XRT5793IV-F [EXAR]

PCM Transceiver, 4-Func, CMOS, PQFP80, 14 X 14 MM, 1.4 MM HEIGHT, GREEN, TQFP-80;
XRT5793IV-F
型号: XRT5793IV-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

PCM Transceiver, 4-Func, CMOS, PQFP80, 14 X 14 MM, 1.4 MM HEIGHT, GREEN, TQFP-80

PC 电信 电信集成电路
文件: 总16页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR-T5793  
Quad E1  
Line Interface Unit  
...the analog plus companyTM  
June 1997-3  
FEATURES  
D Individual Channel Loss of Signal Detection, Local  
and Remote Digital Loopback  
D Meets CCITT G.703 Pulse Mask Template for  
D Low Power, CMOS Technology  
D Over-Temperature Protection  
2.048Mbps (E1) Rates  
D Transmitter and Receiver Interfaces Can Be:  
– Single Ended, 75Capacitive or Transformer  
APPLICATIONS  
Coupled  
– Balanced, 100or 120Transformer Coupled  
D Multi-Line E1 Interface Cards  
D Minimum Return Loss is 20dB (Receive) and 18dB  
(Transmit), Exceeds G.703 and ETSI 300 166  
Specifications  
D E1 Network Equipment  
– Multiplexers  
– Cross Connects  
– Switching Systems  
D Bipolar Outputs Can Be Disabled Individually (High  
Z Outputs)  
D Fault Tolerant Systems  
D System Interface is TTL Compatible on Digital Input  
and TTL/CMOS Compatible on Digital Output Pins  
GENERAL DESCRIPTION  
The XR-T5793 is an optimized line interface unit, built  
using low power CMOS technology. This device contains  
four independent E1 channels for primary rate, PCM  
applications up to 2.048Mbps. Each channel performs  
the driver and receiver functions necessary to convert  
bipolar signals to TTL/CMOS compatible logic levels and  
vice versa. The device supports single ended or balanced  
line interfaces on each channel, thereby providing the  
user an option of reducing system cost and board space  
by replacing the transformer with a capacitor.  
sensitivity of 600mV over the operating temperature  
range. Return loss on the receive interfaces is minimum  
20dB from 51kHz to 3.072MHz.  
Local and remote loopbacks can be performed on any of  
the four channels. A separate loss of signal (LOS)  
detection circuitry and a LOS pin is provided for each  
input.  
The XR-T5793 is targeted for multi-line E1 line card  
applications where real estate and low power  
consumption are critical. Also, the device may be used in  
T1 applications (1.544Mbps) which do not require  
meeting the DSX-1 cross connect pulse template. The  
XR-T5793 is pin compatible with the XR-T5794, which  
supports a fifth channel. The fifth channel is for  
redundancy and dedicated monitoring on any of the eight  
bipolar paths.  
Each of the four drivers can be independently disabled,  
allowing maximum flexibility in system power  
management. Output pulses are fully CCITT G.703  
compliant. Moreover, the return loss is at least 18dB over  
a frequency range of 51kHz to 3.072MHz.  
The slicing circuit in the receive path is able to tolerate a  
maximum of 12dB of cable loss with a minimum input  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part No.  
