signal – Negative Polarity  
Output Line Signal  
Transmitter 2 accepts a TTL level binary data system (as the  
‘Receive Clock - RXC) from the DCE terminal equipment. Trans-  
mitter 2 converts this digital data into any of the following electrical  
formats: V.10, V.11, V.28 or V.35 prior to transmission to the line.  
If this data is being converted into the V.11 or V.35 electrical for-  
mat then this pin outputs the ‘Negative Polarity’ portion of the  
‘RXC’ data to the line. If this data is being converted into the V.10  
or V.28 electrical format, then this pin outputs this data to the line  
in a single-ended manner.  
21  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
65  
TX2B  
SCTEB  
RXCB  
O
Transmitter 2 – Positive Data Differential Output to line.  
The exact function of this output pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DTE Mode Transmit Clock Echo (SCTE) – Positive Polarity  
Output Signal  
Transmitter 2 accepts a TTL level binary data system (as the  
Transmit Clock Echo’ – SCTE) from the DTE terminal equip-  
ment. Transmitter 2 converts this digital data into any of the fol-  
lowing electrical formats: V10, V.11, V.28 or V.35 prior to  
transmission to the line.  
If this data is being converted into the V.11 or V.35 electrical format  
then this pin outputs the ‘Positive Polarity’ portion of the ‘SCTE’  
data to the line. If this data is being converted into the V.10 or V.28  
electrical format, then this output pin is in-active.  
DCE Mode Receive Clock (RXC) Signal – Positive Polarity  
Output Line Signal  
Transmitter 2 accepts a TTL level binary data system (as the  
‘Receive Clock - RXC) from the DCE terminal equipment. Trans-  
mitter 2 converts this digital data into any of the following electrical  
formats: V.10, V.11, V.28 or V.35 prior to transmission to the line.  
If this data is being converted into the V.11 or V.35 electrical for-  
mat then this pin outputs the ‘Positive Polarity’ portion of the  
‘RXC’ data to the line. If this data is being converted into the V.10  
or V.28 electrical format, then this output pin is in-active.  
66  
CM_TX2  
O
Transmitter 2 Output Termination Center Tap in V.35 Mode –  
This pin should be by-passed to ground with an external 0.1µF  
capacitor.  
22  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
67  
TX2D  
D_SCTE D_RXC  
I
Transmitter 2 Digital Data Input from Terminal Equipment  
The exact role that this input pin plays, depends upon whether  
the XRT4500 is operating in the DTE or DCE Mode.  
DTE Mode: SCTE (Transmit Clock Echo) Input  
The Serial Communications Controller (at the DTE Terminal) is  
expected to derive the SCTE (Transmit Clock Echo) clock signal,  
from the TXC signal, and input it (into the XRT4500) via this  
input pin. The XRT4500 will convert this binary data stream into  
either the V.35, V.11 or V.28 format and will output this data via  
the TX2A and TX2B output pins.  
DCE Mode: RXC (Receive Clock) Input  
The Serial Communications Controller (at the DCE Terminal) is  
expected to apply the RXC clock signal to this input pin. The  
XRT4500 will convert this binary data stream into either the V.35,  
V.11 or V.28 format and will output this data via the TX2A and  
TX2B output pins.  
Note: If the XRT4500 has been configured to operate in both the  
DTE and the “Echoed Clock” Mode, then the XRT4500 will  
ignore this input pin and will instead use the clock signal which is  
output via the “D_TXC” output pin (e.g., RX3D or pin 73).  
68  
TX3D  
D_X  
D_TXC  
I
Transmitter 3 – Digital Data Input from Terminal Equipment  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Modes.  
DTE Mode: This input pin is not used  
DCE Mode: TXC – Transmit Clock Signal  
This input pin functions as the “TXC” (Transmit Clock) input signal  
from the DCE Terminal. The XRT4500 will convert this “digital”  
clock data into either the V.35, V.11 or V.28 format and will output  
this data via the TR3A and TR3B output pins.  
69  
70  
71  
CM_TR3  
TR3A  
O
DTE Mode: AC GND – Transmitter 3 Output Termination center  
tap in V.35 Mode. Connect a 0.1µF capacitor to ground.  
DCE Mode: AC GND – Receiver 3 Input Termination center tap  
in V.35 Mode. Connect a 0.1µF capacitor to ground.  
TXCA  
TXCB  
TXCA  
TXCB  
I/O  
I/O  
DTE Mode: Receiver 3 – Negative Data Differential Input from  
Line  
DCE Mode: Transmitter 3 – Negative Data Differential Output  
to Line.  
TR3B  
DCE Mode: Transmitter 3 – Positive Data Differential Output to Line.  
DTE Mode: Receiver 3 – Positive Data Differential Input from Line.  
23  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
PIN DESCRIPTIONS (CONT.)  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
72  
73  
GND  
Analog GND: Receivers 4, 5, 6, 7 and 8  
Receiver 3 – Digital Output to Terminal Equipment:  
RX3D  
D_TXC  
D_X  
O
This output pin is the digital (CMOS level) representation of the  
line signal that is received via the TR3A (pin 70) and TR3B (pin  
71) input pins.  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode.  
DTE Mode: TXC – Transmit Clock Signal  
This output pin functions as the “TXC” (Transmit Clock) output  
signal to the Terminal Equipment. The DTE Terminal Equipment  
will typically use this signal to synthesize the SCTE clock signal.  
DCE Mode: This output pin is NOT used.  
Note: If the “Internal Oscillator” (within the XRT4500) is enabled,  
then this pin will output a 32kHz to 64kHz clock signal. This clock  
signal can be used for “Stand-Alone DTE Diagnostic” Testing.  
74  
RX2D  
R_RXC D_SCTE  
O
Receiver 2 – Digital Data Output to Equipment  
This output pin is the digital (CMOS level) representation of the  
line signal that is received via the RX2A (pin 77) and RX2B (pin  
76) input pins.  
The exact role that this pin plays depends upon whether the  
XRT4500 is operating in the DCE or DTE Modes.  
DCE Mode: SCTE – Transmit Clock Echo Signal:  
This output pin functions as the SCTE (Transmit Clock Echo)  
output signal to the Terminal Equipment. The DCE Terminal  
Equipment will typically use this clock signal to sample the “TXD”  
(Transmit Data).  
DTE Mode: RXC – Receive Clock Signal:  
This output pin functions as the “RXC” (Receive Clock) output  
signal to the Terminal Equipment. The DTE Terminal Equipment  
will typically use this signal to sample the “RXD” (Receive Data).  
Note: If the “Internal Oscillator” (within the XRT4500) is enabled,  
then this pin will output a 32kHz – 64kHz clock signal. This clock  
signal can be used for “Stand-Alone DTE Diagnostic” testing.  
75  
EN_FLTR  
I
Enable Glitch Filter on Receiver 4, 5, 6, 7, 8 inputs. Internal  
20kpull-down  
76  
77  
RX2B  
RX2A  
RXCB  
RXCA  
SCTEB  
RXCB  
I
I
Receiver 2 – Positive Data Differential Input from Line  
Receiver 2 – Negative Data Differential Input from Line  
24  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
PIN DESCRIPTIONS  
PIN  
#
Signal  
DTE  
MODE  
DCE  
MODE  
TYPE FUNCTION  
78  
79  
RX1A  
RX1B  
RXDA  
RXDB  
TXDA  
TXDB  
I
I
Receiver 1 – Negative Data Differential Input from Line  
Receiver 1 Positive Data Differential Input from Line  
The exact function of this input pin depends upon whether the  
XRT4500 is operating in the DCE or DTE Mode. This input pin,  
along with “RX1A” (pin 78) will accept a line signal in either the  
V.35, V.11, V.28/EIA-232 or V.10 electrical format. Receiver 1 will  
then convert this line signal into a CMOS level binary data  
stream, and will output this data (to the Terminal Equipment) via  
the “RX1D” output pin (pin 1).  
DCE Mode – Receive Data (RXD) – Negative Polarity Input  
Line Signal  
80  
EN_TERM  
I
Enable Input Termination for Receiver 1, 2, 3, in V.11 Mode.  
Internal 20kpull-down to ground.  
25  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
ELECTRICAL CHARACTERISTICS  
Supply Voltage  
Vpp +12V Supply  
Vss  
MIN  
11  
TYP  
12  
MAX  
13  
UNITS  
TEST CONDITIONS  
V
V
Full Load on V.28  
Full Load on V.28  
-5.7  
-6.0  
-6.3  
IDD in DCE Mode- Ta=25°C, VDD=5V, Data and Clock at maximum operating frequencies unless other-  
wise specified  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
TEST CONDITIONS  
V.10  
145  
160  
180  
160  
180  
200  
190  
215  
240  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 10 kHz  
Typical Load at 50 kHz  
M0=0, M1=0, M2=0  
EIA-530-A (V.11)  
M0=1, M1=0, M2=0  
125  
205  
230  
275  
140  
230  
255  
305  
170  
275  
305  
365  
mA  
mA  
mA  
mA  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
EIA-530, RS449, V.36  
M0=0, M1=1, M2=0  
120  
195  
225  
270  
135  
215  
250  
300  
160  
260  
300  
360  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
X.21  
115  
195  
215  
260  
130  
215  
240  
290  
155  
260  
290  
350  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
M0=1, M1=1, M2=0  
Typical Load at 10 MHz  
V.35  
215  
255  
265  
290  
240  
285  
295  
320  
290  
340  
355  
385  
No Load or Signal, TX Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
M0=0, M1=0, M2=1  
Typical Load at 10 MHz  
RESERVED  
M0=1, M1=0, M2=1  
120  
200  
225  
270  
135  
225  
250  
300  
160  
270  
300  
360  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
RS-232 (V.28)  
M0=0, M1=1, M2=1  
115  
215  
225  
130  
240  
250  
155  
290  
300  
mA  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 10 kHz  
Typical Load at 100 kHz  
POWER DOWN  
80  
90  
110  
Reduced Power Mode  
M0=1, M1=1, M2=1  
NOTES:  
950mW in V.35 and 800mW in the V.28 mode. In  
the “Reduced Power Mode” the XRT4500 chip dis-  
sipation is 310mW.  
1. Absolute Maximum Ratings are those beyond  
which the safety of a device may be impaired.  
4. "Typical Load" is the corresponding receiver in  
another XRT4500 operating in the DTE mode.  
2. All currents into device pins are positive; all cur-  
rents out of device are negative. All voltages are  
referenced to device ground unless otherwise  
specified.  
5. A 50% duty cycle square wave, at the specified fre-  
quency in the table, is applied to all Clock and Data  
lines of the High Speed Transmitters).  
3. The efficiency of the switching regulator and the  
charge pump is approximately 70%. The actual  
power dissipation of the XRT4500 at 5V, with maxi-  
mum loading, is 660mW in V.10, 700mW in V.11,  
6. A 10 KHz 50% duty cycle square wave is applied to  
all Handshake Lines (Low Speed Transmitters).  
26  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
7. Input termination is enabled on High Speed V.11  
Receivers.  
IDD in DTE Mode - Ta=25°C, VDD=5V, Data and Clock at maximum operating frequencies unless other-  
wise specified  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
TEST CONDITIONS  
V.10  
145  
160  
170  
160  
180  
190  
190  
215  
230  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 10 kHz  
Typical Load at 50 kHz  
M0=0, M1=0, M2=0  
EIA-530-A (V.11)  
M0=1, M1=0, M2=0  
130  
190  
210  
250  
145  
210  
235  
280  
175  
250  
280  
335  
mA  
mA  
mA  
mA  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
EIA-530, RS449, V.36  
M0=0, M1=1, M2=0  
125  
180  
205  
245  
140  
200  
230  
275  
170  
240  
275  
330  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
X.21  
120  
170  
190  
230  
130  
190  
210  
255  
155  
230  
250  
305  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
M0=1, M1=1, M2=0  
Typical Load at 10 MHz  
V.35  
180  
220  
235  
255  
200  
245  
260  
285  
240  
295  
310  
340  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
M0=0, M1=0, M2=1  
Typical Load at 10 MHz  
RESERVED  
M0=1, M1=0, M2=1  
125  
185  
205  
245  
140  
205  
230  
275  
170  
245  
275  
330  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 1 MHz  
Typical Load at 4 MHz  
Typical Load at 10 MHz  
RS-232 (V.28)  
M0=0, M1=1, M2=1  
115  
200  
205  
130  
220  
230  
155  
265  
275  
mA  
mA  
No Load or Signal, Tx Digital Inputs tied High  
Typical Load at 10 kHz  
Typical Load at 100 kHz  
POWER DOWN  
80  
90  
110  
Reduced Power Mode  
M0=1, M1=1, M2=1  
NOTES:  
the “Reduced Power Mode” the XRT4500 chip dis-  
sipation is 310mW.  
1. Absolute Maximum Ratings are those beyond  
which the safety of a device may be impaired.  
4. "Typical Load" is the corresponding receiver in  
another XRT4500 operating in the DCE mode.  
2. All currents into device pins are positive; all cur-  
rents out of device are negative. All voltages are  
referenced to device ground unless otherwise  
specified.  
5. A 50% duty cycle square wave, at the specified fre-  
quency in the table, is applied to all Clock and Data  
lines of the High Speed Transmitters).  
3. The efficiency of the switching regulator and the  
charge pump is approximately 70%. The actual  
power dissipation of the XRT4500 at 5V, with maxi-  
mum loading, is 660mW in V.10, 700mW in V.11,  
950mW in V.35 and 800mW in the V.28 mode. In  
6. A 10 KHz 50% duty cycle square wave is applied to  
all Handshake Lines (Low Speed Transmitters).  
7. Input termination is enabled on High Speed V.11  
Receivers.  
27  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
TA = 25°C, VDD = 5V, VSS = -6V, VPP = 12V, MAXIMUM OPERATING FREQUENCY UNLESS OTHERWISE SPECIFIED  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
MODE  
INTERFACE/CONDITIONS  
M2 TEST CONDITIONS  
SUPPLY CURRENTS  
M0  
0
M1  
0
IDD  
VDD Supply Current  
(DCE Mode, All Digital  
Pins = GND or VDD  
27  
75  
27  
32  
90  
32  
mA  
mA  
mA  
0
0
0
V.10, No Load, No Signal  
V.10, Full Load, w/ Signal  
0
0
)
1
0
EIA-530A, No Load,  
(V.11)  
230  
65  
270  
75  
mA  
mA  
mA  
1
0
0
0
0
0
0
1
1
EIA-530A, Full Load,  
(V.11)  
V.35, No Load on V.28  
Drivers  
68  
80  
V.35, Full Load on V.28  
Drivers  
20  
26  
16  
25  
32  
20  
mA  
mA  
mA  
0
0
1
1
1
1
1
1
1
RS232, No Load  
RS232, Full Load  
Reduced Power Mode  
ELECTRICAL CHARACTERISTICS (CONTIUED)  
SYMBOL PARAMETER  
LOGIC INPUTS  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
VIH  
VIL  
Logic Input High Voltage  
Logic Input Low Voltage  
2
V
V
TTL Compatible  
TTL Compatible  
0.8  
IIN  
Logic Input Current  
±250  
µA  
With 20kinternal pull-up/down  
resistor to ground  
LOGIC OUTPUTS  
VOH  
Output High Voltage  
3
4.5  
0.3  
V
V
IO = -4mA, TTL/CMOS  
Compatible  
VOL  
Output Low Voltage  
0.8  
60  
IO = 4mA, TTL/CMOS  
Compatible  
IOSR  
Output Short-Circuit Current  
Three-State Output Current  
-60  
0
mA  
µA  
0V VO VDD, TTL  
