XRT83VSH38 [EXAR]

8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT; 8通道T1 / E1 / J1短程线路接口单元
XRT83VSH38
型号: XRT83VSH38
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT
8通道T1 / E1 / J1短程线路接口单元

文件: 总76页 (文件大小:1798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
MARCH 2007  
REV. 1.0.7  
The on-chip clock synthesizer generates T1/E1/J1  
clock rates from a selectable external clock frequency  
and outputs a clock reference of the line rate chosen.  
GENERAL DESCRIPTION  
The XRT83VSH38 is a fully integrated 8-channel  
short-haul line interface unit (LIU) that operates from  
a 1.8V and a 3.3V power supply. Using internal  
termination, the LIU provides one bill of materials to  
operate in T1, E1, or J1 mode with minimum external  
components. The LIU features are programmed  
Additional features include RLOS, a 16-bit LCV  
counter for each channel, AIS, QRSS generation/  
detection, TAOS, DMO, and diagnostic loopback  
modes.  
through a standard parallel or serial microprocessor APPLICATIONS  
interface. EXAR’s LIU has patented high impedance  
T1 Digital Cross-Connects (DSX-1)  
circuits that allow the transmitter outputs and receiver  
inputs to be high impedance when experiencing a  
power failure or when the LIU is powered off. Key  
design features within the LIU optimize 1:1 or 1+1  
redundancy and non-intrusive monitoring applications  
to ensure reliability without using relays.  
ISDN Primary Rate Interface  
CSU/DSU E1/T1/J1 Interface  
T1/E1/J1 LAN/WAN Routers  
Public switching Systems and PBX Interfaces  
T1/E1/J1 Multiplexer and Channel Banks  
FIGURE 1. BLOCK DIAGRAM OF THE XRT83VSH38 T1/E1/J1 LIU (HOST MODE)  
MCLKE1  
MCLKT1  
MCLKOUT  
MASTER CLOCK SYNTHESIZER  
DRIVE  
MONITOR  
TAOS  
1 of 8 channels, CHANNEL_n  
DMO_n  
TTIP_n  
TPOS_n/TDATA_n  
TNEG_n/CODES_n  
TCLK_n  
QRSS  
PATTERN  
HDB3/  
B8ZS  
TX FILTER  
& PULSE  
SHAPER  
TX/RX JITTER  
ATTENUATOR  
TIMING  
CONTROL  
LINE  
DRIVER  
GENERATOR  
ENCODER  
TRING_n  
TXON_n  
Remote  
Digital  
Analog  
Loopback  
Loopback  
Loopback  
QRSS  
DETECTOR  
RCLK_n  
RNEG_n/LCV_n  
RPOS_n/RDATA_n  
RTIP_n  
HDB3/  
B8ZS  
DECODER  
TIMING &  
DATA  
RECOVERY  
PEAK  
DETECTOR  
& SLICER  
TX/RX JITTER  
ATTENUATOR  
RRING_n  
LOS  
AIS  
DETECTOR  
DETECTOR  
RLOS_n  
TEST  
ICT  
HW/HOST  
WR_R/W  
RD_DS  
µPTS1  
µPTS2  
D[7:0]  
ALE-AS  
MICROPROCESSOR/SERIAL INTERFACE CONTROLLER  
CS  
µPCLK/SCLK  
A[7:0]/SDI  
RESET  
RDY_DTACK/SDO  
INT  
SER_PAR  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FIGURE 2. BLOCK DIAGRAM OF THE XRT83VSH38 T1/E1/J1 LIU (HARDWARE MODE)  
REV. 1.0.7  
MCLKE1  
MCLKT1  
CLKSEL[2:0]  
MCLKOUT  
TAOS_n  
MASTER CLOCK SYNTHESIZER  
DRIVE  
MONITOR  
TAOS  
1 of 8 channels, CHANNEL_n  
DMO_n  
TTIP_n  
TPOS_n/TDATA_n  
TNEG_n/CODES_n  
TCLK_n  
QRSS  
PATTERN  
GENERATOR  
HDB3/  
B8ZS  
ENCODER  
TX FILTER  
& PULSE  
SHAPER  
TX/RX JITTER  
ATTENUATOR  
TIMING  
CONTROL  
LINE  
DRIVER  
TRING_n  
Remote  
Loopback  
Digital  
Loopback  
Analog  
Loopback  
TXON_n  
QRSS  
DETECTOR  
HDB3/  
B8ZS  
DECODER  
TIMING &  
DATA  
RECOVERY  
PEAK  
DETECTOR  
& SLICER  
RCLK_n  
RNEG_n/LCV_n  
RPOS_n/RDATA_n  
TX/RX JITTER  
ATTENUATOR  
RTIP_n  
RRING_n  
LOOP1_n  
LOOP0_n  
LOS  
DETECTOR  
AIS  
DETECTOR  
RLOS_n  
TEST  
ICT  
HW/HOST  
GAUGE  
JASEL1  
JASEL0  
RXTSEL  
TXTSEL  
TERSELR  
XRES0  
RESET  
TRATIO  
SR/DR  
EQC[4:0]  
TCLKE  
RCLKE  
RXMUTE  
ATAOS  
HARWARE CONTROL  
RXRES1  
2
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FEATURES  
Fully integrated eight channel short-haul transceivers for T1/J1 (1.544MHz) and E1 (2.048MHz) applications  
T1/E1/J1 short haul and clock rate are per port selectable through software without changing components  
Internal Impedance matching on both receive and transmit for 75(E1), 100(T1), 110(J1), and 120Ω  
(E1) applications are per port selectable through software without changing components  
Power down on a per channel basis with independent receive and transmit selection  
Five pre-programmed transmit pulse settings for T1 short haul applications per channel  
User programable Arbitrary Pulse mode  
On-Chip transmit short-circuit protection and limiting protects line drivers from damage on a per channel  
basis  
Selectable Crystal-Less digital jitter attenuators (JA) with 32-Bit or 64-Bit FIFO for the receive or transmit  
path  
Driver failure monitor output (DMO) alerts of possible system or external component problems  
Transmit outputs and receive inputs may be "High" impedance for protection or redundancy applications on a  
per channel basis  
Support for automatic protection switching  
1:1 and 1+1 protection without relays  
Receive monitor mode handles 0 to 6dB resistive attenuation (flat loss) along with 0 to 6dB cable loss for  
both T1 and E1  
Loss of signal (RLOS) according to ITU-T G.775/ETS300233 (E1) and ANSI T1.403 (T1/J1)  
Programmable data stream muting upon RLOS detection  
On-Chip HDB3/B8ZS encoder/decoder with an internal 16-bit LCV counter for each channel  
On-Chip digital clock recovery circuit for high input jitter tolerance  
QRSS/PRBS pattern generator and detection for testing and monitoring  
Error and bipolar violation insertion and detection  
Transmit all ones (TAOS) Generators and Detectors  
Supports local analog, remote, digital, and dual loopback modes  
Supports gapped clocks for mapper/multiplexer applications  
1.8V Digital Inner Core  
3.3V I/O Supply and Analog Inner Core  