Package  
68 Lead PLCC  
80 Lead TQFP (14 x 14 x 1.4 mm)  
XR-T5793IJ  
XR-T5793IV  
-40°C to +85°C  
-40°C to +85°C  
Rev. 2.00  
E1995  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
1
XR-T5793  
BLOCK DIAGRAM  
Transceiver 1  
Transceiver 2  
Transceiver 3  
75Unbalanced  
(Without Transformer)  
TIP  
TIP  
0.1µF  
Transceiver 4  
LOS  
75  
Impedance Selectable  
Receivers. Return  
Loss Exceeds G7.03.  
Level  
Detector  
L
Slicer  
RXPOS  
RXNEG  
RXIN  
o
c
a
l
120Balanced  
RX INPUT  
RING  
(or 100)  
100  
or  
120  
Peak  
Detector  
Slice  
Voltage  
/
Impedance  
Selectable  
PE-65834  
TTI-7148  
R
e
m
o
t
E1/T1-  
Tristate  
Drivers Return  
Loss Exceeds  
ETSI 300 166  
LOS Threshold Based on G.775  
LOOPSEL (1.0)  
LOOPEN  
e
LPMOD  
L
o
o
p
b
a
c
k
TXPOS  
TXNEG  
TCLK  
TXOUT  
Driver  
TIP  
120,100or  
75Balanced  
1
Rout  
TX OUTPUT  
RING  
TXEN  
PE-65839  
TTI-7149  
75Unbalanced  
(Without Transformer)  
TIP  
1
R
OUT  
0.1µF  
Note  
1
R
= 68for 120line impedance, R  
= 62for 100line impedance, R  
= 68for 75line impedance  
OUT  
OUT  
OUT  
Figure 1. Block Diagram  
Rev. 2.00  
2
XR-T5793  
PIN CONFIGURATION  
9
1
61  
60  
NC  
AV  
LOSLVS  
SS  
10  
AV  
DD  
TXCLK4  
TXPOS4  
TXNEG4  
TXCLK3  
TXPOS3  
TXNEG3  
LOOPEN4  
LOOPEN3  
GND  
TXCLK2  
TXPOS2  
TXNEG2  
TXCLK1  
TXPOS1  
TXNEG1  
LOOPEN2  
LOOPEN1  
E1/T1–  
V
V
DD  
SS  
RXPOS3  
RXNEG3  
RXPOS4  
RXNEG4  
RXPOS2  
RXNEG2  
RXPOS1  
RXNEG1  
RV  
DD  
RV  
SS  
26  
44  
43  
27  
68 Lead PLCC  
60  
41  
NC  
NC  
NC  
NC  
61  
40  
LPMOD1  
TXEN2  
TXEN1  
TXOUT1  
LPMOD2  
RXIN1  
LOS2  
LOS1  
RXIN2  
TV  
DD  
TV  
SS  
TXOUT2  
AGND  
NC  
TV  
SS  
RGND  
RGND  
RGND  
NC  
NC  
TV  
DD  
AGND  
NC  
TXOUT3  
RXIN3  
LOS3  
LOS4  
RXIN4  
LPMOD3  
LPMOD4  
TV  
DD  
SS  
TV  
TXOUT4  
TXEN4  
TXEN3  
NC  
80  
21  
1
20  
80 Lead TQFP (14 x 14 x 1.4 mm)  
Rev. 2.00  
3
XR-T5793  
PIN DESCRIPTION  
PLCC  
Pin #  
SQFP  
Pin #  
Symbol  
NC  
Type  
Description  
1
2
3
4
71  
72  
73  
74  
No Connect.  
TVDD  
VDD  
GND  
O
Transmit VDD. )5V ($5%).  
Analog Ground.  
AGND  
TXOUT3  
Transmitter 3 Output. Transmitter 3 bipolar output connected to coupling  
capacitor or pulse transformer by a resistor.  
5
6
7
75  
76  
77  
TVSS  
TVDD  
VSS  
VDD  
O
Transmit VSS. -5V ($5%).  
Transmit VDD. +5V ($5%).  
TXOUT4  
Transmitter 4 Output. Transmitter 4 bipolar output connected to coupling  
capacitor or pulse transformer by a resistor.  
8
9
78  
79  
TXEN4  
TXEN3  
I
I
Transmitter 4 Output Enable. If driven high the transmitter 4 output drivers  
are enabled. Hi-Z otherwise.  
Transmitter 3 Output Enable. If driven high the transmitter 3 output drivers  
are enabled. Hi-Z otherwise.  
10  
11  
12  
1, 2, 80  
NC  
NC  
VDD  
I
No Connect.  
Analog VDD.  
3,4  
5
AVDD  
TXCLK4  
Transmitter 4 Clock Input. Apply logic one when RZ signals are supplied to  
data inputs.  
13  
14  
15  
16  
17  
18  
19  
6
7
TXPOS4  
TXNEG4  
TXCLK3  
I
I
I
I
I
I
I