Compatible  
IOZR  
±1  
M0 = Ml = M2 = VDD 0V VO  
VDD, TTL Compatible  
28  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
POWER SUPPLY CONSUMPTION  
The table below shows the typical currents the +5V,  
+12V and -6V supplies require for each of the interface  
modes.  
When external power supplies are available, the  
switching regulator and charge pumps may be dis-  
abled to save on component cost and current con-  
sumption from the +5V supply.  
IDD  
IPP  
ISS  
MODE  
INTERFACE/CONDITIONS  
SUPPLY  
+5V  
27  
75  
27  
230  
27  
27  
65  
68  
27  
20  
26  
+12V  
17  
17  
15  
15  
15  
15  
15  
45  
15  
30  
65  
-6V  
40  
UNIT  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
M2  
0
M1  
0
M0  
0
V.10, No Load, No Signal  
V.10, Full Load with Signal  
EIA-530A, No Load (V.11)  
EIA-530A, Full Load (V.11)  
EIA-530 (V.36) No Load  
X.21  
-160  
-35  
-130  
-35  
-35  
-70  
-120  
-35  
-45  
-55  
0
0
0
0
0
1
0
0
1
0
1
0
0
1
1
1
0
0
V.35, No Load on V.28 drivers  
V.35, Full Load on V.28 drivers  
Reserved  
1
0
0
1
0
1
1
1
0
RS-232, No Load  
1
1
0
RS-232, Full Load  
The following two charts show how the IDD current  
varies with temperature and voltage when only a sin-  
gle 5V supply is used in the EIA-530 (V.11) mode.  
This mode has the highest current consumption.  
FIGURE 1. SUPPLY CURRENT VERSUS TEMPERATURE AND SUPPLY VOLTAGE, WITHOUT LOAD OR  
SIGNAL IN EIA-530 (V.11) MODE  
Supply Current, No Signal, No Load, All CH  
154  
152  
150  
4.75V  
148  
5.00V  
5.25V  
146  
144  
142  
140  
- 20  
0
25  
50  
70  
85  
Temperature ( C)  
29  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 2. SUPPLY CURRENT VERSUS TEMPERATURE AND SUPPLY VOLTAGE, WITH LOAD IN EIA-  
530 (V.11) MODE  
Supply Current, Signal, Full Load  
360  
350  
4.75V  
340  
5.00V  
330  
5.25V  
320  
310  
- 20  
0
25  
50  
70  
85  
Tem perature (C)  
ELECTRICAL CHARACTERISTICS (CONTIUED)  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
V.11 DRIVER  
VOD  
VOD  
Differential Output Voltage  
Differential Output Voltage  
+5.5  
V
Open Circuit  
±2  
RL = 50(Figure 3)  
RL = 50(Figure 3)  
VOD  
Change in Magnitude of Differential  
Output Voltage  
0.25  
V
VOC  
Common Mode Output Voltage  
3.0  
0.2  
V
V
RL = 50(Figure 3)  
RL = 50(Figure 3)  
VOC  
Change in Magnitude of Common  
Mode Output Voltage  
ISS  
IOZ  
Short-Circuit Current  
±150  
±100  
mA  
VO = GND  
Output Leakage Current  
±1  
µA  
-0.25V VO 0.25V, Power  
Off or Driver Disabled  
tr, tf  
TPLH  
TPHL  
t  
Rise or Fall Time (Transition Time)  
Input to Output  
4
30  
30  
0
10  
70  
65  
5
25  
100  
100  
15  
ns  
ns  
ns  
ns  
ns  
(Figures 4, 8 )  
(Figures 4, 8 )  
(Figures 4, 8 )  
(Figures 4, 8 )  
(Figures 4, 8 )  
Input to Output  
Inp. to Out. Difference, |TPLH - TPHL  
|
TSKEW Output to Output Skew  
5
V.11 RECEIVER  
Maximum Transmission Rate  
20  
MHz  
V
VTH  
Input Threshold Voltage  
Input Hysteresis  
-0.2  
0.2  
60  
-7V VCM 7V  
-7V VCM 7V  
VTH  
35  
mV  
30  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
ELECTRICAL CHARACTERISTICS (CONTIUED)  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
V.11 RECEIVER  
IIN  
RIN  
tr,  
Input Current (A, B)  
Input Impedance  
±2  
10  
10  
5
±2.5  
11  
mA  
kΩ  
ns  
ns  
ns  
ns  
ns  
-10V VA,B 10V  
-10V VA,B 10V  
(Figures 4, 9 )  
(Figures 4, 9 )  
(Figures 4, 9 )  
(Figures 4, 9 )  
(Figures 4, 9 )  
9
RiseTime  
tf  
Fall Time  
10  
100  
100  
20  
TPLH  
TPHL  
t  
Input to Output  
30  
30  
0
70  
70  
10  
Input to Output  
Inp. to Out. Difference, |TPLH - TPHL  
|
ELECTRICAL CHARACTERISTICS (CONTINUED)  
SYMBOL PARAMETER  
V.35 Driver  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Maximum Transmission Rate  
20  
±0.44 ±0.55 ±0.66  
MHz  
V
VOD  
IOH  
IOL  
Differential Output Voltage  
Transmitter Output High Current  
Transmitter Output Low Current  
Transmitter Output Leakage Current  
Rise or Fall Time  
With Load, (Figure 9)  
VA, B = 0V  
-12  
10  
-11  
11  
±1  
5
-10  
12  
mA  
mA  
µA  
ns  
VA, B = 0V  
IOZ  
±100  
-0.25 VA,B 0.25V  
(Figures 5, 8 )  
(Figures 5, 8 )  
(Figures 5, 8 )  
(Figures 5, 8 )  
(Figures 5, 8 )  
tr, tf  
TPLH  
TPHL  
t  
Input to Output  
30  
25  
0
60  
55  
5
100  
80  
ns  
Input to Output  
ns  
Inp. to Out. Difference, |TPLH - TPHL  
|
20  
ns  
TSKEW Output to Output Skew  
5
ns  
V.35 Receiver  
VTH  
VTH  
IIN  
Differential Input Threshold Volt.  
-0.2  
135  
0.2  
60  
V
mV  
mA  
-2V = (VA + VB)/2 = 2V (Figure 5)  
-2V = (VA + VB)/2 = 2V (Figure 5)  
-10V = VA, B = 10V  
-10V = VA, B = 10V  
(Figure 5, 9 )  
Input Hysteresis  
Input Current (A, B)  
Input Impedance (A, B)  
Rise Time  
35  
±60  
150  
10  
RIN  
tr  
165  
ns  
ns  
ns  
ns  
tf  
Fall Time  
5
(Figure 5, 9 )  
TPLH  
TPHL  
Input to Output  
Input to Output  
75  
100  
100  
(Figure 5, 9 )  
75  
(Figure 5, 9 )  
31  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
ELECTRICAL CHARACTERISTICS- TA = 25°C, VDD = 5V + 5%  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
V.10 DRIVER  
Maximum Transmission Rate  
Output Voltage  
120  
Kbps  
V
VO  
VO  
ISS  
IOZ  
±4.0  
±6.0  
Open Circuit, RL = 3.9k  
RL = 450(Figure 6)  
VO = GND  
Output Voltage  
±3.6  
V
Short-Circuit Current  
Input Leakage Current  
±100  
±100  
mA  
µA  
±0.1  
1.5  
-0.25 VO 0.25V, Power Off or  
Driver Disabled  
tr, tf  
Rise or Fall Time  
Input to output  
Input to output  
0
µs  
µs  
µs  
(Figures 6, 10 ), RL = 450, CL =  
100pF, RSLEW_CNTL = 10k  
TPLH  
1.5  
0.5  
3
1
6
2
(Figures 6, 10 ), RL = 450, CL = 100pF  
RSLEW_CNTL = 10k  
TPHL  
(Figures 6, 10 ), RL = 450, CL = 100pF  
RSLEW_CNTL = 10k  
V.10 RECEIVER  
VTH  
AVTH  
IIN  
Receiver Input Threshold Voltage  
-0.2  
0.2  
60  
V
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
35  
±2.0  
11  
mV  
mA  
kΩ  
ns  
-2.5  
9
±2.5  
12  
-10 VA 10V  
-10 VA 10V  
(Figures 7, 11 )  
(Figures 7, 11 )  
(Figures 7, 11 )  
RIN  
tr, tf  
10  
TPLH  
TPHL  
Input to Output  
200  
250  
ns  
Input to Output  
ns  
V.28 Driver  
Maximum Transmission Rate  
120  
±5  
Kbps  
V
VO  
Output Voltage  
±5.5  
±1  
±6.5  
Open Circuit  
RL = 3k (Figure 6)  
ISS  
IOZ  
Short-Circuit Current  
Input Leakage Current  
±100  
±100  
mA  
VO = GND  
µA  
-0.25 VCM 0.25V, Power Off or  
Driver Disabled  
SR  
Slew Rate  
2
5
2
2
30  
6
V/µs (Figures 6, 10 ), RL = 3k, CL = 2500pF  
TPLH  
TPHL  
Input to output  
Input to output  
µs  
µs  
(Figures 6, 10 ), RL = 3k, CL = 2500pF  
(Figures 6, 10 ), RL = 3k, CL = 2500pF  
6
32  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
V.28 RECEIVER  
Maximum Transmission Rate  
256  
Kbps  
V
VTHL  
VTLH  
AVTH  
RIN  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Impedance  
Rise or Fall Time  
1.4  
1.4  
0.4  
5
0.8  
2.0  
0.1  
3
V
V
1.0  
7
kΩ  
ns  
ns  
ns  
-15 VA 15V  
(Figures 7, 11 )  
(Figures 7, 11 )  
(Figures 7, 11 )  
tr, tf  
10  
TPLH  
TPHL  
Input to Output  
400  
450  
Input to Output  
The following tests circuits and timing diagrams are  
referenced in the preceding Electrical Characteristics  
Tables.  
FIGURE 3. RS422 DRIVER TEST CIRCUIT  
TXB  
RL=50  
RL=50  
VOD  
TXA  
VOC  
FIGURE 4. RS422 DRIVER/RECEIVER AC TEST CIRCUIT  
33  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 5. V.35 DRIVER/RECEIVER AC TEST CIRCUIT (TX1/RX1, TX2/RX2 ONLY)  
FIGURE 6. V.10/V.28 DRIVER TEST CIRCUIT  
FIGURE 7. V.10 (RS-423) V.28 (RS-232) RECEIVER  
TEST CIRCUIT  
FIGURE 8. V.11, V.35 DRIVER PROPAGATION DELAYS  
FIGURE 9. V.11, V.35 RECEIVER PROPAGATION DELAYS  
V1 = 0V for V.35, 2.5V for V.11  
34  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 10. V.10 (RS-423) V.28 (RS-232) DRIVER PROPAGATION DELAYS  
FIGURE 11. V.10, V.28 RECEIVER PROPAGATION DELAYS  
V1 = 1.8V for V.28, 0.1V for V.10  
V2 = 1.0V for V.28. -0.1V for V.10  
TABLE 1: RECEIVER SPECIFICATIONS  
V.35  
V.11  
V.10  
RS232  
SINGLE-ENDED OR  
DIFFERENTIAL  
DIFFERENTIAL  
DIFFERENTIAL  
SINGLE-ENDED  
SINGLE-ENDED  
Max Signal Level  
Min Signal Level  
± 660 mV  
± 260 mV  
± 2 V  
± 6 V  
± 300 mV  
± 7 V  
± 6 V  
± 300 mV  
Note 1  
± 10 V  
± 12 V  
N/A  
± 15 V  
± 3 V  
Common-Mode Voltage  
Max Signal Peak Operation  
Max Signal Peak no Damage  
Rin Differential  
N/A  
± 2.66 V  
± 10 V  
± 10 V  
± 12 V  
Note 2  
N/A  
± 15 V  
± 25 V  
100 ±10%  
150 ±15%  
> 175 Ω  
N/A  
N/A  
Rin Common-Mode  
N/A  
DC Rin Each Input to  
Ground  
> 8K Ω  
> 8K Ω  
3K < DC Rin < 7 K Ω  
Clock Frequency  
20 MHz  
20MHz  
120KHz  
256KHz  
NOTES:  
2. 100 to 150 Ohms terminated.  
1. ± 7 V on Receivers 1-6, not applicable for Receiv-  
ers 7-8  
35  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
TABLE 2: TRANSMITTER SPECIFICATION  
V.35 V.11  
SINGLE-ENDED OR  
DIFFERENTIAL  
V. 10  
RS-232  
SINGLE-ENDED  
DIFFERENTIAL  
DIFFERENTIAL  
SINGLE-ENDED  
Max Signal Level  
± 660 mV  
|V0| < 6 V  
4 < |V0| < 6 V  
± 6 V  
RL = 100Ω  
RL = 3900Ω  
RL = 3900Ω  
3000< RL < 7000Ω  
Min Signal Level  
± 440 mV  
2V < |VT| >0.5  
|VT| > 0.9 V0  
± 5 V  
RL = 100Ω  
V0 R L = 100Ω  
RL = 450Ω  
3000< RL < 7000Ω  
Offset Voltage  
Rout Differential  
N/A  
100± 10%  
150± 15%  
N/A  
|Vos| < 3V  
100Ω  
N/A  
N/A  
N/A  
N/A  
Rout Common-Mode  
Rout Power Off  
N/A  
N/A  
N/A  
N/A  
N/A  
> 300Ω  
< 30 V/ms  
256 KHz  
Output Slew Rate/Tr,Tf  
Clock Frequency  
20 ns  
20 ns  
1ms  
20 MHz  
20 MHz  
120 KHz  
36  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
1.0 SYSTEM DESCRIPTION  
signals must comply with the “ITU-T V.35 Electrical  
Interface” requirements.  
The XRT4500 Multi-protocol Serial Network Interface  
IC is a flexible transceiver chip that is capable of sup-  
porting the following “Communication Interfaces”.  
RXD - Receive Data (CCITT Circuit 104)  
TXD - Transmit Data (CCITT Circuit 103)  
RXC - Receive Clock (CCITT Circuit 115)  
TXC - Transmit Clock (CCITT Circuit 114)  
SCTE (or TXCE) - Transmit Clock Echo  
ITU-T V.35  
ITU-T V.28/EIA-232  
EIA-449  
ITU-T V.36  
ITU-T X.21  
EIA-530  
Also, the ITU-T V.35 Communications Interface speci-  
fication states that each of the following signals must  
comply with the “ITU-T V.28 Electrical Interface” re-  
quirements.  
EIA-530A  
RTS - Request to Send (CCITT Circuit 105)  
CTS - Clear to Send (CCITT Circuit 106)  
DTR - Data Terminal Ready  
The XRT4500 uses the following “electrical interfac-  
es” in order to realize each of these “Communication  
Interfaces”.  
ITU-T V.11/EIA-422  
ITU-T V.10/EIA-423  
ITU-T V.35  
DSR - Data Set Ready (CCITT Circuit 107)  
DCD - Data Carrier Detect (CCITT Circuit 109)  
RL - Remote Loop-back Indicator*  
ITU-T V.28/EIA-232  
LL - Local Loop-back Indicator*  
1.1 THE DIFFERENCE BETWEEN AN ELECTRI-  
CAL INTERFACE AND A COMMUNICATIONS  
INTERFACE  
TM - Test Mode Indicator*  
NOTE: *Option Signals, per the “ITU-T V.35 Electrical Interface”  
Finally, the “ITU-T V.35 Communications Interface”  
recommends the use of the ISO-2593 34 pin Connec-  
tor. (See Figure 46 connector drawings on page 73).  
It is important to describe the difference between an  
Electrical Interface specification and a Communica-  
tions Interface specification. An Electrical Interface  
specification defines the electrical characteristics of a  
transmitter or receiver. These characteristics include  
voltage, current, impedance levels, rise/fall times and  
other similar parameters. Examples of electrical inter-  
faces are ITU-T V.10 (EIA-423), ITU-T V.11 (EIA-  
422), V.35 and V.28 (EIA-232).  
The XRT4500 contains a sufficient number of receiv-  
ers, transmitters and transceivers to transport all of  
the signals required for each of the above-mentioned  
Communication Interface standards. By configuring  
the XRT4500 to operate in a particular “Communica-  
tion Interface” Mode, each of the Transmitters and  
Receivers will automatically be configured to support  
the appropriate “Electrical Interface” requirements.  
In contrast, a Communications Interface specification  
describes a “Physical Layer” interface in its entirety.  
This description includes the names and functions of  
all of the involved signals. The Communications Inter-  
face specification identifies which electrical interface  
is to be used to realize each of these signals as well  
as the connector type. Examples of communication  
interface types include ITU-T V.35, ITU-T V.28 (EIA-  
232), EIA-449, EIA-530A, ITU-T X.21, and ITU-T  
V.36.  
Table 3 and Table 4 present the relationship between  
the Communication Interface Mode that the  
XRT4500 has been configured to operate in and the  
corresponding Electrical Interface Mode that a giv-  
en Transmitter or Receiver will be automatically con-  
figured in.  
Table 3 presents this information for the XRT4500  
configured to operate in the DTE Mode. Table 4 pre-  
sents this information when the XRT4500 has been  
configured to operate in the DCE Mode.  
For example, the “ITU-T V.35 Communications Inter-  
face” specification requires that each of the following  
37  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
TABLE 3: DTE MODE - CONTROL PROGRAMMING FOR DRIVER AND RECEIVER MODE SELECTION  
DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DTE MODE  
CONTROL  
INTERFACE  
INPUTS  
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6  
TXD RXD SCTE RXC - TXC RTS CTS DTR DSR DCD  
TX8 RX8  
RL RI/TM  
TX7 RX7  
LL -  
STANDARD  
M2 M1 M0  
-
V.10  
0 0 0  
V.10 V.10 V.10 V.10 Off V.10 V.10 V.10 V.10 V.10 Off V.10 V.10 Off V.10 V.10  
V.11 V.11 V.11 V.11 Off V.11 V.11 V.11 V.10 V.10 Off V.11 V.10 Off V.10 V.10  
EIA-530-A  
(V.11)  
0 0 1  
EIA-530,  
RS449,  
V.36  
0 1 0  
V.11 V.11 V.11 V.11 Off V.11 V.11 V.11 V.11 V.11 Off V.11 V.10 Off V.10 V.10  
X.21  
V.35  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
V.11 V.11 V.11 V.11 Off V.11 V.11 V.11 V.11 V.11 Off Off  
Off Off  
Off Off  
V.35 V.35 V.35 V.35 Off V.35 V.28 V.28 V.28 V.28 Off V.28 V.28 Off V.28 V.28  
V.11 V.11 V.11 V.11 Off V.11 V.11 V.11 V.11 V.11 Off V.11 V.10 Off V.10 V.10  
V.28 V.28 V.28 V.28 Off V.28 V.28 V.28 V.28 V.28 Off V.28 V.28 Off V.28 V.28  
RESERVED  
RS232  
(V.28)  
POWER  
DOWN  
1 1 1  
Off Off  
Off Off  
Off Off Off Off  
Off Off Off Off  
Off Off  
Off Off  
TABLE 4: DCE MODE - CONTROL PROGRAMMING FOR DRIVER AND RECEIVER MODE SELECTION  
DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DCE MODE  
CONTROL  
INPUTS  
INTERFACE  
STANDARD  
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8  