225 ball BGA package  
-40°C to +85°C Temperature Range  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40°C to +85°C  
XRT83VSH38IB  
225 Ball BGA  
3
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
4
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE OF CONTENTS  
GENERAL DESCRIPTION.............................................................................................................. 1  
APPLICATIONS ............................................................................................................................................................... 1  
FIGURE 1. BLOCK DIAGRAM OF THE XRT83VSH38 T1/E1/J1 LIU (HOST MODE) .................................................................................... 1  
FIGURE 2. BLOCK DIAGRAM OF THE XRT83VSH38 T1/E1/J1 LIU (HARDWARE MODE) ........................................................................... 2  
FEATURES..................................................................................................................................................................... 3  
ORDERING INFORMATION .................................................................................................................... 3  
TABLE OF CONTENTS ............................................................................................................ I  
PIN DESCRIPTION BY FUNCTION................................................................................................ 5  
RECEIVE SECTION ......................................................................................................................................................... 5  
TRANSMIT SECTION ....................................................................................................................................................... 7  
PARALLEL MICROPROCESSOR INTERFACE ...................................................................................................................... 9  
JITTER ATTENUATOR.................................................................................................................................................... 11  
CLOCK SYNTHESIZER .................................................................................................................................................. 11  
ALARM FUNCTIONS/REDUNDANCY SUPPORT................................................................................................................. 13  
SERIAL MICROPROCESSOR INTERFACE......................................................................................................................... 15  
POWER AND GROUND.................................................................................................................................................. 15  
FUNCTIONAL DESCRIPTION...................................................................................................... 18  
1.0 HARDWARE MODE VS HOST MODE ................................................................................................ 18  
1.1 FEATURE DIFFERENCES IN HARDWARE MODE ...................................................................................... 18  
TABLE 1: DIFFERENCES BETWEEN HARDWARE MODE AND HOST MODE................................................................................................. 18  
2.0 MASTER CLOCK GENERATOR ......................................................................................................... 19  
FIGURE 3. TWO INPUT CLOCK SOURCE................................................................................................................................................. 19  
FIGURE 4. ONE INPUT CLOCK SOURCE ................................................................................................................................................. 19  
TABLE 2: MASTER CLOCK GENERATOR................................................................................................................................................. 19  
3.0 RECEIVE PATH LINE INTERFACE .................................................................................................... 20  
FIGURE 5. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH ............................................................................................................ 20  
3.1 LINE TERMINATION (RTIP/RRING) .............................................................................................................. 20  
3.1.1 CASE 1: INTERNAL TERMINATION.......................................................................................................................... 20  
TABLE 3: SELECTING THE INTERNAL IMPEDANCE ................................................................................................................................... 20  
FIGURE 6. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION .......................................................................................... 20  
3.1.2 CASE 2: INTERNAL TERMINATION WITH ONE EXTERNAL FIXED RESISTOR FOR ALL MODES .................... 21  
TABLE 4: SELECTING THE VALUE OF THE EXTERNAL FIXED RESISTOR.................................................................................................... 21  
FIGURE 7. TYPICAL CONNECTION DIAGRAM USING ONE EXTERNAL FIXED RESISTOR ............................................................................. 21  
3.2 CLOCK AND DATA RECOVERY ................................................................................................................... 22  