Transmitter 4 Positive Data In. Positive data input in NRZ or RZ format for  
transmitter 4.  
Transmitter 4 Negative Data In. Negative data input in NRZ or RZ format for  
transmitter 4.  
8
Transmitter 3 Clock Input. Apply logic one when RZ signals are supplied to  
data inputs.  
9
TXPOS3  
TXNEG3  
LOOPEN4  
LOOPEN3  
Transmitter 3 Positive Data in. Positive data input in NRZ or RZ format for  
transmitter 3.  
10  
11  
12  
Transmitter 3 Negative Data In. Negative data input in NRZ or RZ format for  
transmitter 3.  
Loop Enable 4. If driven high the specified loop type will be enabled for  
channel 4. Otherwise normal operation will continue.  
Loop Enable 3. If driven high the specified loop type will be enabled for  
channel 3. Otherwise normal operation will continue.  
20  
21  
22  
13  
14  
15  
GND  
VDD  
GND  
VDD  
O
Digital Ground.  
Digital VDD. +5V ($5%).  
RXPOS3  
Receiver 3 Positive Data Out. Positive data output in NRZ or RZ format for  
receiver 3.  
23  
24  
25  
26  
16  
17  
RXNEG3  
RXPOS4  
RXNEG4  
RVDD  
O
O
Receiver 3 Positive Data Out. Negative data output in NRZ or RZ format for  
receiver 3.  
Receiver 4 Positive Data Out. Positive data output in NRZ or RZ format for  
receiver 4.  
18  
O
Receiver 4 Positive Data Out. Negative data output in NRZ or RZ format for  
receiver 4.  
19,20  
VDD  
Receive VDD. +5V ($5%).  
Rev. 2.00  
4
XR-T5793  
PIN DESCRIPTION (CONT’D)  
PLCC  
Pin #  
SQFP  
Pin #  
Symbol  
Type  
Description  
27  
28  
29  
21  
22  
23  
LPMOD4  
I
Loop Mode 4. If driven high the loopback mode of channel 4 will be set to re-  
mote loop. Otherwise theloopback mode will remain at local loop. The  
actualloopback will be activated when the LOOPEN4 is asserted.  
LPMOD3  
RXIN4  
I
I
Loop Mode 3. If driven high the loopback mode of channel 3 will be set to re-  
mote loop. Otherwise the loopback mode will remain at local loop. The  
actual loopback will be activated when the LOOPEN3 is asserted.  
Receiver 4 Input. Receiver 4 bipolar input connected to coupling capacitor or  
pulse transformer.  
30  
31  
32  
24  
25  
26  
LOS4  
LOS3  
RXIN3  
O
O
I
Receiver 4 Loss of Signal. Asserted during LOS condition. Clear otherwise.  
Receiver 3 Loss of Signal. Asserted during LOS condition. Clear otherwise.  
Receiver 3 Input. Receiver 3 bipolar input connected to coupling capacitor or  
pulse transformer.  
33  
34  
35  
36  
37  
38  
27  
28  
NC  
NC  
No Connect.  
No Connect.  
29, 30  
31  
RGND  
RGND  
NC  
GND  
GND  
Receive Ground.  
Receive Ground.  
No Connect.  
32  
33  
RXIN2  
I
Receiver 2 Input. Receiver 2 bipolar input connected to coupling capacitor or  
pulse transformer.  
39  
40  
41  
34  
35  
36  
LOS1  
LOS2  
RXIN1  
O
O
I
Receiver 1 Loss of Signal. Asserted during LOS condition. Clear otherwise.  
Receiver 2 Loss of Signal. Asserted during LOS condition. Clear otherwise.  
Receiver 1 Input. Receiver 1 bipolar input connected to coupling capacitor or  
pulse transformer.  
42  
43  
37  
38  
LPMOD2  
LPMOD1  
I
I