M2 M1 M0  
RXD TXD RXC SCTE TXC  
-
CTS RTS DSR DTR DCD -  
- LL  
RI/TM RL  
V.10  
0 0 0  
0 0 1  
V.10 V.10 V.10 V.10  
V.11 V.11 V.11 V.11  
V.10 Off V.10 V.10 V.10 V.10 V.10 Off  
V.11 Off V.11 V.11 V.10 V.10 V.11 Off  
Off V.10 V.10 V.10  
Off V.10 V.10 V.10  
EIA-530-A  
(V.11)  
EIA-530,  
RS449,  
V.36  
0 1 0  
V.11 V.11 V.11 V.11  
V.11 Off V.11 V.11 V.11 V.11 V.11 Off  
Off V.10 V.10 V.10  
X.21  
V.35  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
V.11 V.11 V.11 V.11  
V.35 V.35 V.35 V.35  
V.11 V.11 V.11 V.11  
V.28 V.28 V.28 V.28  
V.11 Off V.11 V.11 V.11 V.11 Off Off  
V.35 Off V.28 V.28 V.28 V.28 V.28 Off  
V.11 Off V.11 V.11 V.11 V.11 V.11 Off  
V.28 Off V.28 V.28 V.28 V.28 V.28 Off  
Off Off  
Off Off  
Off V.28 V.28 V.28  
Off V.10 V.10 V.10  
Off V.28 V.28 V.28  
RESERVED  
RS232  
POWER  
DOWN  
Off Off  
Off Off  
Off Off Off Off  
Off Off Off Off  
Off Off  
Off Off  
38  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
1.2 THE SYSTEM ARCHITECTURE  
Configure the XRT4500 into the “Latch” Mode.  
Configure the XRT4500 into the “Register” Mode.  
The XRT4500 contains the following functional  
blocks.  
Configure the XRT4500 into either the “2-Clock” or  
The High-Speed Transceiver Block  
the “3-Clock” Mode.  
The Handshaking/Control Transceiver Block  
Enable the “Internal Oscillator”, in order to support  
“Stand-Alone DTE Diagnostic Operation.  
The Diagnostic Operation Indicator Transceiver  
Block  
Invert the TXC Clock signal (for DCE Application) or  
the RXC Clock signal (for DTE Applications).  
The Control Block  
Invert the TXD signal (for DTE Applications) or the  
RXD signal (for DCE Applications).  
Block Diagrams are located on page 1 and 2. The  
figures illustrate how the eight receivers and transmitters  
in the XRT4500 are grouped into the “High-Speed  
Transceiver” Block, the “Handshaking/Control Trans-  
ceiver” Block and the “Diagnostic Operation Indicator  
Transceiver” Block.  
Enable the X.21 mode.  
A more detailed discussion of the “Control” Block can  
be found in Section 1.2.4.  
Figure 12, Figure 13, Figure 14, and Figure 15 are a  
set of functional block diagrams that give more de-  
tailed information about the four functional blocks  
shown in the top-level diagram. Figure 12 presents  
detailed information on the “High-Speed Transceiver”  
block. Figure 13 presents detailed information about  
the “Handshaking/Control Transceiver” block.  
Figure 14 presents detailed information about the “Di-  
agnostic Operation Indicator Transceiver” Block. Fi-  
nally, Figure 15 presents some detailed information  
about the “Control” Block.  
The “Control” block permits the user to implement the  
following configuration options in the XRT4500.  
Select which Communication Interface Mode the  
XRT4500 will operate in. (RS-252, V.36, etc.)  
Configure the XRT4500 into either the DTE or the  
DCE Mode.  
Configure the XRT4500 to operate in a “Loop-back”  
Mode.  
Enable the “Echo-Clock” Mode.  
39  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
1.2.1 The “High -Speed Transceiver” Block  
the center of the internal termination. This pin should  
be bypassed to ground with an external 0.1µF capac-  
itor in order to provide the best possible driver output  
stage balance.  
The “High-Speed Transceiver” block supports the  
transmission and reception of high speed data and  
clock signals for the selected “Communication Inter-  
face”. This block contains receivers RX1 and RX2,  
transmitters TX1 and TX2, and bi-directional trans-  
ceiver TR3 which is composed of TX3 and RX3. Each  
of these devices may be configured to support the  
“Electrical Interface” requirements per ITU-T V.35,  
ITU-T V.11 (EIA-422), ITU-T V.10 (EIA-423), or ITU-T  
V.28 (EIA-232). In the “ITU-T V.35” Mode, each trans-  
mitter has a common mode pin that is connected to  
In a system application, the TX1-RX1 pair and TX2-RX2  
pair handle the TXD-RXD (Transmit Data - Receive  
Data) and the TXC-RXC (Transmit Clock - Receive  
Clock) high speed interface signals respectively. Trans-  
ceiver TR3 is dedicated to the SCTE (Transmit Clock  
Echo) signal for both DCE and DTE modes of operation.  
Transceiver TR3 functions as a receiver for the DTE  
mode and as a transmitter during the DCE mode.  
FIGURE 12. HIGH-SPEED TRANSCEIVER BLOCK  
40  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
1.2.2 The “Handshaking/Control Signal Trans-  
ceiver” Block  
ments per ITU-T V.11 (EIA-422), ITU-T V.10 (EIA-  
423), or ITU-T V.28 (EIA-232). The RX4-TX4 pair is  
dedicated for the “RTS” (Request to Send) and “CTS”  
(Clear-to-Send) signals while RX5-TX5 are intended  
to support the “DTR” (Data Terminal Ready) and the  
“DSR” (Data Set Ready) signals. Transceiver TR6  
supports the “DCD” (Data Carrier Detect) signal.  
The “Handshaking/Control Signal Transceiver” Block  
contains receivers RX4 and RX5, transmitters TX4  
and TX5, and a transceiver TR6 which is composed  
of TX6 and RX6. Each of these devices may be con-  
figured to support the “Electrical Interface” require-  
FIGURE 13. HANDSHAKING/CONTROL TRANSCEIVER BLOCK  
41  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
1.2.3 The “Diagnostic Operation Indicator  
Transceiver” Block  
These devices may be configured to support the  
“Electrical Interface” requirements, per ITU-T V.10  
(EIA-423) or ITU-T V.28 (EIA-232). These devices  
were specifically designed to support the Local Lock  
(LL), Remote Loopback (RL) and RI (or TM) signals.  
The “Diagnostic Operation Indicator Transceiver”  
block contains transceiver TR7, which is composed of  
TX7 and RX7, receiver RX8 and transmitter TX8.  
FIGURE 14. DIAGNOSTIC OPERATION INDICATOR TRANSCEIVER BLOCK  
42  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
1.3 THE CONTROL BLOCK  
To optionally configure the XRT4500 to operate in  
the “Latch” Mode.  
The purpose of the Control Block is to permit the user  
to configure the XRT4500 into a wide variety of oper-  
ating modes. In particular, the Control Block permits  
the user to implement the following configuration se-  
lections for the XRT4500.  
To optionally configure the XRT4500 to operate in  
the “Register” Mode.  
To configure the XRT4500 to operate in either the  
“2 Clock” or the “3-Clock” Mode.  
To select which Communication Interface Mode the  
XRT4500 will operate in.  
To enable or disable the Internal Oscillator (for DTE  
Stand-Alone Diagnostic operation).  
To configure the XRT4500 to operate in either the  
DTE or the DCE Mode.  
To invert the TXC clock signal (for DCE applica-  
tions) or the RXC clock signal (for DTE applica-  
tions).  
To optionally configure the XRT4500 to operate in a  
Loop-back Mode.  
To invert the TXD data (for DCE applications) or the  
RXD data (for DTE applications).  
To enable or disable the “Echo-Clock” Mode.  
FIGURE 15. DIAGRAM OF THE XRT4500 CONTROL BLOCK  
The input pins shown in Figure 15, the Control Block,  
are described in detail, below.  
43  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
1.3.1 M[2:0] - The (Communication Interface)  
Mode Control Select Pins.  
ITU-T V.36  
ITU-T X.21  
EIA-530  
As mentioned earlier, the XRT4500 is capable of sup-  
porting each of the following “Communication Inter-  
face” standards.  
EIA-530(A)  
The XRT4500 can be configured to operate in either  
one of these “Communication Interface” standards, by  
setting the “M[2:0]” bit-fields to the appropriate val-  
ues, as listed in Table 5.  
ITU-T V.35  
ITU-T V.28 (EIA-232)  
EIA-449  
TABLE 5: THE RELATIONSHIP BETWEEN THE SETTINGS FOR THE M[2:0] BIT-FIELDS AND THE CORRESPONDING  
COMMUNICATION INTERFACE THAT IS SUPPORTED  
COMMUNICATION INTERFACE M2 M1 M0  
COMMENTS  
RS423 (V.10)  
0
0
0
All Transmitters and Receivers are functioning in the V.10 Mode.  
NOTE: This is not a standard Communication Interface.  
EIA-530A (V.11)  
EIA-530 (V.36)  
RS449  
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
1
0
0
1
0
1
0
1
X.21  
V.35  
Reserved  
RS232 (V.28)  
Power Down Mode  
All Transmitters and Receivers are shut-off. Transmitter outputs are tri-stated  
and all internal loads are disconnected. The charge pump and DC-DC con-  
nect continues to operate.  
NOTE: The M[2:0] input pins are internally pulled “high”. As  
a consequence, the XRT4500 will automatically be config-  
ured into the “POWER-DOWN” Mode, if the M[2:0] input  
pins are left “floating”.  
44  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
1.3.2 DCE/DTE - The DCE/DTE Mode Select Pin  
"low" configures the XRT4500 to operate in the "DTE"  
Mode. A brief description of DCE Mode and DTE  
Mode operations are listed below.  
The XRT4500 is capable of supporting either the  
"DCE" or "DTE" Modes of operation. Setting this in-  
put pin "high" configures the XRT4500 to operate in  
the "DCE" Mode. Conversely, setting this input pin  
FIGURE 16. A SIMPLE ILLUSTRATION OF THE DCE/DTE INTERFACE  
DTE  
DCE  
EQUIPMENT  
EQUIPMENT  
TXD  
RXD  
TXC  
RXC  
TXCE  
XRT4500  
DTR  
XRT4500  
DSR  
DCD  
CTS  
RTS  
LL  
RL  
RI (or TM)  
Figure 16 presents a very simple illustration of a DCE  
Terminal being interfaced to a DTE Terminal. From  
this figure, one can make the following observations  
about the DCE and DTE Terminals.  
Further, the DCE Terminal is responsible for receiving/  
terminating all of the following signals.  
TXD - Transmit Data (High Speed Signal)  
TXCE (or SCTE) - Transmit Clock Echo (High  
Speed Signal)  
The DCE Terminal  
The DCE Terminal is responsible for sourcing/gener-  
ating all of the following signals.  
DTR - Data Terminal Ready  
RTS - Request to Send  
RXD - Receive Data (High Speed Signal)  
RXC - Receive Clock (High Speed Signal)  
TXC - Transmit Clock (High Speed Signal)  
DSR - Data Set Ready  
LL - Local Loop-back Indicator  
RL - Remote Loop-back Indicator  
Because of this, whenever the XRT4500 is configured  
to operate in the “DCE” Mode, then the following con-  
figuration conditions are “TRUE”.  
DCD - Data Carrier Detect  
CTS - Clear to Send  
Three “high-speed” Transmitters are enabled, and  
Two “high-speed” Receivers are enabled.  
Four “low-speed” Transmitters are enabled, and  
Four “low-speed” Receivers are enabled.  
RI (Ring Indicator) or  
TM (Test Mode).  
45  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
The DTE Terminal  
Two “high-speed” Transmitters are enabled, and  
Three “high-speed” Receivers are enabled.  
Four “low-speed” Transmitters are enabled, and  
Four “low-speed” Receivers are enabled.  
The DTE Terminal is responsible for sourcing/gener-  
ating all of the following signals.  
TXD - Transmit Data  
TXCE (or SCTE) - Transmit Clock Echo  
DTR - Data Terminal Ready  
RTS - Request to Send  
Other Comments about DCE and DTE Equipment  
Whenever DCE and DTE Equipment are interfaced to  
each other, the DCE Equipment is typically the  
source of all timing signals. The DTE Equipment will  
typically function as a “Clock Slave”.  
LL - Local Loop-back Indicator  
RL - Remote Loop-back Indicator  
1.3.3 The LP - Loop-Back Enable/Disable  
Select Pin  
Further, the DTE Terminal is responsible for receiv-  
ing/terminating all of the following signals.  
As mentioned earlier, the XRT4500 can be configured  
to operate in the loop-back mode. Setting the “LP” in-  
put pin “high” disables the loop-back mode (within the  
XRT4500). Conversely, setting this input “low” config-  
ures the XRT4500 to operate in the “TXD/RXD” loop-  
back mode.  
RXD - Receive Data  
TXC - Transmit Clock  
RXC - Receive Clock  
DSR - Data Set Ready  
DCD - Data Carrier Detect  
CTS - Clear-to-Send  
RI (Ring Indicator)  
A detailed description of the “TXD/RXD” loop-back  
Mode is presented below.  
Behavior of DTE/DCE Mode Devices, when the  
Loop-Back Mode is Disabled  
TM (Test Mode Indicator).  
Because of this, whenever the XRT4500 is configured  
to operate in the “DTE” Mode, then the following con-  
figuration conditions are “TRUE”.  
Figure 17 presents an illustration of a DTE and DCE  
Terminal interfaced to each other when no XRT4500  
Loop-Back Mode has een configured.  
FIGURE 17. ILLUSTRATION OF BOTH THE DTE AND DCE MODE XRT4500 OPERATING, WHEN THE LOOP-BACK  
MODE IS DISABLED  
SCC (L)  
DTE (#2)  
RX1  
SCC (R)  
DTE (#1)*  
TX1  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
TXD_IN  
SCTE  
64  
65  
77  
76  
74  
SCTE  
RX2  
TX2  
SCTE_IN  
TXC  
RXC  
RXD  
70  
71  
70  
71  
68  
67  
60  
73  
74  
RX3  
RX2  
TXC_IN  
TX3  
TX2  
TXC  
RXC  
RXD  
64  
77  
76  
RXC_IN  
RXD_IN  
65  
63  
62  
78  
79  
1
RX1  
TX1  
XRT4500  
XRT4500  
* Indicates scenario # from Table 8  
46  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
Figure 27 indicates that the DTE Serial Communica-  
tions Controller (SCC) sources the “TXD” signal. This  
digital signal is then converted into an “Analog Line”  
signal (as dictated by the “M[2:0]” settings) by the  
“DTE Mode” XRT4500. This line signal is then trans-  
mitted over the DTE/DCE Interface and is received by  
the DCE Terminal. This Analog Line signal is then  
converted back into the digital format by the “DCE  
Mode” XRT4500. This digital signal is ultimately re-  
ceived and terminated by the DCE SCC (Serial Com-  
munications Controller). Likewise, this figure indicates  
that the RXD signal is sourced by the DCE SCC. This  
digital signal is then converted into an “Analog Line”  
signal by the “DCE Mode” XRT4500. This line signal is  
then transported over the DCE/DTE Interface and is re-  
ceived by the “DTE Mode” XRT4500. This “Analog Line  
signal” is then converted back into the digital format by  
the “DTE Mode” XRT4500. The XRT4500 then outputs  
this signal to the “DTE SCC”. This is considered to the  
be the “Normal” (Non-loop-back/Diagnostic) Mode of  
operation.  
NOTE: Figure 27 only depicts the “High-Speed” DCE/DTE  
Interface signals. The “Low-Speed” control/handshaking  
signals are not affected by the loop-back mode.  
Behavior of the DTE Mode XRT4500, when the  
Loop-Back Mode is Enabled.  
Figure 18 presents an illustration of a DTE and a  
DCE Terminal interfaced to each other. In this case,  
the XRT4500 (associated with the DTE Terminal) has  
been configured to operate in the “Loop-back” Mode  
FIGURE 18. ILLUSTRATION OF THE BEHAVIOR THE DTE MODE XRT4500, WHEN IT IS CONFIGURED TO OPERATE IN  
THE LOOP-BACK MODE  
Digital/Terminal  
Loop-back Path  
Analog/Line  
Loop-back Path  
DCE (#2)  