FIGURE 8. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK..................................................................................................... 22  
FIGURE 9. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK................................................................................................... 22  
TABLE 5: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG ................................................................................................................ 22  
3.2.1 RECEIVE SENSITIVITY .............................................................................................................................................. 22  
FIGURE 10. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY ............................................................................................ 23  
3.2.2 INTERFERENCE MARGIN ......................................................................................................................................... 23  
FIGURE 11. TEST CONFIGURATION FOR MEASURING INTERFERENCE MARGIN......................................................................................... 23  
3.2.3 GENERAL ALARM DETECTION AND INTERRUPT GENERATION ........................................................................ 23  
3.3 RECEIVE JITTER ATTENUATOR .................................................................................................................. 24  
3.4 HDB3/B8ZS DECODER .................................................................................................................................. 25  
3.5 RPOS/RNEG/RCLK ........................................................................................................................................ 25  
FIGURE 12. SINGLE RAIL MODE WITH A FIXED REPEATING "0011" PATTERN ......................................................................................... 25  
FIGURE 13. DUAL RAIL MODE WITH A FIXED REPEATING "0011" PATTERN ............................................................................................ 25  
3.6 RXMUTE (RECEIVER LOS WITH DATA MUTING) ....................................................................................... 26  
FIGURE 14. SIMPLIFIED BLOCK DIAGRAM OF THE RXMUTE FUNCTION................................................................................................... 26  
4.0 TRANSMIT PATH LINE INTERFACE ................................................................................................. 27  
FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT PATH ......................................................................................................... 27  
4.1 TCLK/TPOS/TNEG DIGITAL INPUTS ............................................................................................................ 27  
FIGURE 16. TRANSMIT DATA SAMPLED ON FALLING EDGE OF TCLK...................................................................................................... 27  
FIGURE 17. TRANSMIT DATA SAMPLED ON RISING EDGE OF TCLK........................................................................................................ 27  
TABLE 6: TIMING SPECIFICATIONS FOR TCLK/TPOS/TNEG.................................................................................................................. 28  
4.2 HDB3/B8ZS ENCODER .................................................................................................................................. 28  
TABLE 7: EXAMPLES OF HDB3 ENCODING ............................................................................................................................................ 28  
TABLE 8: EXAMPLES OF B8ZS ENCODING............................................................................................................................................. 28  
4.3 TRANSMIT JITTER ATTENUATOR ............................................................................................................... 29  
I
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 9: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS........................................................................................... 29  
4.4 TAOS (TRANSMIT ALL ONES) ...................................................................................................................... 29  
FIGURE 18. TAOS (TRANSMIT ALL ONES) ............................................................................................................................................ 29  
4.5 TRANSMIT DIAGNOSTIC FEATURES .......................................................................................................... 29  
4.5.1 ATAOS (AUTOMATIC TRANSMIT ALL ONES)......................................................................................................... 29  
FIGURE 19. SIMPLIFIED BLOCK DIAGRAM OF THE ATAOS FUNCTION ..................................................................................................... 30  
4.5.2 QRSS/PRBS GENERATION....................................................................................................................................... 30  
TABLE 10: RANDOM BIT SEQUENCE POLYNOMIALS................................................................................................................................ 30  