Loop Mode 2. If driven high the loopback mode of channel 2 will be set to re-  
mote loop. Otherwise the loopback mode will remain at local loop. The  
actual loopback will be activated when the LOOPEN2 is asserted.  
Loop Mode 1. If driven high the loopback mode of channel 1 will be set to re-  
mote loop. Otherwise the loopback mode will remain at local loop. The  
actual loopback will be activated when the LOOPEN1 is asserted.  
-
39, 40  
41,42  
43  
NC  
NC  
VSS  
O
No Connect.  
44  
45  
RVSS  
Receive VSS. -5V ($5%).  
RXNEG1  
Receiver 1 Negative Data Out. Negative data output in NRZ or RZ format for  
receiver 1.  
46  
47  
48  
44  
45  
46  
RXPOS1  
RXNEG2  
RXPOS2  
O
O
O
Receiver 1 Positive Data Out. Positive data output in NRZ or RZ format for  
receiver 1.  
Receiver 2 Negative Data Out. Negative data output in NRZ or RZ format for  
receiver 2.  
Receiver 2 Positive Data Out. Positive data output in NRZ or RZ format for  
receiver 2.  
49  
50  
47  
48  
VSS  
VSS  
I
Digital VSS. -5V ($5%).  
E1/T1-  
E1/T1- Selection. Apply logic one to select the receive data threshold  
appropriate for E1 operation. Connect to ground to select the T1 data  
threshold.  
Rev. 2.00  
5
XR-T5793  
PIN DESCRIPTION (CONT’D)  
PLCC  
Pin #  
SQFP  
Pin #  
Symbol  
Type  
Description  
51  
52  
53  
54  
55  
56  
57  
58  
49  
50  
51  
52  
53  
54  
55  
56  
LOOPEN1  
I
Loop Enable 1. If driven high the specified loopback mode will be enabled for  
channel 1. Otherwise normal operation will continue.  
LOOPEN2  
TXNEG1  
TXPOS1  
TXCLK1  
TXNEG2  
TXPOS2  
TXCLK2  
I
I
I
I
I
I
I
Loop Enable 2. If driven high the specified loopback mode will be enabled for  
channel 2. Otherwise normal operation will continue.  
Transmitter 1 Negative Data In. Negative data input in NRZ or RZ format for  
transmitter 1.  
Transmitter 1 Positive Data In. Positive data input in NRZ or RZ format for  
transmitter 1.  
Transmitter 1 Clock Input. Apply logic one when RZ signals are supplied to  
data inputs.  
Transmitter 2 Negative Data In. Negative data input in NRZ or RZ format for  
transmitter 2.  
Transmitter 2 Positive Data In. Positive data input in NRZ or RZ format for  
transmitter 2.  
Transmitter 2 Clock Input. Apply logic one when RZ signals are supplied to  
data inputs.  
59  
60  
57,58,59  
60  
AVSS  
VSS  
I
Analog VSS.  
LOSLVS  
Loss of Signal Voltage Select. Apply logic one to select LOS voltage level  
appropriate for 120balanced receiver operation. Connect to ground to  
choose LOS voltage for 75unbalanced operation.  
-
61, 62  
63  
NC  
NC  
I
No Charge.  
61  
TXEN2  
Transmitter 2 Output Enable. If asserted the transmitter 2 output drivers are  
enabled. High-Z otherwise.  
62  
63  
64  
65  
TXEN1  
I
Transmitter 1 Output Enable. If asserted the transmitter 1 output drivers are  
enabled. High-Z otherwise.  
TXOUT1  
O
Transmitter 1 Output. Transmitter 1 bipolar output connected to coupling  
capacitor or pulse transformer through a resistor.  
64  
65  
66  