RX1  
SCC (L)  
S C C ( R )  
DTE (#3)  
M U X  
1
T X D  
78  
79  
63  
60  
67  
1
T X D  
TXD_IN  
TX1  
62  
77  
64  
S C T E  
74  
SCTE  
RX2  
TX2  
SCTE_IN  
76  
65  
T X C  
R X C  
R X D  
70  
70  
71  
68  
67  
60  
73  
74  
RX3  
TX3  
TX2  
TXC_IN  
RXC_IN  
RXD_IN  
T X C  
R X C  
R X D  
71  
64  
65  
71  
RX2  
77  
63  
62  
78  
1
RX1  
TX1  
79  
X R T 4 5 0 0  
X R T 4 5 0 0  
NOTE: Figure 18 only depicts the “High-Speed” signals.  
The “Low-Speed” control/handshaking signals are not  
affected by the loop-back mode.  
Terminal Equipment). The signals (from the DTE  
SCC) are never converted into the Analog format,  
and are not outputted to the line.  
If the Loop-back Mode is configured within the  
XRT4500, while it is operating in the DTE Mode, then  
the following two (2) loop-back paths will exist.  
The TXD signal (originating from the DTE SCC),  
along with the SCTE (Transmit Echo Clock) will be not  
be outputted to the DCE Terminal. Instead, this signal  
will be loop-back into the “DTE SCC. The “TXD” sig-  
nal will ultimately be outputted to the DTE SCC via  
the “RXD” output pin of the “DTE Mode” XRT4500.  
The SCTE signal will ultimately output the DTE SCC  
via the “RXC” output pin of the XRT4500.  
A Digital/Terminal-Side Loop-back  
An Analog/Line-Side Loop-back  
Each of these Loop-back paths are described below.  
1. The Digital/Terminal Side Loop-back path:  
This loop-back path is referred to as a “Digital/Termi-  
nal Side” Loop-back, because all signals originate  
from and are terminated by the DTE SCC (e.g., the  
NOTE: Since the DTE SCC requires the TXC signal (in  
order to synthesize the SCTE signal), this loop-back still  
permits the TXC signal to pass through to the DTE SCC.  
47  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
2. The Analog/Line-Side Loop-back path:  
signal will be looped-back out to the “DCE Terminal”  
via the “TXD” signal path.  
This loop-back path is referred to as an “Analog/Line-  
Side” Loop-back, because all signals originate from and  
are ultimately terminated by the DCE Terminal. These  
signals originate from the DCE Terminal; and are out-  
putted to the line, to the DTE Terminal. However, these  
signals (from the DCE Terminal) are never converted in-  
to the Digital format (by the DTE Mode XRT4500).  
These signal are kept in the “Analog” format, and are  
looped-back (over the line) to the DCE Terminal.  
NOTE: In this loop-back mode, the RXC signal (e.g., the  
companion clock signal to RXD) is also received by the  
DTE Terminal and looped-back out to the DCE Terminal. In  
this case, the “RXC” (Receive Clock) signal will be routed to  
the DCE Terminal through the “SCTE” signal path The DCE  
SCC can still use the RXC (via the SCTE signal path), in  
order to sample the RXD signal (which is available via the  
“TXD” signal path).  
Behavior of the DCE Mode XRT4500, when the  
Loop-Back Mode is Enabled.  
The RXD signal (originating from the DCE Terminal)  
will be transmitted over the line to the DTE Terminal.  
However, this signal will not be converted into the dig-  
ital format by the “DTE Mode” XRT4500. Instead, this  
Figure 19 presents an illustration of a DTE and a  
DCE Terminal interfaced to each other. In this case,  
the XRT4500 (associated with the DCE Terminal) has  
been configured to operate in the “Loop-back” Mode.  
FIGURE 19. ILLUSTRATION OF THE BEHAVIOR OF THE DCE MODE XRT4500, WHEN IT IS CONFIGURED TO OPERATE  
IN THE LOOP-BACK MODE  
Analog/Line  
Loop-back Path  
Digital/Terminal  
Loop-back Path  
DTE (#1)  
TX1  
SCC (L)  
DCE (#4)  
RX1  
SCC (R)  
MUX  
1
78  
79  
T X D  
63  
62  
60  
67  
1
T X D  
TXD_IN  
77  
76  
S C T E  
64  
65  
74  
SCTE  
RX2  
TX2  
SCTE_IN  
70  
71  
T X C  
70  
71  
68  
67  
73  
RX3  
TXC_IN  
RXC_IN  
RXD_IN  
TX3  
T X C  
R X C  
R X D  
64  
65  
77  
76  
R X C  
R X D  
74  
1
RX2  
RX1  
TX2  
TX1  
78  
79  
63  
62  
60  
XRT4500  
XRT4500  
NOTE: Figure 19 only depicts the “High-Speed” DCE/DTE  
Interface signals. The “Low-Speed” control/handshaking  
signals are not affected by the loop-back mode.  
(e.g., the Terminal Equipment). The signals (originat-  
ing at the DCE SCC) are not converted into the Ana-  
log format, and are not output to the line.  
If the Loop-back Mode is configured within the  
XRT4500, while it is operating in the DCE Mode, then  
the following two (2) loop-back paths exists.  
The “RXD” signal (originating from the DCE SCC)  
along with the “RXC” (Receive Clock) signal will not  
be converted into the Analog format, nor output to the  
DTE Terminal (over the line). Instead, this signal will  
remain in the “Digital-format” and will be looped-back  
into the DCE SCC. The “RXD” signal will ultimately be  
output to the DCE SCC via the “TXD” output of the  
“DCE Mode” XRT4500.  
A Digital/Terminal-Side Loop-back  
An Analog/Line-Side Loop-back  
Each of these Loop-back paths are described below.  
1. The Digital/Terminal Side Loop-back:  
Again, this loop-back path is referred to as a “Digital/  
Terminal Side” Loop-back, because all of the signals  
originate from, and are terminated by the DCE SCC  
NOTE: The “RXC” signal (e.g., the companion clock signal to  
“RXD”) will also be loop-back into the “DCE SCC”. This signal  
will be output (by the XRT4500) via the “SCTE” output pin.  
48  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
2. The Analog/Line-Side Loop-back:  
Data Communications equipment. These SCCs can  
be realized in an ASIC solution or they can be a stan-  
dard product. An example of a standard product SCC,  
would be the Am85C30 from AMD.  
This loop-back path is referred to as an “Analog/Line-  
Side” loop-back, because all signals originate from  
and are terminated by the DTE Terminal (over the  
line). These signals originate from the DTE Terminal,  
and are output, over the line, to the DTE Terminal.  
However, these signal (originating from the DTE Ter-  
minal) are never converted into the Digital format (by  
the DCE Mode XRT4500). These signals are kept in  
the “Analog” format, and are looped-back (over the  
line) to the DTE Terminal.  
One variation that exists among these SCCs are in  
the number of “Clock Signals” that these chips use  
and process, in order to support Data Communica-  
tions over a DTE/DCE Interface. For example, some  
SCCs process 3 clock signals in order to support the  
transmission/reception of data over a DTE/DCE Inter-  
face. Other SCCs process only 2 or 1 clock signals.  
The “TXD” signal (originating from the DTE Terminal)  
will be transmitted over the line to the DCE Terminal.  
However, this signal will not be converted into the dig-  
ital format by the “DCE Mode” XRT4500. Instead, this  
signal will be loop-back to the DTE Terminal, via the  
“RXD” signal path.  
Examples of a “3-Clock” and a “2-Clock” DTE/DCE  
Interface are presented below.  
The “3-Clock” DCE/DTE Interface  
Many of the Data Communication Standards (e.g.,  
ITU-T V.35, EIA-530(A), etc.) define three clock sig-  
nals that are to be transported over the DTE/DCE In-  
terface. These tree clock signals are listed below.  
NOTE: In this loop-back mode, the “SCTE” signal (e.g., the  
companion clock signal to “TXD”) is also received by the  
DCE Terminal and is looped-back to the DTE Terminal. In  
this case, the SCTE signal will be routed through the “RXC”  
path. The DTE SCC can use this signal to sample the TXD  
(now RXD signal).  
TXC - Transmit Clock  
RXC - Receive Clock  
SCTE (or TXCE) - Transmit Clock Echo  
Figure 20 presents an illustration of a DTE and DCE  
exchanging data over a “3-Clock DTE/DCE” Interface.  
1.3.4 The EC* (Echo Clock Mode - Enable/  
Disable Select Input pin)  
A wide variety of Serial Communications Controller  
(SCCs) are deployed in either “DTE” or “DCE” type of  
FIGURE 20. ILLUSTRATION OF A TYPICAL “3-CLOCK DCE/DTE” INTERFACE  
SCC (L)  
DTE (#1)  
T X 1  
DCE (#2)  
R X 1  
SCC (R)  
TXD  
7 8  
7 9  
6 3  
6 2  
6 0  
6 7  
1
T X D  
T X D _ I N  
SCTE  
6 4  
6 5  
7 7  
7 6  
7 4  
S C T E  
R X 2  
T X 2  
S C T E _ I N  
7 0  
7 1  
TXC  
7 0  
6 8  
6 7  
7 3  
2
R X 3  
R X 2  
T X C _ I N  
T X 3  
T X 2  
T X C  
R X C  
R X D  
7 1  
6 4  
6 5  
7 7  
7 6  
RXC  
RXD  
7 4  
1
R X C _ I N  
R X D _ I N  
6 3  
6 2  
7 8  
7 9  
6 0  
R X 1  
T X 1  
XRT4500  
XRT4500  
49  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
The important things to note about Figure 20 are as  
follows.  
6. Because the DTE provides the SCTE clock signals  
and since the falling edge of this clock signal will oc-  
cur at the middle of the bit-period (for the signal on  
the TXD line); the “3-Clock DTE/DCE Interface” is  
largely immune to the affects of propagation delay  
(via the DCE SCC to DTE SCC” link and the “DTE  
SCC to DCE SCC” link), and will operate properly  
over a very wide range of data rates.  
1. The DCE Terminal is the ultimate source of all  
clock signals.  
2. The DCE Serial Communications Controller (SCC)  
will transmit the TXC clock signal to the DTE node.  
3. The DTE SCC will update the state on the TXD  
line, upon the rising edge of the “incoming” TXC clock  
signal when ‘Clock Invert’ is not activated.  
Figure 21 presents an illustration of the wave-forms of  
the signals that are transported across a “3-Clock  
DTE/DCE” Interface. Further, this figure indicates that  
a “3-Clock DTE/DCE” Interface provides the DCE  
SCC with a TXD to TXC set-up time of “one-half” of  
the bit-period (0.5 * tb). Hence, a “3-Clock DTE/DCE”  
Interface can support very wide range of data rates,  
and still insure that the DCE SCC will be provided a  
sufficient “TXD to TXC” set-up time.  
4. The DTE SCC will generate the rising edge of the  
SCTE clock signal, upon receipt of the rising edge of  
the “incoming” TXC clock signal when clock invert is  
not activated.  
5. The DCE SCC will use the falling edge of the  
SCTE clock signal in order to sample the “incoming”  
TXD signal.  
FIGURE 21. ILLUSTRATION OF THE WAVE-FORMS OF THE SIGNALS THAT ARE TRANSPORTED ACROSS A “3-CLOCK  
DTE/DCE” INTERFACE  
TXC (at DCE)  
TXC (at DTE)  
SCTE (at DTE)  
SCTE (at DCE)  
TXD (at DTE)  
TXD (at DCE)  
0.5*tb  
The “2-Clock” DTE/DCE Interface  
Communications Equipment Manufacturers design  
their DCE or DTE equipment to only support the  
transmission of two clocks over the DTE/DCE Inter-  
face; these two clocks signals are typically the “TXC”  
(Transmit Clock) and the “RXC” (Receive Clock) sig-  
nals. Figure 22 presents an illustration of a DTE and  
DCE exchanging data over a “2-Clock DCE/DTE” In-  
terface.  
Although the Data Communications standards rec-  
ommends the use of these three clock signals; in  
practice, some Data Communications Equipment  
manufacturers will build equipment that only supports  
the transmission of “2-Clock” signals. The reason for  
this can be due to cost, or due to the fact that the Da-  
ta Communications Equipment manufacturer is using  
an SCC that only handles 2-clock signals. When Data  
NOTE: In the “2-Clock DTE/DCE” Interface, the DTE Termi-  
nal does not supply the SCTE clock signal back to the DCE.  
50  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 22. ILLUSTRATION OF A “2-CLOCK DTE/DCE” INTERFACE  
SCC (L)  
D T E  
T X 1  
D C E  
R X 1  
SCC (R)  
2
TXD  
6 3  
6 2  
7 8  
7 9  
6 0  
6 7  
1
T X D  
T X D _ I N  
6 4  
6 5  
7 7  
7 6  
7 4  
S C T E  
R X 2  
T X 2  
S C T E _ I N  
7 0  
7 1  
TXC  
7 0  
6 8  
6 7  
7 3  
R X 3  
T X C _ I N  
T X 3  
T X C  
R X C  
R X D  
7 1  
6 4  
6 5  
7 7  
7 6  
RXC  
RXD  
7 4  
1
R X 2  
R X C _ I N  
R X D _ I N  
T X 2  
6 3  
6 2  
7 8  
7 9  
6 0  
R X 1  
T X 1  
XRT4500  
XRT4500  
Since the DTE SCC will not provide the DCE SCC  
2. The DCE SCC will use the falling edge of the (lo-  
cally generated) TXC clock signal in order to sample  
the “incoming” TXD signal.  
with the SCTE signal, the DCE SCC will have to use  
a different clock signal in order to sample the “incom-  
ing” data on the TXD line. A common approach, in  
this case, is to simply “hard-wire” the “TXC” output  
signal to the “SCTE” input pin of the DCE SCC) and  
to use the falling edge of the TXC clock signal in order  
to sample the “incoming” data on the TXD line, as il-  
lustrated above in Figure 1.8.  
Unlike the “3-Clock DTE/DCE” Interface, the “2-Clock  
DTE/DCE” Interface is sensitive to the “round-trip”  
propagation delay between the DCE and the DTE  
Terminals (due to the cable, components comprising  
the DCE and DTE Terminals, etc.) An example of this  
sensitivity is presented below.  
NOTE: There are numerous bad things about designing  
DCE Equipment, per the illustration in Figure 1.9. In addi-  
tion to the reasons presented below, since the DCE SCC is  
now “hard-wired” to use the “TXC” as the means to sample  
the “incoming” “TXD” signal, this approach is not flexible if  
the user is interfacing to a DTE that happens to support “3-  
Clock” signal. In this case, the user is advised to consider  
using the “2-Clock” Mode feature (which is also offered by  
the XRT4500) and is discussed in Section 1.2.5.  
Case 1 - “2-Clock DTE/DCE” Operation at  
1.0Mbps  
Consider the case where the DCE and DTE are ex-  
changing data at a rate of 1.0Mbps. Further, let's con-  
sider that the total propagation delay from the DCE to  
the DTE is 160 ns. Likewise, let's consider that the to-  
tal propagation delay from the DTE to the DCE is also  
160ns. Given these conditions, Figure 23 plots out  
the clock and signal wave-forms for the TXC and TXD  
at both the DCE and DTE SCCs.  
Important things to note about Figure 1.9.  
1. The DTE SCC will not supply the SCTE signal to  
the DCE SCC.  
51  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 23. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS, (DATA RATE =  
1.0MBPS, “DCE-TO-DTE” PROPAGATION DELAY = 160NS, “DTE-TO-DCE” PROPAGATION DELAY = 160NS)  
1us  
500ns  
TXC (at DCE)  
TXC (at DTE)  
TXD (at DTE)  
TXD (at DCE)  
180ns  
Figure 23 indicates that the TXC (Transmit Clock) sig- DCE” propagation delays are each 160ns, then the  
nal will originate at the DCE SCC terminal. However,  
because of the “DCE-to-DTE” propagation delay, the  
TXC signal will arrive at the DTE SCC 160ns later.  
Per the various “Communication Interface Standards”  
(e.g., EIA-530A, etc.), the DTE must update the data  
on the “TXD” line upon detection of the rising edge of  