4.5.3 T1 SHORT HAUL LINE BUILD OUT (LBO) ............................................................................................................... 30  
TABLE 11: SHORT HAUL LINE BUILD OUT.............................................................................................................................................. 30  
4.5.4 ARBITRARY PULSE GENERATOR FOR T1 AND E1............................................................................................... 30  
FIGURE 20. ARBITRARY PULSE SEGMENT ASSIGNMENT......................................................................................................................... 31  
4.6 DMO (DIGITAL MONITOR OUTPUT) ............................................................................................................. 31  
4.7 LINE TERMINATION (TTIP/TRING) ............................................................................................................... 31  
FIGURE 21. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION ......................................................................................... 31  
5.0 T1/E1 APPLICATIONS .........................................................................................................................32  
5.1 LOOPBACK DIAGNOSTICS .......................................................................................................................... 32  
5.1.1 LOCAL ANALOG LOOPBACK .................................................................................................................................. 32  
FIGURE 22. SIMPLIFIED BLOCK DIAGRAM OF LOCAL ANALOG LOOPBACK................................................................................................ 32  
5.1.2 REMOTE LOOPBACK................................................................................................................................................ 32  
FIGURE 23. SIMPLIFIED BLOCK DIAGRAM OF REMOTE LOOPBACK .......................................................................................................... 32  
5.1.3 DIGITAL LOOPBACK................................................................................................................................................. 33  
FIGURE 24. SIMPLIFIED BLOCK DIAGRAM OF DIGITAL LOOPBACK ........................................................................................................... 33  
5.1.4 DUAL LOOPBACK ..................................................................................................................................................... 33  
FIGURE 25. SIMPLIFIED BLOCK DIAGRAM OF DUAL LOOPBACK............................................................................................................... 33  
5.2 LINE CARD REDUNDANCY ........................................................................................................................... 34  
5.2.1 1:1 AND 1+1 REDUNDANCY WITHOUT RELAYS.................................................................................................... 34  
5.2.2 TRANSMIT INTERFACE WITH 1:1 AND 1+1 REDUNDANCY.................................................................................. 34  
FIGURE 26. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR 1:1 AND 1+1 REDUNDANCY................................................ 34  
5.2.3 RECEIVE INTERFACE WITH 1:1 AND 1+1 REDUNDANCY..................................................................................... 35  
FIGURE 27. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE INTERFACE FOR 1:1 AND 1+1 REDUNDANCY.................................................. 35  
5.2.4 N+1 REDUNDANCY USING EXTERNAL RELAYS ................................................................................................... 36  
5.2.5 TRANSMIT INTERFACE WITH N+1 REDUNDANCY ................................................................................................ 36  
FIGURE 28. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR N+1 REDUNDANCY ............................................................ 36  
5.2.6 RECEIVE INTERFACE WITH N+1 REDUNDANCY ................................................................................................... 37  
FIGURE 29. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE INTERFACE FOR N+1 REDUNDANCY .............................................................. 37  
5.3 POWER FAILURE PROTECTION .................................................................................................................. 38  
5.4 OVERVOLTAGE AND OVERCURRENT PROTECTION ............................................................................... 38  
5.5 NON-INTRUSIVE MONITORING .................................................................................................................... 38  
FIGURE 30. SIMPLIFIED BLOCK DIAGRAM OF A NON-INTRUSIVE MONITORING APPLICATION ..................................................................... 38  
6.0 MICROPROCESSOR INTERFACE ......................................................................................................39  
6.1 SERIAL MICROPROCESSOR INTERFACE BLOCK (BGA PACKAGE ONLY) ........................................... 39  
FIGURE 31. SIMPLIFIED BLOCK DIAGRAM OF THE SERIAL MICROPROCESSOR INTERFACE........................................................................ 39  
6.1.1 SERIAL TIMING INFORMATION................................................................................................................................ 39  