66  
67  
68  
TVDD  
TVSS  
VDD  
VSS  
O
Transmit VDD. +5V ($5%).  
Transmit VSS. -5V ($5%).  
TXOUT2  
Transmitter 2 Output. Transmitter 2 bipolar output connected to coupling  
capacitor or pulse transformer through a resistor.  
67  
68  
69  
70  
AGND  
TVSS  
GND  
VSS  
Analog Ground.  
Transmit VSS. –5V ($5%).  
Rev. 2.00  
6
XR-T5793  
DC ELECTRICAL CHARACTERISTICS  
Test Conditions: T = -40°C to 25°C to 85°C, all V s = 5V $5%, all V s = -5V $5%, all GNDs = 0V  
A
DD  
SS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
DC Parameters  
VDD  
s
DC Supply Positive  
DC Supply Negative  
4.75  
5.00  
5.25  
V
V
VSS  
s
-4.75  
-5.00  
-5.25  
Inputs  
VIH  
VIL  
High Level Input  
2.0  
V
V
Low Level Input  
0.8  
40  
IPDC  
Input Pull Down Current  
µA  
Outputs  
VOH  
High Level Output  
High Level Output  
Low Level Output  
3.5  
V
V
V
IOH = -10µA  
IOH = -40µA  
IOL = 1.6mA  
VOH  
2.4  
VOL  
0.4  
Receiver Specifications  
RXP  
Receiver Sensitivity  
0.6  
0
4.2  
12  
12  
Vp  
dB  
dB  
dB  
%
RXCL  
Allowed Cable Loss  
10  
10  
1.024MHz (E1)  
772kHz (T1)  
(0dB=2.4V)  
0
RXIWT  
RXTI  
Interference Margin (E1)  
Receiver Slicing Level (T1)1  
Receiver Slicing Level (E1)1  
Receiver LOS Threshold  
Input Resistance  
16  
60  
45  
with 6dB cable loss  
Peak Voltage %  
Peak Voltage %  
65  
50  
70  
55  
RXEI  
%
RXLOS  
RIN  
0.2  
0.3  
V
2.5  
kΩ  
Up to 3.072MHz  
Power Specifications (Without Monitor Channel)  
PD  
PD  
Power Dissipation  
400  
250  
500  
475  
450  
680  
280  
833  
860  
830  
mW  
mW  
mW  
mW  
mW  
mW  
Power Dissipation  
All Drivers in High-Z  
PC  
Power Consumption 752  
Power Consumption 1002  
Power Consumption 1202  
Power Supply Requirement  
All 1’s Transmit & Receive  
All 1’s Transmit & Receive  
All 1’s Transmit & Receive  
PC  
PC  
PVDD  
Pc/2  
+5mW  
Pvss  
Power Supply Requirement  
Pc/2  
- 5mW  
mW  
Notes  
1
2
Selected by E1/T1-  
Power consumption = power dissipation + power to the cable.  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Specifications are subject to change without notice  
Rev. 2.00  
7
XR-T5793  
AC ELECTRICAL CHARACTERISTICS  
Test Conditions: T = -40°C to 25°C to 85°C, all V s = 5V $5%, all V s = -5V $ 5%, all GNDs = 0V  
A
DD  
SS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
AC PARAMETERS  
VTXOUT  
VTXOUT  
VTXOUT  
Output Pulse Amplitude  
(75)  
2.13  
2.70  
2.3  
2.37  
3.0  
2.60  
3.30  
3.7  
V
V
V
Output Pulse Amplitude  
(120)  
Output Pulse Amplitude  
(100)  
3.0  
TXPW  
TXPW  
Pulse Width (2.048MHz)  
Pulse Width (1.544MHz)  
Pos/neg Pulse Imbalance  
TXCLK Clock Period (E1)  
TXCLK Clock Period (T1)  
TXCLK Duty Cycle  
224  
274  
-5  
244  
324  
264  
374  
+5  
ns  
ns  
%
Determined by TX Clock  
Determined by TX Clock  
T1  
T2  
T3  
T4  
488  
648  
50  
ns  
ns  
%
48  
52  
Data Setup Time, TDATA to  
TCLK  
50  
ns  
T5  
TR  
TF  
T6  
T7  
Data Hold Time, TCLK to TDATA  
Clock Rise Time  
50  
ns  
ns  
ns  
ns  
ns  
30  
30  