the “incoming” TXC clock signal. Hence, Figure 1.10  
illustrates the DTE SCC toggling the TXD line coinci-  
dent with the rising edge of TXC. Finally, because of  
the “DTE to DCE” propagation delay, the TXD signal  
will arrive at the DCE SCC 160 ns later.  
DCE SCC will be provided with 180ns of set-up time,  
(in the TXD line) prior to sampling the data. For most  
digital IC’s, this amount of set-up time is sufficient  
long and should not result in any bit errors.  
Case 2 - “2 Clock DCE/DTE” Operation at 1.544  
Mbps  
Now let's consider the case where the DCE and DTE  
Terminals are now exchanging data at a rate of  
1.544Mbps (e.g., the DS1 rate). Further, let's consid-  
er that the “DCE-to-DTE” and “DTE-to-DCE” propa-  
gation delays are each 160ns (as in the prior case).  
Given these conditions, Figure 24 illustrates the re-  
sulting clock and signal wave-forms for the TXC and  
TXD at both the DCE and DTE SCCs.  
Recall that the DCE SCC is using the TXC clock sig-  
nal to sample the data on the “incoming” TXD line.  
The scenario depicted in Figure 1.10 indicates that if  
the Data Rate (between the DCE and DTE) is  
1.0Mbps; and that if the “DCE to DTE” and “DTE to  
FIGURE 24. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS (DATA RATE =  
1.544MBPS, DCE-TO-DTE PROPAGATION DELAY = 160NS, DTE-TO-DCE PROPAGATION DELAY = 160NS)  
648ns  
324 ns  
TXC (at DCE)  
TXC (at DTE)  
TXD (at DTE)  
TXD (at DCE)  
4ns  
The scenario depicted in Figure 24 indicates that if  
the Data Rate (between the DCE and the DTE) is  
1.544Mbps and that if the “DCE-to-DTE” and the  
“DTE-to-DCE” propagation delays are each 160ns,  
then the DCE SCC will be provided with 4ns of set-up  
time (in the TXD line) prior to sample the data. For  
52  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
some digital Is, this amount of set-up time is marginal  
and is likely to result in bit-errors. Throughout the re-  
mainder of this document, this phenomenon will be  
referred to as the “2-Clock/Propagation Delay” phe-  
nomenon.  
face” is a much more robust and reliable medium to  
transport data, than is the “2-Clock DTE/DCE” Inter-  
face.  
Using the “Echo-Clock” Feature within the  
XRT4500  
Cases 1 and 2 indicate that if a wide range of data  
rates are to be supported by some Data Communica-  
tion Equipment over a “2-Clock DTE/DCE” Interface'  
and if the propagation delays are sufficiently large (in  
the “DCE-to-DTE” and “DTE-to-DCE” link); then there  
are some data rates that will be handled in an “error-  
free” manner; and other data rates which are prone to  
errors. Consequently, the “3-Clock DTE/DCE Inter-  
The “Echo-Clock” features within the XRT4500 helps  
to mitigate the “2-Clock/Propagation Delay” phenom-  
enon by forcing the DTE Mode XRT4500 to supply an  
additional clock signal (over the DTE/DCE Interface),  
over and above that provided by the DTE SCC.  
Figure 25 presents an illustration of the “Echo Clock”  
feature (within the DTE Mode XRT4500) being used.  
FIGURE 25. ILLUSTRATION OF THE “ECHO-CLOCK” FEATURE WITHIN THE XRT4500  
SCC (L)  
D T E  
D C E  
R X 1  
SCC (R)  
TXD  
7 8  
7 9  
6 3  
6 2  
6 0  
6 7  
1
T X D  
T X D _ I N  
T X 1  
SCTE  
6 4  
6 5  
7 7  
7 6  
7 4  
S C T E  
R X 2  
T X 2  
S C T E _ I N  
7 0  
7 1  
TXC  
7 0  
6 8  
6 7  
7 3  
R X 3  
T X 3  
T X C _ I N  
T X C  
R X C  
R X D  
7 1  
6 4  
6 5  
7 7  
7 6  
RXC  
RXD  
7 4  
1
R X 2  
R X C _ I N  
R X D _ I N  
T X 2  
6 3  
6 2  
7 8  
7 9  
6 0  
R X 1  
T X 1  
XRT4500  
XRT4500  
In the example, presented in Figure 25, the DTE SCC  
does not supply the SCTE signal to the DTE/DCE In-  
terface (just as in the two previous examples). How-  
ever, in this case, the XRT4500 (on the DTE side) has  
been configured to operate in the “Echo-Clock” Mode.  
While the XRT4500 is operating in this mode, it will  
simply take the “incoming” Transmit Clock signal  
(TXC) and will “echo” it back to the SCTE input pin of  
the DCE SCC. If we were to closely analyzer the  
clock signals that are transported across the “DTE/  
DCE” Interface, in order to determine the resulting  
“TXC to TXD set-up time”, we would observe the fol-  
lowing.  
2. The DTE SCC will update the state of the TXD line  
on the rising edge of the “incoming” TXC clock signal.  
3. The “DTE” XRT4500 will “internally” route the  
“RX3D” output signal to the TX2D output signal. As a  
consequence, the incoming TXC clock signal will be  
“echoed” back out to the SCTE input pin of the DCE  
SCC.  
4. If we neglect the “Clock-to-Output” delay of the  
DTE SCC, the DCE SCC will receive the falling edge  
of the SCTE clock signal, very close to the middle of  
the bit-period of each bit on the TXD line.  
This phenomenon is also illustrated below in  
Figure 26.  
1. The DCE SCC sources the TXC clock signal to the  
DTE node.  
53  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 26. ILLUSTRATION OF THE WAVE-FORMS, ACROSS A DCE/DTE INTERFACE, WHEN THE ECHO-CLOCK FEATURE  
(WITHIN THE XRT4500) IS USED AS DEPICTED IN FIGURE 25  
TXC (at DCE)  
TXC (at DTE)  
SCTE (at DTE)  
SCTE (at DCE)  
TXD (at DTE)  
TXD (at DCE)  
0.5*tb  
By using the “Echo-Clock” feature, within the  
XRT4500, the “Overall System” (comprised of the  
DTE and DCE Terminals) is nearly as immune to the  
“2-Clock/Propagation Delay” phenomenon, as is the  
“3-Clock DTE/DCE Interface”; even though the DTE  
SCC only processes two clock signals.  
tion Delay” phenomenon. The “Echo-Clock” Mode is  
an approach that can be used to attack this phenom-  
enon, if the XRT4500 is designed into a DTE Equip-  
ment. However, if a system manufacturer, of DCE  
Equipment, encounters this problem, one is not able  
to configure a way out of this phenomenon by en-  
abling the “Echo-Clock” Mode. Fortunately, the  
XRT4500 does offer the “DCE Equipment” design a  
couple of another options which can be used to miti-  
gate the “2-Clock/Propagation Delay” phenomenon.  
These two features are:  
Hence, in short, the purpose of the Echo-Clock Mode  
is to provide the “Overall-System” with the SCTE  
clock signal, when it is not being supplied by the DTE  
SCC. The impact of being able to accomplish this is a  
more robust, reliable system performance.  
The “2-Clock/3-Clock Mode” Feature  
The “Clock Inversion” Feature  
Configuring the Echo-Clock Mode  
The user can configure the “Echo-Clock” Mode, with-  
in the XRT4500, by pulling the “EC” input pin (pin 34)  
“low”. Conversely, the user can disable the “Echo-  
Clock” Mode by pulling the “EC” input pin “high”.  
This section discusses the “2-Clock/3-Clock” Feature.  
As mentioned above, if the DTE/DCE Interface only  
consists of two clock signals, (e.g., missing the SCTE  
signal), then there will be some data rates at which  
the DCE SCC will not be provided with sufficient set-  
up time, when sampling the TXD signal.  
When the “EC” input pin is pulled “low”, then the  
XRT4500 will internally use the “TXC” digital signal  
(which is output, from the DTE Mode XRT4500, via  
the RX3D output pin) as the source for the “SCTE” (or  
the TX2D) signal.  
Figure 27 presents an illustration of two XRT4500 be-  
ing implemented in a “DTE/DCE” Interface. In this fig-  
ure, the “DCE Mode” XRT4500 has been configured  
to operate in the “2-Clock” Mode. When the XRT4500  
is configured to operate in the “2-Clock” Mode, then it  
will internally use the “TXC” signal as a means to syn-  
thesize the “SCTE” clock signal (as depicted below).  
NOTE: The “Echo-Clock” Mode is only available if the  
XRT4500 is operating the DTE Mode.  
1.3.5 The “2CK/3CK” (2-Clock/3-Clock Mode -  
Enable/Disable Select Input pin)  
Section 1.3.4 discusses the “Echo-Clock” Mode, and  
how it can be used to combat the “2-Clock/Propaga-  
54  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 27. ILLUSTRATION OF THE DCE/DTE INTERFACE, WITH THE DCE MODE XRT4500 OPERATING IN THE “2-  
CLOCK” MODE  
SCC (L)  
D T E  
D C E  
R X 1  
SCC (R)  
T X D  
78  
79  
63  
62  
60  
67  
1
T X D  
T X D _ I N  
T X 1  
64  
65  
77  
76  
74  
S C T E  
R X 2  
T X 2  
S C T E _ I N  
T X C  
R X C  
R X D  
70  
71  
70  
71  
68  
67  
60  
73  
74  
R X 3  
T X C _ I N  
T X 3  
T X C  
R X C  
R X D  
64  
77  
76  
R X 2  
R X C _ I N  
R X D _ I N  
T X 2  
65  
63  
62  
78  
79  
1
R X 1  
T X 1  
XRT4500  
XRT4500  
In this case, the “2-Clock” Mode offers a considerable  
amount of design flexibility. This approach permits the  
“DCE Equipment” System Design Engineer to design  
and layout a board that can be automatically config-  
ured to support either the “3-Clock” Mode (if all three  
clock signals are present, over the DTE/DCE Inter-  
face). Further, this approach also permits the System  
Design Engineer to configure the XRT4500 into the  
“2-Clock” Mode (if the SCTE clock signal is not  
present). This feature is a nice alternative to “hard-  
wiring” the “TXC” output (of the DCE SCC) to the  
“SCTE” input.  
DTE that only supports two (2) clock signals. Once  
the user has configured the XRT4500 to operate in  
the “2-Clock” Mode, then the user can “solve” the “2-  
Clock/Propagation Delay” phenomenon by invoking  
the “Clock Inversion” feature, as described below in  
Section 1.2.6.  
Configuring the “2-Clock” Mode.  
The user can configure the XRT4500 to operate in  
the “2-Clock” Mode by setting the “2CK/3CK” input  
pin “high”. Conversely, the user can disable the “2-  
Clock” Mode (otherwise known as operating the  
XRT4500 in the “3-Clock” Mode) by setting the “2CK/  
3CK” input pin “low”.  
NOTE: The “2-Clock” Mode feature, by itself, does not solve  
the “2-Clock/Propagation Delay” phenomenon. However,  
the “2-Clock” Mode, within the XRT4500, permits the user  
to do the following.  
1.3.6 The “Clock Inversion” (CK_INV) feature  
The XRT4500 can be configured to invert the “TXC”  
signal by setting the “CK_IN” input pin (pin 54) “low”.  
Setting the “CK_INV” input to “high” removes the in-  
vert from the “TXC” signal path. An illustration of the  
“DCE Mode” XRT4500, configured to invert the “TXC”  
signal is illustrated in Figure 28.  
a. To configure the XRT4500 to automatically operate  
in the “3-Clock” Mode, whenever it is interfaced to a  
DTE that supports all three (3) clock signals, or  
b. To configure the XRT4500 to automatically operate  
in the “2-Clock” Mode, whenever it is interfaced to a  
55  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 28. ILLUSTRATION OF THE DCE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL  
D T E  
D C E  
SCC (R)  
SCC (L)  
T X D  
78  
79  
63  
62  
60  
67  
1
T X D  
R X 1  
R X 2  
T X D _ I N  
T X 1  
S C T E  
64  
65  
77  
76  
74  
S C T E  
T X 2  
S C T E _ I N  
T X C  
R X C  
R X D  
70  
71  
70  
68  
67  
60  
73  
74  
R X 3  
T X 3  
T X C _ I N  
R X C _ I N  
R X D _ I N  
T X C  
71  
64  
65  
77  
76  
R X 2  
T X 2  
R X C  
63  
62  
78  
79  
1
R X 1  
T X 1  
R X D _ O U T  
XRT4500  
XRT4500  
The “Clock Inversion” feature is also available if the  
XRT4500 is operating in the “DTE” Mode. Figure 29  
presents an illustration of a DTE Mode XRT4500,  
when it is configured to invert the TXC clock signal.  
FIGURE 29. ILLUSTRATION OF THE DTE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL  
SCC (L)  
SCC (R)  
D T E  
D C E  
78  
79  
T X D  
63  
62  
60  
67  
1
T X D  
R X 1  
T X D _ I N  
T X 1  
T X 2  
SCTE  
77  
76  
64  
65  
74  
S C T E  
R X 2  
S C T E _ I N  
T X C  
70  
71  
70  
71  
73  
74  
68  
67  
60  
R X 3  
T X 3  
T X C _ I N  
R X C _ I N  
R X D _ I N  
T X C  
R X C  
R X D  
64  
R X C  
R X D  
77  
76  
R X 2  
R X 1  
T X 2  
T X 1  
65  
63  
62  
78  
79  
1
XRT4500  
XRT4500  
The Benefits of the “Clock Inversion” Feature  
ture was also presented as a possible solution to the  
“2-Clock/Propagation Delay” phenomenon. However,  
the “Echo-Clock” feature has a drawback. If a “DCE  
Equipment” manufacturer were to interface his/her  
equipment to a DTE Terminal that does not support  
In Section 1.3.4 of this document, a lengthy discussion,  
regarding the “2-Clock/Propagation Delay” phenomenon  
is presented. In this Section, the “Echo-Clock” Fea-  
56  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
the SCTE clock signal; it is highly unlikely that the  
“DCE Equipment” manufacturer will be able to (over  
the DTE/DCE Interface) invoke the “Echo-Clock”  
mode and resolve the “2-Clock/Propagation Delay”  
phenomenon.  
Clock/Propagation Delay” phenomenon. By doing the  
following things.  
a. Configuring the DCE Mode XRT4500 to operate in  
the “2-Clock” Mode, and  
b. Inverting the TXC signal, within the DCE Mode  
XRT4500, the user can largely resolve the “2-Clock/  
Propagation Delay” phenomenon.  
NOTE: This is especially the case if the DTE Equipment is  
not using the XRT4500 as the Multi-protocol Transceiver IC.  
As a consequence, the “DCE Equipment” manufac-  
turer would have to resort to undesirable things, such  
as using the (locally generated) TXC signal as the  
sampling clock for the “TXD” signal.  
Figure 30 presents an illustration of the DCE Mode  
XRT4500, being configured to (1) operate in the “2-  
Clock” Mode, and (2) to invert the “TXC” signal.  
However, the XRT4500 does offer the DCE Equip-  
ment manufacturer an elegant solution to the “2-  
FIGURE 30. ILLUSTRATION OF THE DCE MODE XRT4500, WHICH IS OPERATING IN THE “2-CLOCK” MODE, AND  
INVERTING THE “TXC” SIGNAL  
SCC (L)  
D T E  
T X 1  
D C E  
SCC (R)  
T X D  
78  
79  
63  
62  
60  
67  
1
T X D  
R X 1  
R X 2  
T X D _ I N  
S C T E  
64  
65  
77  
76  
74  
S C T E  
T X 2  
S C T E _ I N  
T X C  
R X C  
R X D  
70  
71  
70  
68  
67  
60  
73  
74  
R X 3  
T X 3  
T X C _ I N  
R X C _ I N  
R X D _ I N  
T X C  
71  
64  
65  
77  
76  
R X 2  
T X 2  
R X C  
63  
62  
78  
79  
1
R X 1  
T X 1  
R X D _ O U T  
XRT4500  
XRT4500  
By taking advantage of both the “2-Clock” Mode and  
the ability to invert the “TXC” clock signal, the “DCE  
Equipment” manufacture can mitigate the “2-Clock/  
Propagation Delay” phenomenon by simply inverting  
the “TXC” whenever the DTE/DCE Interface and sys-  
tem configuration settings begin to violate the “TXD to  
TXC” set-up time requirement of the DCE SCC de-  
vice. By inverting the TXC signal, the phase relation-  
ship, between the “TXD and the TXC signal will shift  
by 180 degrees. At this point, the sampling edge of  
the TXC signal will be near the middle of the “TXD”  