FIGURE 32. TIMING DIAGRAM FOR THE SERIAL MICROPROCESSOR INTERFACE....................................................................................... 39  
6.1.2 24-BIT SERIAL DATA INPUT DESCRITPTION ......................................................................................................... 40  
6.1.3 ADDR[7:0] (SCLK1 - SCLK8)..................................................................................................................................... 40  
6.1.4 R/W (SCLK9)............................................................................................................................................................... 40  
6.1.5 DUMMY BITS (SCLK10 - SCLK16)............................................................................................................................ 40  
6.1.6 DATA[7:0] (SCLK17 - SCLK24) ................................................................................................................................. 40  
6.1.7 8-BIT SERIAL DATA OUTPUT DESCRIPTION ......................................................................................................... 40  
FIGURE 33. TIMING DIAGRAM FOR THE MICROPROCESSOR SERIAL INTERFACE....................................................................................... 41  
TABLE 12: MICROPROCESSOR SERIAL INTERFACE TIMINGS ( TA = 250C, VDD=3.3V± 5% AND LOAD = 10PF) ...................................... 41  
6.2 PARALLEL MICROPROCESSOR INTERFACE BLOCK .............................................................................. 42  
TABLE 13: SELECTING THE MICROPROCESSOR INTERFACE MODE.......................................................................................................... 42  
FIGURE 34. SIMPLIFIED BLOCK DIAGRAM OF THE MICROPROCESSOR INTERFACE BLOCK ........................................................................ 42  
6.3 THE MICROPROCESSOR INTERFACE BLOCK SIGNALS ......................................................................... 43  
TABLE 14: XRT83VSH38 MICROPROCESSOR INTERFACE SIGNALS THAT EXHIBIT CONSTANT ROLES IN BOTH INTEL AND MOTOROLA MODES43  
TABLE 15: INTEL MODE: MICROPROCESSOR INTERFACE SIGNALS........................................................................................................... 43  
TABLE 16: MOTOROLA MODE: MICROPROCESSOR INTERFACE SIGNALS ................................................................................................. 44  
6.4 INTEL MODE PROGRAMMED I/O ACCESS (ASYNCHRONOUS) ............................................................... 45  
FIGURE 35. INTEL µP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS .................................................. 46  
TABLE 17: INTEL MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS .............................................................................................. 46  
6.5 MOTOROLA MODE PROGRAMMED I/O ACCESS (ASYNCHRONOUS) .................................................... 47  
FIGURE 36. MOTOROLA 68K µP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS .................................. 48  
II  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 18: MOTOROLA 68K MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS .............................................................................. 48  
TABLE 19: MICROPROCESSOR REGISTER ADDRESS (ADDR[7:0]).......................................................................................................... 49  
TABLE 20: MICROPROCESSOR REGISTER CHANNEL DESCRIPTION ......................................................................................................... 49  
TABLE 21: MICROPROCESSOR REGISTER 0X00H BIT DESCRIPTION........................................................................................................ 51  
TABLE 22: CABLE LENGTH SETTING ...................................................................................................................................................... 52  
TABLE 23: MICROPROCESSOR REGISTER 0X01H BIT DESCRIPTION........................................................................................................ 52  
TABLE 24: MICROPROCESSOR REGISTER 0X02H BIT DESCRIPTION........................................................................................................ 54  
TABLE 25: MICROPROCESSOR REGISTER 0X03H BIT DESCRIPTION........................................................................................................ 54  
TABLE 26: MICROPROCESSOR REGISTER 0X04H BIT DESCRIPTION........................................................................................................ 55  
TABLE 27: MICROPROCESSOR REGISTER 0X05H BIT DESCRIPTION........................................................................................................ 56  
TABLE 28: MICROPROCESSOR REGISTER 0X06H BIT DESCRIPTION........................................................................................................ 58  
TABLE 29: MICROPROCESSOR REGISTER 0X08H BIT DESCRIPTION........................................................................................................ 59  
TABLE 30: MICROPROCESSOR REGISTER 0X09H BIT DESCRIPTION........................................................................................................ 59  
TABLE 31: MICROPROCESSOR REGISTER 0X0AH BIT DESCRIPTION ....................................................................................................... 59  