Clock Fall Time  
Receive Data High (E1)  
Data Propagation Delay  
219  
244  
269  
0dB Cable Loss  
T1  
T2  
) 100  
) 100  
T1  
T2  
T8  
Data Propagation Delay  
ns  
Specifications are subject to change without notice  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature . . . . . . . . . . . . -65°C to +150°C  
Operating Temperature . . . . . . . . . . . . -40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $7V  
Rev. 2.00  
8
XR-T5793  
T or T  
1
F
T
3
T
3
T
R
T
F
TXCLK(n)  
T
4
T
5
TXPOS(n)  
TXNEG(n)  
Figure 2. Transmit Timing Diagram  
T
7
T
6
T
R
T
F
RXIN  
T
8
RXPOS  
RXNEG  
T
F
T
R
T
6
Figure 3. Receive Timing Diagram  
Rev. 2.00  
9
XR-T5793  
Transmit Interface  
75Ω  
75Ω  
100Ω  
100Ω  
120Ω  
120Ω  
Min.  
18  
Typ.  
22  
Min.  
18  
Typ.  
22  
Min.  
18  
Typ.  
22  
Units  
dB  
51kHz to 102kHz  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
18  
22  
18  
22  
18  
22  
dB  
18  
22  
18  
22  
18  
22  
dB  
Receive Interface  
Min.  
20  
Typ.  
30  
Min.  
20  
Typ.  
30  
Min.  
20  
Typ.  
30  
Units  
dB  
51kHz to 102kHz  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
20  
30  
20  
30  
20  
30  
dB  
20  
30  
20  
30  
20  
30  
dB  
Note  
The return loss has been measured on the evaluation board coupled via a capacitor and terminated with 75impedance.  
Table 1. Return Loss Requirements (Resistor Tolerance: 1% on Transmit Side, 2% on Receive Side)  
Turns Ratio  
Line Impedance  
75Ω  
RLOAD  
75Ω  
Turns Ratio  
1:1  
Line Impedance  
75Ω  
ROUT  
68Ω  
68Ω  
62Ω  
1:1  
1:1  
1:1  
120Ω  
120Ω  
100Ω  
1:1.265  
1:1.265  
120Ω  
100Ω  
100Ω  
Table 2. Input Transformer Requirements  
Magnetic Supplier Information:  
Table 3. Output Transformer Requirements  
Pulse  
Transpower Technologies, Inc.  
24 Highway 28, Suite 202  
Crystal Bay, NV 89402–0187  
Tel. (702) 831–0140  
Telecom Product Group  
P.O. Box 12235  
San Diego, CA 92112  
Tel. (619) 674-8100  
Fax. (619) 674-8262  
Fax. (702) 831–3521  
Rev. 2.00  
10  
XR-T5793  
SYSTEM DESCRIPTION  
driver. External resistors are used to maintain an  
accurate source impedance that has a high return loss to  
the transformer or the capacitor. Each of the drivers can  
be individually disabled, this is required in fault tolerant  
applications where redundancy is a requirement. During  
power-down mode of operation the bipolar outputs can be  
disabled.  
This device is a quad E1 transceiver which provides  
electrical interface for 2.048Mbps applications. Its unique  
architecture includes four receiver circuits that convert  
CCITT G.703 compliant bipolar signals to TTLcompatible  
logic levels. Likewise, in the other direction, four  
transmitters translate TTL compatible logic levels to  
G.703 compatible bipolar signals.  
To protect the data integrity during a brownout, the output  
pulse amplitudes are reduced by a factor of 25% if the  
supply drops below an internally set limit.  
This device supports two different types of loopback  