bit-period, and the system will not be violating the  
“TXD to TXC” set-up time requirements of the DCE  
SCC device.  
In summary, the “2-Clock” Mode (within the  
XRT4500) provides the user with the following op-  
tions.  
The DCE Equipment (which uses the XRT4500) can  
easily be configured to interface to DTE Equipment  
that supports the SCTE clock signal, as well as DTE  
Equipment that does not support the SCTE clock sig-  
nal. If the DCE Equipment is being interfaced to a  
DTE which supports the SCTE clock signal, then the  
DCE Equipment should configure the XRT4500 to op-  
erate in the “3-Clock” Mode. Conversely, if the DCE  
Equipment is being interfaced to a DTE which does  
not support the SCTE clock signal, then the DCE  
Equipment should configure the XRT4500 to operate  
in the “2-Clock” Mode. This step will automatically  
configure the XRT4500 to route the “TXC” clock sig-  
57  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
nal to the “SCTE_IN” input pin of the DCE SCC.  
The user disables the “LATCH” feature by driving the  
There is no need to design in extra glue logic to multi- “LATCH” input pin, from “high” to “low”. Once the  
plex the “SCTE” output pin of the XRT4500 with the  
TXC output pin of the DCE SCC.  
“LATCH” input pin is “low”, then the behavior of the  
XRT4500 will be dictated by the state of the “M[2:0]”  
input pins.  
Additionally, if the DCE Equipment is being interfaced  
to a DTE Terminal which does not support the SCTE  
signal, (e.g., the XRT4500 is now operating in the “2-  
Clock” Mode), and if the “DCE/DTE Interface” config-  
uration settings are such that the “TXD-to-TXC” set-  
up time requirements of the DCE SCC are being vio-  
lated, then the user can eliminate this problem by in-  
voking the “Clock Invert” feature of the XRT4500.  
1.3.8 The Registered Mode of Operation  
The XRT4500 includes a feature which is known as  
“Registered Mode” operation. The user can enable  
the “Registered” Mode by setting the “REG” input pin  
“HIGH”. Conversely, the user can disable the “Regis-  
tered” Mode by setting the “REG” input pin “LOW”.  
If the user enables the “Registered” Mode, then the  
following things will happen.  
1.3.7 The Latch Mode of Operation  
The Latch Mode of operation permits the user to latch  
the state of the “Mode Control” input pins (M[2:0]) into  
the XRT4500 internal circuitry. This feature frees up  
of the signals, driving the M[2:0] input pins (pins 6, 5,  
and 4) for other purposes.  
a. The XRT4500 will be configured to sample and  
latch the contents of the “TX5D” and “TX8D” input  
pins, upon the rising edge of the “REG_CLK” input  
signal.  
b. The XRT4500 will be configured to output data (to  
the SCC) via the “RX5D” and “RX8D” output pins, up-  
on the rising edge of the “REG_CLK” signal.  
Because of this feature, it is permissible to control the  
state of the “M[2:0]” input pins via certain signals  
within a bi-directional data bus (which is controlled by  
a microprocessor or microcontroller).  
This feature is useful in application, which use a SCC  
or a Microcontroller (that requires an external clock  
signal to sample the “DSR” and the “RI” (or “TM”) sig-  
nals. Further, this feature also configures the  
XRT4500 to sample the state of the “DTR” and the  
“RL” signal upon the rising edge of an external clock  
signal.  
The user invokes this feature by driving the “LATCH”  
input pin (pin 44) from “low” to “high”. During this  
“low” to “high” transition, the contents of the “M[2:0]”  
input pins will be “locked” (or latched) into internal cir-  
cuitry within the XRT4500. At this point (as long as  
the “LATCH” input pin remains “high”) the user's sys-  
tem can do other things with the signal which are also  
driving the “M[2:0]” without affecting the behavior the  
XRT4500.  
If the user invokes this feature, then the relationship  
between the XRT4500 and the SCC/Microprocessor  
is as depicted below in Figure 31.  
FIGURE 31. AN ILLUSTRATION OF THE EFFECTIVE INTERFACE BETWEEN THE XRT4500 AND THE SCC/MICROPRO-  
CESSOR WHEN THE “REGISTERED” MODE IS ENABLED  
XRT4500  
DTR_Signal  
TX5D  
DSR_Signal  
RX5D  
µ µ  
C P  
/
RL_Signal  
TX8D  
RX8D  
RI_Signal  
REG_CLK  
External Clock  
58  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
A system design similar to that presented below in  
lationship between another Multi-protocol Transceiver  
Figure 32, will accomplish the exact same function/re- IC and the SCC/Microprocessor.  
FIGURE 32. AN ILLUSTRATION OF THE NECESSARY GLUE LOGIC REQUIRED TO DESIGN A FEATURE SIMILAR TO THAT  
OFFERED BY THE “REGISTERED” MODE, WHEN USING A DIFFERENT MULTI-PROTOCOL SERIAL NETWORK INTERFACE IC  
DTE Mode  
D-Flip-Flops  
Serial  
Network  
µC/µP  
Interface Device  
DTR_Signal  
Q
C L K  
DSR_Signal  
Q
C L K  
RL_Signal  
Q
C L K  
RI_Signal  
Q
C L K  
Clock  
Clock Source  
1.3.9 The Internal Oscillator  
the “Internal Oscillator” feature by pulling the  
“OSC_EN” input pin “high”.  
The XRT4500 includes an “Internal Oscillator” that  
can be used to support “DTE Stand-Alone Testing/  
Diagnostics” operations.  
If the user enables this feature, then the XRT4500 will  
synthesize a clock signal (of frequencies ranging from  
32kHz to 64kHz). Further, this clock signal will be out-  
put via the “RX2D” and the “RX3D” output pins. Fig-  
ure 1.20 presents an illustration of the XRT4500  
(while interfaced to the DTE SCC) when the Internal  
Oscillator is enabled.  
The user can enable the “Internal Oscillator” feature  
(within the XRT4500) by pulling the “OSC_EN” input  
pin (pin 53) “low”. Conversely, the user can disable  
59  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 33. ILLUSTRATION OF THE INTERNAL OSCILLATORS WITHIN THE XRT4500  
D T E  
SCC (L)  
T X D  
T X D  
T X 1  
T X 2  
S C T E  
S C T E  
T X C  
73  
74  
O S C  
R X 3  
R X 2  
T X C _ I N  
R X C  
R X D  
O S C  
R X C _ I N  
R X D _ I N  
R X 1  
XRT4500  
If the user enables the Internal Oscillator, within the  
XRT4500, then the XRT4500 will output between a  
32kHz and a 64kHz clock signal via the RX2D and  
RX3D signals. When the XRT4500 is interfaced to the  
DTE SCC, this translates into the XRT4500 generating  
the timing signals for “TXC” and the “RXC” input signals.  
As a consequence, the DTE SCC is provided with all of  
the requisite timing signals that it would normally have, if  
it were interfaced to a DCE Terminal. This feature per-  
mits the user to implement a wide variety of diagnostic  
programs for DTE Equipment stand-alone testing.  
the DTINV* input to logic 0 enables an inverter at the  
output of RX1 and input of TX1.  
1.3.12 Data Interlude  
Similar to TXC, there is a provision in the XRT4500 to  
invert the TXD and RXD signals. Once the Setting the  
DTINV* input to logic 0 enables an inverter at the out-  
put of RX1 and input of TX1.  
2.0 RECEIVER AND TRANSMITTER  
SPECIFICATIONS  
Table 3 and Table 4, which are for the XRT4500 re-  
ceiver and transmitter sections respectively, summa-  
rize the electrical requirements for V.35, V.11, V.10,  
and RS232 interfaces. These tables provide virtually  
all of the electrical information necessary to describe  
these 4 interfaces in a concise form.  
NOTE: The Internal Oscillator feature is only available if the  
XRT4500 has been configured to operate in the DTE Mode.  
1.3.10 Glitch Filters  
Occasional extraneous glitches on control/handshake  
signal inputs such as CTS, RTS, DTR and DSR can  
have damaging effects on the integrity of a connection.  
The XRT4500 is equipped with lowpass filters on the  
input of each of the receivers for the control and  
handshake signals. These filters eliminate glitches  
which are narrower than 10µs. The user may disable  
these filters by setting EN_FLTR to logic 0.  
3.0 V.10\V.28 OUTPUT PULSE RISE AND FALL  
TIME CONTROL  
SLEW_CNTL (pin 47) is an analog output that con-  
trols transmitter pulse rise and fall time for the V.10  
and V.28 modes. Connecting a resistor, RSLEW, hav-  
ing a value between 0 and 200 k from this pin to  
ground controls the rise/fall times for V.10 and the  
slew rate for V.28 as shown in Figure 34 and  
Figure 35 respectively.  
1.3.11 Data Inversion  
Similar to TXC, there is a provision in the XRT4500 to  
invert the TXD and RXD signals. Once the Setting  
60  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 34. V.10 RISE/FALL TIME AS A FUNCTION OF RSLEW  
3
1 10  
100  
10  
1
100K  
1 Meg  
10K  
R (Ohms)  
FIGURE 35. V.28 SLEW RATE OVER ± 3 V OUTPUT RANGE WITH 3 KIN PARALLEL WITH 2500 PF LOAD AS A  
FUNCTION OF RSLEW  
10  
V.  
28  
Sle  
w
1
Ra  
te  
(V/  
us)  
0.1  
0.01  
10K  
100K  
1 Meg  
R (Ohms)  
4.0 THE HIGH-SPEED RS232 MODE  
61  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
When E_232H (pin 55) is set to logic 0 in RS232 mode,  
the transmitters are configured to operate in a special  
and transmitter output terminations respectively. Ad-  
ditionally, Tables 4 and 5 provide a summary of re-  
ceiver and transmitter specifications respectively for  
the different electrical modes of operation.  
high-speed RS232 mode that can drive loads of 3000  
in parallel with 1000pF at speeds up to 256 KHz.  
V.10 (RS423) Interface  
5.0 INTERNAL CABLE TERMINATIONS  
XRT4500 has fully integrated receiver and transmitter  
cable terminations for high speed signals (RXD, TXD,  
RXC, TXC, SCTE). Therefore, no external resistors  
Figure 28 shows a typical V.10 (RS423) interface.  
This configuration uses an unbalanced cable to con-  
nect the transmitter TXA output to the receiver RXA  
and/or switches are necessary to implement the prop- input. The “B” outputs and inputs that are present on  
er line termination. The schematic diagrams given in  
Figures 26 and 27 show the effective receiver and  
transmitter terminations respectively for each mode of  
operation. When a specific electrical interface is se-  
lected by M0, M1 and M2, the termination required for  
that interface is also automatically chosen. The  
XRT4500 eliminates double termination problems  
and makes point to midpoint operation possible in the  
V.11 mode by providing the option for disabling the in-  
ternal input termination on high speed receivers.  
the differential transmitters and receivers contained in  
the XRT4500 are not used. The system ground pro-  
vides the signal return path. The receiver input resis-  
tance is 10 k nominal and no other cable termina-  
tion is normally used for the V.10 mode.  
V.11 (RS422) Interface  
Figure 29 shows a typical V.11 (RS422) interface. This  
configuration uses a balanced cable to connect the  
transmitter TXA and TXB outputs to the receiver RXA  
and RXB inputs respectively. The XRT4500 includes  
6.0 OPERATIONAL SCENARIOS  
provisions for adding a 125 terminating resistor for  
Visualizing features such as clock/data inversion,  
echoed clock, and loopbacks, in DTE and DCE  
modes makes configuring the XRT4500 a non-trivial  
task. A series of 48 system level application diagrams  
located at the end of the data sheet called “Scenari-  
os” assist users in understanding the benefits of  
these different features. The internal XRT4500 con-  
nections required for a particular scenario are made  
through MUX1 and MUX2 that are shown on the  
block diagrams given in Figures 2 and 3 respectively.  
Table 8 contains the signal routing information versus  
control input logic level for MUX1 and Table 9 con-  
tains similar information for MUX2.  
the V.11 mode. Although this resistor is optional in the  
V.11 specification, it is necessary to prevent reflections  
that would corrupt signals on high-speed clock and data  
lines. The differential receiver input resistance without  
the optional termination is 20 k nominal.  
V.28 (RS232) Interface  
Figure 28 shows a typical V.28 (RS232) interface.  
This configuration uses an unbalanced cable to con-  
nect the transmitter TXA output to the receiver RXA  
input. The “B” outputs and inputs that are present on  
the differential transmitters and receivers contained in  
the XRT4500 are not used. The system ground pro-  
vides the signal return path. The receiver “B” input is  
internally connected to a 1.4 V reference source to  
provide a 1.4 V threshold. The receiver input resis-  
7.0 APPLICATIONS INFORMATION  
Traditional interfaces either require different transmit-  
ters and receivers for each electrical standard, or use  
complicated termination switching methods to change  
modes of operation. Mechanical switching schemes,  
which are expensive and inconvenient, include relays,  
and custom cables with the terminations located in  
the connectors. Electrical switching circuits using  
FETs are difficult to implement because the FET  
must remain off when the signal voltage exceeds the  
supply voltage and when the interface power is off.  
tance is 5 k nominal and no other cable termination  
is normally used for the V.28 mode.  
V.35 Interface  
Figure 30 shows a typical V.35 interface. This configu-  
ration uses a balanced cable to connect the transmit-  
ter TXA and TXB outputs to the receiver RXA and  
RXB inputs respectively. The XRT4500 internal termi-  
nations meets the following V.35 requirements. The  
receiver differential input resistance is 100 ± 10  
The XRT4500 uses innovative, patented circuit de-  
sign techniques to solve the termination switching  
problem. It includes internal circuitry that may be con-  
trolled by software to provide the correct terminations  
for V.10 (RS423), V.11 (RS422), V.28 (RS232), and  
V.35 electrical interfaces. The schematic diagrams  
given in Figures 26 and 27 conceptually show the  
switching options for the high-speed receiver input  
and the shorted-terminal resistance (RXA and RXB  
connected together) to ground is 150 ± 15 . The  
transmitter differential output resistance is 100 ± 10  
and the shorted-terminal resistance (TXA and TXB  
connected together) to ground is 150 ± 15 .  
The junction of the 3 resistors (CMTX) on the transmit  
termination is brought out to pins 61 and 66 for TX1  
62  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
and TX2 respectively. Figure 30 shows how capacitor  
C having a value of 100 to 1000 pF bypasses this  
point to ground to reduce common mode noise. This  
capacitor shorts current caused by differential driver  
rise and fall time or propagation delay miss-match di-  