TABLE 32: MICROPROCESSOR REGISTER 0X0BH BIT DESCRIPTION ....................................................................................................... 60  
TABLE 33: MICROPROCESSOR REGISTER 0X0CH BIT DESCRIPTION ....................................................................................................... 60  
TABLE 34: MICROPROCESSOR REGISTER 0X0DH BIT DESCRIPTION ....................................................................................................... 60  
TABLE 35: MICROPROCESSOR REGISTER 0X0EH BIT DESCRIPTION ....................................................................................................... 60  
TABLE 36: MICROPROCESSOR REGISTER 0X0FH BIT DESCRIPTION........................................................................................................ 61  
TABLE 37: MICROPROCESSOR REGISTER 0X80H, BIT DESCRIPTION....................................................................................................... 61  
CLOCK SELECT REGISTER............................................................................................................................................. 62  
FIGURE 37. REGISTER 0X81H SUB REGISTERS ..................................................................................................................................... 62  
TABLE 38: MICROPROCESSOR REGISTER 0X81H, BIT DESCRIPTION....................................................................................................... 63  
TABLE 39: MICROPROCESSOR REGISTER 0X82H BIT DESCRIPTION........................................................................................................ 64  
TABLE 40: MICROPROCESSOR REGISTER 0X83H BIT DESCRIPTION........................................................................................................ 64  
TABLE 41: MICROPROCESSOR REGISTER 0X8CH BIT DESCRIPTION ....................................................................................................... 65  
TABLE 42: MICROPROCESSOR REGISTER 0X8DH BIT DESCRIPTION ....................................................................................................... 65  
TABLE 43: MICROPROCESSOR REGISTER 0X8EH BIT DESCRIPTION ....................................................................................................... 66  
TABLE 44: MICROPROCESSOR REGISTER 0XC0H BIT DESCRIPTION ....................................................................................................... 67  
TABLE 45: MICROPROCESSOR REGISTER 0XFEH BIT DESCRIPTION ....................................................................................................... 67  
TABLE 46: MICROPROCESSOR REGISTER 0XFFH BIT DESCRIPTION ....................................................................................................... 67  
7.0 ELECTRICAL CHARACTERISTICS ................................................................................................... 68  
TABLE 47: ABSOLUTE MAXIMUM RATINGS ............................................................................................................................................. 68  
TABLE 48: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS........................................................................................... 68  
TABLE 49: AC ELECTRICAL CHARACTERISTICS...................................................................................................................................... 68  
TABLE 50: POWER CONSUMPTION ........................................................................................................................................................ 69  
TABLE 51: E1 RECEIVER ELECTRICAL CHARACTERISTICS ...................................................................................................................... 69  
TABLE 52: T1 RECEIVER ELECTRICAL CHARACTERISTICS ...................................................................................................................... 70  
TABLE 53: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS ................................................................................................................ 70  
TABLE 54: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS................................................................................................................. 71  
PACKAGE DIMENSIONS ................................................................................................................................................ 72  
225 BALL PLASTIC BALL GRID ARRAY (BOTTOM VIEW)....................................................................... 72  
(19.0 X 19.0 X 1.0MM)...................................................................................................................... 72  
ORDERING INFORMATION..................................................................................................................................... 73  
REVISIONS............................................................................................................................................................... 73  
III  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
PIN DESCRIPTION BY FUNCTION  
RECEIVE SECTION  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
RXON  
K16  
Receiver On  
Hardware Mode Only  
This pin is used to enable the receivers for all channels. By default, the receivers  
are turned ON in hardware mode. To turn the receivers OFF, pull this pin "Low".  
NOTE: Internally pulled "High" with a 50kresistor.  