functions. Each of four channels can be independently  
looped either in local or remote sides digitally. The  
remote loopback is performed between the receiver input  
and transmitter output. To activate the remote loopback  
on channel n, LOOPENn and LPMODn inputs are driven  
high. Local loopback on channel n, can be established  
similarly by driving LOOPENn high and clearing LPMODn  
Transmissionispossibleeitherwithorwithoutaclock. Ifa  
clock is used, the transmit input data must consist of  
full-width NRZ pulses, and the transmitter output pulse  
width is determined by the duty cycle of the clock. If the  
transmit clock is tied high, the transmitter output pulses  
are determined by the input data pulse width. In this  
mode, RZ data must be supplied to the device.  
inputs.  
More than one channel can be tested  
simultaneously.  
RECEIVERS  
TXP TXN  
Each of the four identical E1 line receivers will accept  
bipolar signals meeting the CCITT G.703 pulse mask  
requirements. Each input stage consists of a slicing  
circuitry which samples the incoming pulses at a fixed  
percentage of the signals maximum amplitude. The  
slicing voltage level is generated using a precision peak  
detector. The receiver section can tolerate up to 12dB of  
line loss (measured at 1.024MHz).  
RXIN  
TXOUT  
RX  
TX  
LPMOD=0  
LPEN=1  
RXP RXN  
Remote Loopback  
TXP TXN  
A loss of signal (LOS) is detected on any inputs by input  
fail circuitry. There is an independent LOS pin dedicated  
for each of the receivers. The LOS detection is based on  
signal energy instead of number of zeros.  
RXIN  
TXOUT  
RX  
TX  
LPMOD=0  
LPEN=1  
A balanced signal (100or 120) must be coupled by a  
transformer. Anunbalancedsignal(75)maybecoupled  
via capacitor or a transformer.  
RXP RXN  
Local Loopback  
Figure 4. Loopback Configurations  
TRANSMITTERS  
This device contains four identical CCITT G.703  
compliant transmitters which meet the return loss  
requirements. Each transmitter is a single-ended voltage  
Rev. 2.00  
11  
XR-T5793  
Output Transformer Selection  
3. Calculate the source resistance, Rs.  
VS  
The 1:1.265 ratio output transformer is recommended for  
the XR-T5793 because this ratio gives the best possible  
transmitter output return loss for 120balanced E1  
service. However, other transformers may provide an  
adequate return loss for many applications. The two  
characteristics that determine series build-out resistor  
requirements are:  
ǒ Ǔ  
* 1  
RS + Req  
Veq  
4. Now calculate the theoretical return loss.  
Req ) RS  
Return Loss + 20 log ǒ Ǔ  
Req * RS  
D Driver output impedance is less than 5.  
D Vs, which is the driver open circuit output voltage, is  
4.5V peak.  
The calculation given below uses the recommended  
1:1.265 ratio transformer as an example:  
The following method may be used to determine  
transformer suitability for a given use.  
Transformer Ratio = 1:1.265  
1. List the application requirements.  
Transformer ratio = 1:n  
V = 3.0V Peak  
O
R = 120Ω  
L