rectly to ground. If it was not present, the flow of this  
current through the 125 resistor to ground would  
cause common mode voltage spikes at the TXA and  
TXB outputs.  
FIGURE 36. RECEIVER TERMINATION  
RXxA  
R9  
4K  
RXxB  
R1  
20  
R10  
4K  
Rx  
R2  
20  
S3  
R3  
85  
R11 R12  
R8  
10K  
6K  
6K  
S2  
S1  
S4  
R4  
30  
R4  
30  
R6  
125  
TABLE 6: RECEIVER SWITCHES  
SWITCHES  
MODE  
S1  
S2  
S3  
S4  
V.35  
V.11 Terminated  
V.11 Unterminated  
V.10  
Closed  
Open  
Open  
Open  
Open  
Closed  
Open  
Open  
Open  
Open  
Open  
Closed  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Closed  
V.28  
63  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 37. TRANSMITTER TERMINATION  
TXxB  
TXxA  
TX  
S2  
S1  
R1  
50  
R2  
50  
R3  
125  
TABLE 7: TRANSMITTER SWITCHES  
SWITCHES  
MODE  
S1  
S2  
V.35  
Closed  
Open  
Closed  
Open  
V.11/V.10/V.28  
FIGURE 38. TYPICAL V.10 OR V.28 INTERFACE (R1 = 10 KIN V.10 AND 5 KIN V.28)  
FIGURE 39. TYPICAL V.11 INTERFACE (TERMINATION RESISTOR, R1, IS OPTIONAL.)  
64  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 40. TYPICAL V.35 INTERFACE  
0.1uf  
NOTE: All Resistors shown above are internal to the  
XRT4500  
TABLE 8: MUX1 CONNECTION TABLE  
LOGIC LEVEL APPLIED TO CONTROL INPUT  
NAME/PIN NUMBER  
SIGNAL SOURCE FOR OUTPUT NAME/PIN NUMBER  
SCENARIO  
NUMBER  
DCE/  
DTE  
31  
EC  
2CK/  
3CK  
50  
LP  
CK  
INV  
54  
DT EN_O  
INV  
SC  
RX1D  
1
TX1B-TX1A  
62, 63  
RX2D  
74  
TX2B-TX2A  
65, 64  
RX3D  
73  
TR3B-TR3A  
71, 70  
55  
53  
34  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
18  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX1D  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TX2D  
TX2D  
TR3B-TR3A  
X
TX2D  
X
TX3D  
3
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TR3B-TR3A  
X
4
TX1D  
TX2D  
RX2B-RX2A  
X
TX3D  
5
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TX2D  
TX2D  
(TR3B-TR3A)*  
X
6
TX1D  
TX2D  
X
(TX3D)*  
7
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
(TR3B-TR3A)*  
X
8
TX1D  
TX2D  
RX2B-RX2A  
X
(TX3D)*  
9
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
X
TR3B-TR3A  
X
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TX1D  
TX2D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX2D  
X
TR3B-TR3A  
X
TX1D  
TX2D  
TX3D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
X
(TR3B-TR3A)*  
X
TX1D  
TX2D  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX2D  
X
(TR3B-TR3A)*  
X
TX1D  
TX2D  
TX3D  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX2D  
X
TX2D  
RX2B-RX2A  
X
X
X
X
TX1D  
X
TR3B-TR3A  
X
RX1B-RX1A  
RX1B-RX1A  
TX2D  
X
TX1D  
TX2D  
RX2B-RX2A  
65  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
TABLE 8: MUX1 CONNECTION TABLE (CONTINUED)  
LOGIC LEVEL APPLIED TO CONTROL INPUT  
NAME/PIN NUMBER  
SIGNAL SOURCE FOR OUTPUT NAME/PIN NUMBER  
SCENARIO  
NUMBER  
DCE/  
DTE  
EC  
2CK/  
3CK  
LP  
CK  
INV  
DT EN_O  
INV  
SC  
RX1D  
1
TX1B-TX1A  
62, 63  
RX2D  
74  
TX2B-TX2A  
65, 64  
RX3D  
73  
TR3B-TR3A  
71, 70  
31  
50  
54  
55  
53  
34  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
1
0
18  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
0
0
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
0
0
X
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TX1D  
TX1D  
RX2B-RX2A  
(TX2D)*  
X
(RX2B-RX2A)*  
X
TX2D  
X
X
RX1B-RX1A  
NOTE 1  
TX1D  
TX2D  
X
(RX2B-RX2A)*  
X
TX1D  
TX2D  
TX2D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
X
TX1D  
X
TR3B-TR3A  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
X
TX1D  
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
RX2B-RX2A  
(TR3B-TR3A)* (TR3B-TR3A)*  
X
TX1D  
TX3D  
X
(TX3D)*  
RX1B-RX1A (TR3B-TR3A)*  
RX2B-RX2A  
(TR3B-TR3A)*  
X
TX1D  
RX1B-RX1A  
TX1D  
TX3D  
RX2B-RX2A  
TX3D  
RX2B-RX2A  
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
X
TX3D  
X
TR3B-TR3A  
X
TX1D  
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
TR3B-TR3A  
TX3D  
TR3B-TR3A  
X
TX1D  
TX3D  
X
X
TX3D  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
(TR3B-TR3A)*  
X
TX1D  
TX3D  
X
X
(TX3D)*  
RX1B-RX1A (TR3B-TR3A)*  
(TR3B-TR3A)*  
X
TX1D  
RX1B-RX1A  
TX1D  
TX3D  
RX2B-RX2A  
TX3D  
TX3D  
X
X
(TX3D)*  
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
X
X
X
X
X
X
X
X
TX1D  
TX3D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
TX3D  
RX2B-RX2A  
TX1D  
TX3D  
X
X
RX1B-RX1A  
RX1B-RX1A  
TX1D  
RX2B-RX2A  
(TX3D)*  
(RX2B-RX2A)*  
TX1D  
TX3D  
X
X
RX2B-RX2A  
X
RX1B-RX1A  
NOTE 1  
RX2B-RX2A  
TX3D  
TX1D  
TX3D  
INVERT  
INVERT  
UNCHANGED UNCHANGED UNCHANGED UNCHANGED  
UNCHANGED UNCHANGED UNCHANGED UNCHANGED  
UNCHANGED UNCHANGED 32-64 kHz UNCHANGED  
32-64 kHz  
32-64 kHz  
UNCHANGED  
UNCHANGED  
NOTES:  
2. Signal names ending with A or B are analog inputs  
or outputs. Signal names ending with D are digital  
1. Table entries are inputs to MUX1. Column headings  
are outputs.  
66  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
.
inputs or outputs. * indicates signal complement. X  
is don't care.  
TABLE 9: MUX2 CONNECTION TABLE (RX4-RX7, TX4-TX7), OUTPUT VERSUS INPUT  
CONTROL INPUT/  
PIN NUMBER  
SIGNAL SOURCE FOR OUTPUT NAME/PIN NUMBER  
SCENARIO  
NUMBER  
DCE/  
DTE  
TX4B-  
TX4A  
TX5B-  
TX5A  
LP  
RX4D  
RX5D  
RX67D  
TR6B-TR6A  
TR7  
31  
18  
40  
10, 11  
33  
13, 12  
32  
30, 29  
27  
A
B
C
D
0
0
TX4D  
RX4B-  
RX4A  
TX5D  
TR6B-  
TR6A  
TX5D  
X
TX76D  
0
1
1
1
0
1
RX4B-  
RX4A  
TX4D  
RX5B-  
RX5A  
TX5D  
TR6B-  
TR6A  
X
TX76D  
TX4D  
RX4B-  
RX4A  
TX76D  
RX5B-  
RX5A  
TR7  
RX5B-RX5A  
TX76D  
X
X
RX4B-  
RX4A  
TX4D  
RX5B-  
RX5A  
TX5D  
TR7  
NOTES:  
Which signals are to be used when operating the  
XRT4500 in the “differential” or “single-ended”  
modes.  
1. Table entries are inputs to MUX2.  
2. Column headings are outputs.  
3. Signal names ending with A or B are analog inputs or  
outputs. Signal names ending with D are digital inputs  
or outputs.  
How does one configure the “DCE Mode” and “DTE  
Mode” XRT4500 to operate in these scenarios.  
NOTES:  
4. X = Don’t Care (not used)  
1. The “line” signals are drawn with both a “solid” line  
and a “dashed” line. Both lines are used to transmit  
and receive “differential” mode signals. However,  
the “solid” line identifies the signal that should be  
used, when operating the Transmitter in the “Sin-  
gle-Ended” mode.  
5. Shaded blocks = Normal (No Loop-Back)  
Operating Modes for the XRT4500  
The XRT4500 Multi protocol Serial Interface device  
can be configured to operate in a wide variety of  
modes or “scenarios”. This document illustrates some  
of these “scenarios” and provides the reader with the  
following information associated with each of these  
scenarios.  
2. Each scenario includes a table that indicates how  
to configure the XRT4500 into each of these  
modes, by specifying the appropriate logic states  
for EC, 2CK/3CK, LP, CKINV, DTINV, and EN_OSC.  
Which pins (on the “DCE Mode” XRT4500 and  
“DTE Mode” XRT4500) are used to propagate vari-  
ous data or clock signals.  
3. In all, 48 scenarios have been defined for the  
XRT4500 device. Currently, this document only lists  
a subset of these scenarios. Further versions of the  
XRT4500 data sheet will include this information for  
all 48 scenarios.  
67  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 41. SCENARIO A, MUX2, (DCE/DTE = 0, LP = 0)  
SCENARIO A  
MUX2 (DCE/DTE = 0, LP = 0)  
3
GND  
RX1,2,3  
8
TX4D  
20  
37  
Digital MUX 2  
RX4,5,6,7  
VDD  
RX4A  
11  
TX4A  
TX4  
TX5  
Filter  
RX4  
RX5  
10  
TX4B  
38  
40  
RX4B  
RX4D  
15  
TX5D  
36  
12  
RX5A  
TX5A  
Filter  
13  
9
35  
33  
TX5B  
VDD  
RX5B  
RX5D  
TX4,5,6,7,8  
29  
TR6A  
RX6  
Filter  
Filter  
TX6  
TX7  
30  
28  
TR6B  
TX76D  
32  
RX67D  
27  
17  
TR7  
RX7  
48  
25  
TX8D  
EN_OUT  
RX8I  
19  
14  
Filter  
RX8  
TX8O  
GND  
TX8  
TX4,5,6,7,8  
23  
75  
RX8D  
V.11 (RX1,2,3) Termination 80  
Glitch Filter  
EN_TERM  
EN_FLTR  
68  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 42. SCENARIO B, MUX2, (DCE/DTE = 0, LP = 1), LOOP BACK NOT ENABLED  
SCENARIO B  
MUX2 (DCE/DTE = 0, LP = 1)  
Loop Back not enabled  
3
GND  
RX1,2,3  
8
TX4D  
TX4A  
20  
37  
Digital MUX 2  
RX4,5,6,7  
VDD  
RX4A  
11  
TX4  
TX5  
Filter  
Filter  
RX4  
RX5  
10  
TX4B  
38  
40  
RX4B  
RX4D  
15  
12  
TX5D  
TX5A  
36  
RX5A  
13  
9
35  
33  
TX5B  
VDD  
RX5B  
RX5D  
TX4,5,6,7,8  
29  
TR6A  
RX6  
RX7  
Filter  
Filter  
TX6  
TX7  
30  
28  
TR6B  
TX76D  
32  
RX67D  
27  
17  
TR7  
48  
25  
TX8D  
EN_OUT  
RX8I  
19  
14  
Filter  
RX8  
TX8O  
GND  
TX8  
TX4,5,6,7,8  
23  
75  
RX8D  
80  
V.11 (RX1,2,3) Termination  
Glitch Filter  
EN_TERM  
EN_FLTR  
69  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 43. SCENARIO C, MUX2, (DCE/DTE = 1, LP = 0)  
SCENARIO C  
MUX2 (DCE/DTE = 1, LP = 0)  
3
GND  
RX1,2,3  
8
TX4D  
20  
37  
Digital MUX 2  
RX4,5,6,7  
VDD  
RX4A  
11  
TX4A  
TX4  
Filter  
RX4  
RX5  
10  
TX4B  
38  
40  
RX4B  
RX4D  
15  
TX5D  
36  
12  
RX5A  
TX5A  
Filter  
TX5  
13  
35  
33  
TX5B  
9
RX5B  
RX5D  
TX4,5,6,7,8  
VDD  
29  
TR6A  
RX6  
Filter  
Filter  
TX6  
TX7  
30  
TR6B  
28  
TX76D  
32  
RX67D  
27  
TR7  
RX7  
17  
48  
25  
TX8D  
EN_OUT  
RX8I  
19  
Filter  
RX8  
TX8O  
TX8  
14  
TX4,5,6,7,8  
GND  
23  
75  
RX8D  
V.11 (RX1,2,3) Termination  
80  
Glitch Filter  
EN_TERM  
EN_FLTR  
70  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 44. SCENARIO D, MUX2, (DCE/DTE = 1, LP = 1), LOOP BACK NOT ENABLED  
SCENARIO D  
MUX 2 (DCE/DTE = 1, LP = 1)  
Loop Back not enabled  
3
GND  
RX1,2,3  
8
TX4D  
TX4A  
20  
37  
Digital MUX 2  
RX4,5,6,7  
VDD  
RX4A  
11  
TX4  
TX5  
Filter  
RX4  
RX5  
10  
TX4B  
38  
40  
RX4B  
RX4D  
15  
12  
TX5D  
TX5A  
36  
RX5A  
Filter  
13  
9
35  
33  
TX5B  
VDD  
RX5B  
RX5D  
TX4,5,6,7,8  
29  
TR6A  
RX6  
Filter  
Filter  
TX6  
TX7  
30  
28  
TR6B  
TX76D  
32  
RX67D  
27  
17  
TR7  
RX7  
48  
25  
TX8D  
EN_OUT  
RX8I  
19  
14  
Filter  
RX8  
TX8O  
GND  
TX8  
TX4,5,6,7,8  
23  
75  
RX8D  
80  
V.11 (RX1,2,3) Termination  
Glitch Filter  
EN_TERM  
EN_FLTR  
71  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 45. SERIAL INTERFACE SIGNALS AND CONNECTOR PIN-OUT  
hfw.2gs1u(B)rXplmdbcavionte  
 g
y
csiPBCgurdlpanofehtXRT4.50  
*
*
*
*
*
m
(P3,1972lugfcvdamrsinohteXRT504)  
72  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 46. SERIAL INTERFACE CONNECTOR DRAWINGS  
Serial Interface Connector Drawings  
5
19  
1
10  
15  
1
8
9
15  
20  
25  
30  
33  
37  
X.21 Connector (ISO 4903)  
DTE Connector - DB-15 Pin Male  
DCE Connector - DB-15 Pin Female  
RS-449 Connector (ISO 4902)  
DTE Connector Face - DB-37 Pin Male  
DCE Connector Face - DB-37 Pin Female  
FIGURE 46A  
FIGURE 46B  
NN JJ DD  
Z
Y
V
U
R
L
F
E
B
A
LL  
FF BB  
X
T
S
N
J
D
1
7
13  
25  
MM HH CC  
KK EE AA  
P
K
14  
20  
RS-232 & EIA-530- Connector (ISO 2110)  
DTE Connector - DB-25 Pin Male  
W
M
H
C
DCE Connector - DB-25 Pin Female  
FIGURE 46C  
V.35/ISO 2593 Connector  
DTE Connector Face - 34 Pin Male  
DCE Connector Face - 34 Pin Female  
IGURE  
D
46  
F
73  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
FIGURE 47. EIA-530 CONNECTION DIAGRAM FOR XRT4500  
74  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
FIGURE 48. RS-232 CONNECTION DIAGRAM FOR XRT4500  
75  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIOS 1 & 2 NORMAL: ‘3-CLOCK’ DCE/DTE INTERFACE OPERATION  
HDLC (L)  
DTE (#1)  
DCE (#2)  
HDLC (R)  
78  
79  
63  
62  
TXD  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
SCTE  
77  
76  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
70  
70  
71  
TXC  
68  
67  
73  
74  
RX3  
TX3  
TX2  
TXC  
SCTE  
TXD  
71  
64  
65  
77  
76  
RXC  
RXD  
RX2  
RX1  
RXC  
RXD  
63  
62  
78  
79  
1
60  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#1)  
STATE  
DCE (#2)  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
STATE  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
1
1
1
DTE  
No Echo  
3 clock  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
2CK/3CK  
LP  
3 clock  
No Loopback  
No Invert  
No Invert  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE:  
1. When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
2. (See Table 8. MUX Connection Table)  
76  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 3 &2 DTE LOOP-BACK MODE  
HDLC (L)  
DTE (#3)  
MUX 1  
DCE (#2)  
HDLC (R)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
TX2  
77  
64  
65  
SCTE  
74  
SCTE  
TXC  
RX2  
RXC  
76  
70  
71  
TXC  
RXC  
RXD  
70  
71  
68  
67  
60  
73  
74  
RX3  
TX3  
TX2  
TXC  
SCTE  
TXD  
64  
65  
77  
76  
RX2  
RXC  
RXD  
63  
62  
78  
79  
1
RX1  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#3)  
STATE  
DCE (#2)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
0
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 clock  
2CK/3CK  
LP  
3 clock  
Loopback  
No Invert  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
77  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 4  
HDLC (L)  
DTE (#1)  
DCE (#4)  
HDLC (R)  
MUX 1  
78  
79  
63 TXD  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
62  
77  
76  
64 SCTE  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
65  
70  
71  
70 TXC  
68  
67  
73  
74  
RX3  
RX2  
RX1  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
RXC  
RXC  
RXD  
TX2  
TX1  
76  
78  
63  
62  
RXD  
1
60  
79  
XRT4500  
XRT4500  
COMMENTS: DCE LOOP-BACK MODE  
INPUT PIN SETTINGS  
DTE (#1)  
STATE  
DCE (#4)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
0
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 Clock  
2CK/3CK  
LP  
3 clock  
No Loopback  
No Invert  
Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
78  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 5 & 2  
HDLC (L)  
DTE (#5)  
DCE (#2)  
HDLC (R)  
78  
79  
63  
62  
TXD  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
77  
76  
64  
65  
SCTE  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
TXC  
70  
71  
70  
71  
73  
74  
68  
67  
60  
RX3  
TX3  
TX2  
TXC  
SCTE  
TXD  
64  
72  
76  
RXC  
RXD  
RX2  
RX1  
RXC  
RXD  
65  
63  
62  
78  
79  
1
TX1  
XRT4500  
XRT4500  
COMMENTS: TXC CLOCK INVERSION IN DTE MODE  
INPUT PIN SETTINGS  
DTE (#5)  
STATE  
DCE (#2)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
0
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 clock  
2CK/3CK  
LP  