V = Peak output pulse amplitude  
O
R = Load resistance  
L
RL  
n2  
120  
1.6  
Req +  
Veq +  
+
+
+ 75Ω  
Rs  
1:n  
Vo  
n
3.0  
1.265  
1
2
3
4
+ 2.37V  
V
O
Vs  
R
L
VS  
ǒ 4.5 Ǔ + 67.4Ω  
Rs + Req ǒ Ǔ+ 75  
* 1  
* 1  
2.37  
Veq  
Figure 5. Equivalent Impedance Schematic  
2. Calculate equivalent output voltage and load  
resistance without the transformer.  
(Datasheet specifies standard value of 68)  
Calculate the theoretical return loss to determine if the  
transformer is acceptable.  
RL  
+
VO  
+
Req  
Veq  
n2  
n
ǒ75 ) 67.4Ǔ + 25.5dB  
Return Loss + 20 log  
Rs  
75 * 67.4  
V
eq  
Vs  
Req  
Figure 6. Equivalent Simplified Schematic  
Rev. 2.00  
12  
XR-T5793  
269 ns  
(244 + 25)  
Nominal pulse  
20%  
20%  
10%  
10%  
V = 100%  
194 ns  
(244 – 50)  
50%  
244 ns  
219 ns  
(244 – 25)  
10%  
10%  
10%  
10%  
0%  
20%  
488 ns  
(244 + 244)  
Note: V corresponds to the nominal peak value  
Figure 7. CCITT G.703 Pulse Template  
Rev. 2.00  
13  
XR-T5793  
68 LEAD PLASTIC LEADED CHIP CARRIER  
(PLCC)  
Rev. 1.00  
D
C
Seating Plane  
D
45° x H1  
1
A
2
45° x H2  
2 1 68  
B
1
B
D
D
2
3
D
D
1
e
R
D
3
A
1
A
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
A
A
B
B
0.165  
0.090  
0.020  
0.013  
0.026  
0.008  
0.985  
0.950  
0.890  
0.200  
0.130  
---.  
4.19  
2.29  
5.08  
3.30  
---  
1
2
0.51  
0.021  
0.032  
0.013  
0.995  
0.958  
0.930  
0.33  
0.53  
0.81  
0.32  
25.27  
24.33  
23.62  
0.66  
1
C
D
D
D
D
e
0.19  
25.02  
24.13  
22.61  
1
2
3
0.800 typ.  
0.050 BSC  
20.32 typ.  
1.27 BSC  
H1  
H2  
R
0.042  
0.056  
0.048  
0.045  
1.07  
1.42  
1.22  
1.14  
0.042  
0.025  
1.07  
0.64  
Note: The control dimension is the inch column  
Rev. 2.00  
14  
XR-T5793  
80 LEAD THIN QUAD FLAT PACK  
(14 x 14 x 1.4 mm, TQFP)  
Rev. 3.00  
D
D
1
60  
41  
61  
40  
D
D
1
80  
21  
1
20  
A
B
2
e
C
A
α
Seating Plane  
A
1
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.055  
0.002  
0.053  
0.009  
0.004  
0.622  
0.547  
0.063  
0.006  
0.057  
0.015  
0.008  
0.638  
0.555  
1.40  
0.05  
1.60  
0.15  
A
1
A
2
B
1.35  
1.45  
0.22  
0.38  
C
D
D
e
0.09  
0.20  
15.80  
13.90  
16.20  
14.10  
0.65 BSC  
0.75  
1
0.0256 BSC  
L
0.018  
0.030  
0.45  
α
0°  
7°  
0°  
7°  
Note: The control dimension is the millimeter column  
Rev. 2.00  
15  
XR-T5793  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 1995 EXAR Corporation  
Datasheet June 1997  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 2.00  
16  

相关型号:

XRT5794ES

Evaluation System
EXAR

XRT5794IJ-F

暂无描述
EXAR

XRT5794IV-F

PCM Transceiver, 4-Func, CMOS, PQCC68, GREEN, PLASTIC, LCC-68
EXAR

XRT5894

Four-Channel E1 Line Interface (3.3V or 5.0V)
EXAR

XRT5894IV

Four-Channel E1 Line Interface (3.3V or 5.0V)
EXAR

XRT5897

Seven-Channel E1 Line Interface
EXAR

XRT5897IV

Seven-Channel E1 Line Interface
EXAR

XRT5997

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT59L91

Single-Chip E1 Line Interface Unit
EXAR

XRT59L91ID

Single-Chip E1 Line Interface Unit
EXAR