3 clock  
No Loopback  
Invert  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
79  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 6  
HDLC (L)  
DTE (#1)  
DCE (#6)  
HDLC (R)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RX2  
RXD  
TX1  
64  
65  
SCTE  
77  
76  
74  
SCTE  
TXC  
TX2  
RXC  
70  
71  
TXC  
RXC  
RXD  
70  
68  
67  
60  
73  
74  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
76  
RXC  
RXD  
TX2  
TX1  
63  
62  
78  
79  
1
RX1  
XRT4500  
XRT4500  
COMMENTS: TXC CLOCK INVERSION IN DCE MODE  
INPUT PIN SETTINGS  
DTE (#1)  
STATE  
DCE (#6)  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
STATE  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
1
0
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 clock  
2CK/3CK  
LP  
3 clock  
No Loopback  
No Invert  
No Loopback  
Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
80  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 7 & 2  
HDLC (L)  
DTE (#7)  
DCE (#2)  
HDLC (R)  
MUX 1  
63  
62  
TXD  
SCTE  
TXC  
78  
79  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
TX2  
SCTE  
TXC  
RX2  
RXC  
70  
71  
70  
68  
67  
60  
73  
RX3  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
76  
RXC  
RXD  
74  
1
RX2  
RX1  
RXC  
RXD  
TX2  
78  
79  
63  
62  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#7)  
STATE  
DCE (#2)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
0
0
1
1
DTE  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
1
1
1
1
DCE  
No Echo  
No Echo  
3 clock  
2CK/3CK  
LP  
2CK/3CK  
LP  
3 clock  
Loopback  
Invert  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
81  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 8  
HDLC (L)  
DCE (#1)  
DCE (#8)  
MUX 1  
HDLC (R)  
78  
79  
TXD  
63  
62  
60  
76  
1
TXD  
RX1  
RX2  
RXD  
TX1  
77  
76  
64 SCTE  
74  
SCTE  
TXC  
TX2  
RXC  
65  
70  
71  
70 TXC  
73  
68  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
RXC  
67  
60  
74  
1
RXC  
RXD  
TX2  
TX1  
76  
78  
63  
62  
RXD  
RX1  
79  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#1)  
STATE  
DCE (#8)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
0
0
0
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 clock  
2CK/3CK  
LP  
3 clock  
No Loopback  
No Invert  
Loopback  
Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
82  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 9 & 10  
HDLC (L)  
DTE (#9)  
DCE (#10)  
HDLC (R)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
70  
71  
TXC  
RXC  
RXD  
70  
71  
68  
67  
60  
73  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
64  
72  
76  
74  
1
RXC  
RXD  
TX2  
TX1  
65  
63  
62  
78  
79  
RX1  
XRT4500  
XRT4500  
COMMENTS: 2 CLOCK MODE OPERATION WITHIN THE ‘DCE MODE’. THIS FEATURE IS USEFUL FOR APPLICATIONS  
THAT INTERFACE TO A DEVICE WHICH DOES NOT SUPPLY ‘SCTE’ CLOCK SIGNAL  
INPUT PIN SETTINGS  
DTE (#9)  
STATE  
DCE (#10)  
STATE  
PIN  
#
PIN  
#
NAME  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
1
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t Care  
No Loopback  
No Invert  
2CK/3CK  
LP  
2 clock  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
83  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 12  
DTE (#9)  
HDLC (L)  
HDLC (R)  
DCE (#12)  
MUX 1  
78  
79  
TXD  
63  
62  
60  
67  
1
TXD  
RX1  
RX2  
RXD  
TX1  
77  
76  
64  
65  
75  
SCTE  
TXC  
TX2  
RXC  
70  
71  
TXC  
70  
71  
68  
67  
60  
73  
RX3  
RX2  
RX1  
TX3  
TXC  
SCTE  
TXD  
64  
65  
72  
76  
RXC  
RXD  
74  
1
RXC  
RXD  
TX2  
TX1  
78  
79  
63  
62  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#9)  
STATE  
DCE (#12)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
0
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
1
0
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
3 clock  
2CK/3CK  
LP  
2 clock  
No Loopback  
No Invert  
Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
84  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 13 & 10  
HDLC (L)  
DTE (#13)  
HDLC (R)  
DCE (#10)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
SCTE  
RX2  
TX2  
RXC  
70  
71  
TXC  
70  
73  
68  
67  
60  
RX3  
RX2  
TXC  
TX3  
TX2  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
76  
RXC  
RXD  
74  
1
RXC  
RXD  
63  
62  
78  
79  
RX1  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#13)  
STATE  
DCE (#10)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
1
1
0
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
1
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
2 clock  
2CK/3CK  
LP  
2 clock  
No Loopback  
Invert  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
85  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 14  
HDLC (L)  
DTE (#13)  
DCE (#14)  
HDLC (R)  
78  
79  
63  
62  
TXD  
60  
67  
1
TXD  
RX1  
RX2  
RXD  
TX1  
64  
65  
77  
76  
74  
SCTE  
TXC  
TX2  
RXC  
70  
71  
TXC  
70  
68  
73  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
76  
RXC  
RXD  
67  
60  
74  
1
RXC  
RXD  
TX2  
63  
62  
78  
79  
RX1  
TX1  
XRT4500  
XRT4500  
COMMENTS: TXC CLOCK INVERSION AND 2 CLOCK MODE OPERATION WITHIN THE DCE MODE. THIS SCENARIO CAN  
BE USED TO RESOLVE THE 2 CLOCK PROPAGATION DELAY TIMING VIOLATION ISSUE.  
INPUT PIN SETTINGS  
DTE  
DCE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
STATE  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
1
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
1
1
0
1
1
DCE  
No Echo  
2CK/3CK  
LP  
2 clock  
2CK/3CK  
LP  
2 clock  
No Loopback  
No Invert  
No Loopback  
Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
86  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 16  
HDLC (L)  
DTE (#9)  
DCE (#16)  
HDLC (R)  
MUX 1  
78  
79  
TXD  
63  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
77  
76  
64  
65  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
70  
71  
70 TXC  
73  
68  
67  
60  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
71  
64  
65  
72  
RXC  
74  
1
RXC  
RXD  
TX2  
TX1  
76  
78  
63  
62  
RXD  
RX1  
79  
XRT4500  
XRT4500  
INPUT PIN SETTINGS  
DTE (#9)  
STATE  
DCE (#16)  
STATE  
PIN  
NAME  
#
PIN  
#
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
1
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
1
0
0
1
1
DCE  
No Echo  
2CK/3CK  
LP  
2 clock  
2CK/3CK  
LP  
2 clock  
No Loopback  
No Invert  
Loopback  
Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
87  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 17 & 18  
HDLC (L)  
DTE (#17)  
DCE (#18)  
HDLC (R)  
TXD  
78  
79  
64  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
70  
71  
70  
71  
68  
67  
60  
73  
RX3  
RX2  
TX3  
TX2  
TXC  
SCTE  
TXD  
RXC  
RXD  
64  
72  
76  
74  
1
RXC  
RXD  
65  
63  
62  
78  
79  
RX1  
TX1  
XRT4500  
XRT4500  
COMMENTS: X:21 MODE OPERATION  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#17)  
DCE (#18)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
X
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
88  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 20  
HDLC (L)  
DTE (#17)  
DCE (#20)  
MUX 1  
HDLC (R)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RX2  
RXD  
TX1  
77  
76  
64  
65  
74  
SCTE  
TXC  
TX2  
RXC  
70  
71  
70  
71  
68  
67  
60  
73  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
RXC  
RXD  
64  
65  
72  
76  
74  
1
RXC  
RXD  
TX2  
TX1  
78  
79  
63  
62  
RX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#17)  
DCE (#20)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
X
0
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
2CK/3CK  
LP  
Don’t care  
Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
89  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 21  
HDLC (L)  
DTE (#21)  
DCE (#18)  
HDLC (R)  
63  
62  
TXD  
78  
79  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
TX2  
SCTE  
TXC  
RX2  
RXC  
70  
71  
70  
68  
67  
73  
RX3  
TX3  
TXC  
SCTE  
TXD  
61  
64  
65  
72  
76  
RXC  
RXD  
74  
1
RX2  
RX1  
RXC  
RXD  
TX2  
78  
79  
63  
62  
60  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#21)  
DCE (#18)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
0
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
X
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t care  
No Loopback  
Invert  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
90  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 22  
HDLC (L)  
DTE (#17)  
DCE (#22)  
HDLC (R)  
TXD  
78  
79  
63  
62  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
64  
65  
77  
76  
74  
SCTE  
TXC  
RX2  
TX2  
RXC  
70  
71  
70  
68  
67  
60  
73  
RX3  
RX2  
TX3  
TXC  
SCTE  
TXD  
71  
RXC  
64  
65  
72  
76  
74  
1
RXC  
RXD  
TX2  
RXD  
63  
62  
78  
79  
RX1  
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#17)  
DCE (#22)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
X
1
0
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
2CK/3CK  
LP  
Don’t care  
No Loopback  
Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
91  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
SCENARIO 23  
HDLC (L)  
HDLC (R)  
DTE #23)  
DCE (#18)  
MUX 1  
63  
62  
TXD  
78  
79  
60  
67  
1
T X D  
R X 1  
R X D  
T X 1  
64  
65  
77  
76  
74  
T X 2  
S C T E  
R X 2  
R X C  
70  
71  
70  
61  
68  
67  
73  
R X 3  
T X C  
T X 3  
T X C  
S C T E  
T X D  
RXC  
RXD  
64  
72  
76  
74  
1
R X 2  
R X 1  
R X C  
R X D  
T X 2  
65  
78  
79  
63  
62  
60  
T X 1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#23)  
DCE (#18)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
0
0
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
1
X
1
1
1
1
DCE  
No Echo  
2CK/3CK  
LP  
Don’t care  
Loopback  
Invert  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
92  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
SCENARIO 48  
HDLC (L)  
DTE (#17)  
DCE #48)  
HDLC (R)  
63  
62  
TXD  
78  
79  
60  
67  
1
TXD  
RX1  
RXD  
TX1  
TX2  
64  
65  
77  
76  
74  
SCTE  
TXC  
RX2  
RXC  
70  
71  
70  
68  
67  
73  
RX3  
TX3  
TXC  
SCTE  
TXD  
61  
64  
65  
72  
76  
RXC  
RXD  
74  
1
RX2  
RX1  
RXC  
RXD  
TX2  
78  
79  
63  
62  
60  
CLK  
Q
D
TX1  
XRT4500  
XRT4500  
INPUT PIN SETTINGS (1 CLOCK MODE)  
DTE (#17)  
DCE (#48)  
STATE  
PIN  
#
PIN  
#
NAME  
STATE  
DESCRIPTION  
NAME  
DESCRIPTION  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
0
1
X
1
1
1
1
DTE  
No Echo  
31  
34  
50  
18  
54  
55  
53  
DCE/DTE  
EC  
1
0
X
0
0
1
1
DCE  
Echo Mode  
Don’t care  
Loopback  
Invert  
2CK/3CK  
LP  
Don’t care  
No Loopback  
No Invert  
2CK/3CK  
LP  
CKINV  
DTINV  
OSCEN  
CKINV  
DTINV  
OSCEN  
No Invert  
No Invert  
No Internal OSC  
No Internal OSC  
NOTE: When M0=1, M2=1, M2=0 the XRT4500 is in the 1 clock (X.21) mode and the 2CK/3CK input pin is ignored.  
93  
XRT4500  
áç  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV. 1.0.7  
External Components used by the XRT4500  
Function  
VSS by-pass Capacitor  
Description  
Notes  
-6V switching Regulator filter.  
25-47 F, 12V, SMT Tantalum  
µ
Low ESR. (0.20 max at 100kHz)  
Sprague Type  
SPR595D476X9025R2T-X  
Must be Schottky type  
JW Miller PM105-470K or PM105-  
680k.  
Schottky Diode  
Inductor  
1N5819 40V, 1A.  
47 or 68 H SMT inductor  
µ
Coilcraft D03316P-473  
Current Sense Resistor  
Charge Pump Capacitor  
VPP by-pass Capacitor  
VDD by-pass Capacitor  
0.5 , 0.5W, 5%  
+12V Charge Pump  
+12V Charge Pump  
+5V decoupling. (In addition to  
2.2 F, 25V, SMT Tantalum  
µ
10 F, 25V, SMT Tantalum  
µ
22 F, 16V, Electrolytic  
µ
various 0.1 F, 50V capacitors)  
µ
General by-pass  
Capacitors  
Panasonic X7R Dielectric, 1206  
size.  
0.1 F, 50V  
µ
Digikey PCC104BCT-ND  
94  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
80 LEAD THIN QUAD FLAT PACK  
(14 x 14 x 1.4 mm TQFP)  
REV. 3.00  
D
D1  
60  
41  
61  
40  
D1  
D
80  
21  
2
0
1
A2  
B
e
C
A
α
Seating Plane  
A1  
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
1.40  
0.05  
MAX  
1.60  
0.15  
A
0.055  
0.002  
0.063  
0.006  
A1  
A2  
0.053  
0.009  
0.004  
0.622  
0.547  
0.057  
0.015  
0.008  
0.638  
0.555  
1.35  
0.22  
1.45  
0.38  
B
C
0.09  
0.20  
D
15.80  
13.90  
16.20  
14.10  
D1  
e
L
α
0.0256 BSC  
0.65 BSC  
0.018  
0.030  
0.45  
0.75  
0°  
7°  
0°  
7°  
95  
áç  
XRT4500  
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC  
REV.1.0.7  
REVISIONS  
Rev. 1.0.3 -- Updated electrical characteristics, made minor text edits.  
Rev. 1.0.4 -- Corrected page formatting problems.  
Rev. 1.0.5 -- Corrected table anchor format problem page 46 (caused text to hide), replaced TR3 with TR6  
page 41.  
Rev. 1.0.6 -- Figure 2: Supply current vs. Temp, edited IDD values.  
Rev. 1.0.7 -- Table 1, Receiver specs V.35-- Min Signal level = ±250mV, Max Signal Peak = ±10V, DC Rin =  
175. Table 6, Switch S4 V.28 changed from Open to Closed.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order  
to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of  
any circuits described herein, conveys no license under any patent or other right, and makes no represen-  
tation that the circuits are free of patent infringement. Charts and schedules contained here in are only for  
illustration purposes and may vary depending upon a user’s specific application. While the information in  
this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support sys-  
tem or to significantly affect its safety or effectiveness. Products are not authorized for use in such applica-  
tions unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury  
or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corpo-  
ration is adequately protected under the circumstances.  
Copyright 2002 EXAR Corporation  
Datasheet September 2002.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
96  

相关型号:

XRT4500CV

MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
EXAR

XRT5620CP-F

Digital Transmission Interface, T-1(DS1), Bipolar, PDIP18
EXAR

XRT5675D

PCM Transmitter
ETC

XRT5676IP-F

PCM Receiver, CEPT PCM-30/E-1, PDIP8,
EXAR

XRT5683A

PCM Line Interface Chip
EXAR

XRT5683AIP-F

PCM Line Interface Chip
EXAR

XRT56L22

Low Power Repeater/Receiver
EXAR

XRT56L22D

暂无描述
EXAR

XRT56L22N

Digital Transmission Interface, CEPT PCM-30/E-1, CDIP18,
EXAR

XRT56L85

Low Power PCM Line Interface
EXAR

XRT56L85D

Low Power PCM Line Interface
EXAR

XRT56L85P

Low Power PCM Line Interface
EXAR