RLOS0  
RLOS1  
RLOS2  
RLOS3  
RLOS4  
RLOS5  
RLOS6  
RLOS7  
C3  
H4  
O
O
O
O
Receive Loss of Signal  
When a receive loss of signal occurs according to ITU-T G.775, the RLOS pin will go  
"High" for a minimum of one RCLK cycle. RLOS will remain "High" until the loss of  
signal condition clears. See the Receive Loss of Signal section of this datasheet for  
more details.  
H15  
A16  
V3  
NOTE: This pin can be used for redundancy applications to initiate an automatic  
L2  
switch to a backup card.  
J15  
T15  
RCLK0  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
B3  
H3  
Receive Clock Output  
RCLK is the recovered clock from the incoming data stream. If the incoming signal  
is absent or RTIP/RRING are in "High-Z", RCLK maintains its timing by using an  
internal master clock as its reference. RPOS/RNEG data can be updated on either  
edge of RCLK selected by RCLKE.  
H16  
A17  
U3  
NOTE: RCLKE is a global setting that applies to all 8 channels.  
L3  
M15  
U16  
RNEG/LCV0  
RNEG/LCV1  
RNEG/LCV2  
RNEG/LCV3  
RNEG/LCV4  
RNEG/LCV5  
RNEG/LCV6  
RNEG/LCV7  
A2  
H2  
RNEG/LCV_OF Output  
In dual rail mode, this pin is the receive negative data output. In single rail mode,  
this pin is a Line Code Violation / Overflow indicator Indicator. If LCV is selected by  
software and if a line code violation, a bi-polar violation, or excessive zeros occur,  
the LCV_OF pin will pull "High" for a minimum of one RCLK cycle. LCV_OF will  
remain "High" until there are no more violations. However, if OF (Overflow) is  
selected, then the LCV_OF pin will pull "High" if the internal LCV counter is satu-  
rated. The LCV_OF pin will remain "High" until the LCV counter is reset.  
H18  
B16  
T4  
M4  
M16  
V17  
RPOS0  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RPOS5  
RPOS6  
RPOS7  
B2  
G2  
RPOS/RDATA Output  
Receive digital output pin. In dual rail mode, this pin is the receive positive data out-  
put. In single rail mode, this pin is the receive non-return to zero (NRZ) data output.  
D15  
B17  
U2  
M3  
L17  
T17  
5
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
RTIP0  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
C1  
G1  
Receive Differential Tip Input  
RTIP is the positive differential input from the line interface. Along with the RRING  
signal, these pins should be coupled to a 1:1 transformer for proper operation.  
G18  
C18  
U1  
L1  
L18  
T18  
RRING0  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
D1  
F1  
I
Receive Differential Ring Input  
RRING is the negative differential input from the line interface. Along with the RTIP-  
signal, these pins should be coupled to a 1:1 transformer for proper operation.  
F18  
D18  
T1  
M1  
M18  
R18  
RXMUTE  
T12  
I
Receive Data Muting  
Hardware Mode Only  
This pin is AND-ed with each of the RLOS functions on a per channel basis. There-  
fore, if this pin is pulled "High" and a given channel experiences a loss of signal, then  
the RPOS/RNEG output pins are automatically pulled "Low" to prevent data chatter-  
ing. To disable this feature, the RxMUTE pin must be pulled "Low".  
NOTE: This pin is internally pulled “High” with a 50kresistor  
RXRES1  
RXRES0  
R10  
V10  
I
Receive External Resistor Control Pins  
Hardware mode Only  
These pins are used in the Receive Internal Impedance mode for unique applica-  
tions where an accurate resistor can be used to achieve optimal return loss. When  
RxRES[1:0] are used, the LIU automatically sets the internal impedance to match  
the line build out. For example: if 240is selected, the LIU chooses an internal  
impedance such that the parallel combination equals the impedance chosen by  
TERSEL[1:0].  
"00" = No External Fixed Resistor  
"01" = 240Ω  
"10" = 210Ω  
"11" = 150Ω  
NOTE: These pins are internally pulled “Low” with a 50kresistor. This feature is  
available in Host mode by programming the appropriate channel register.  
RCLKE/  
µPTS1  
J16  
I
Receive Clock Edge  
Hardware Mode  
This pin is used to select which edge of the recovered clock is used to update data to  
the receiver on the RPOS/RNEG outputs. By default, data is updated on the risinge  
edge. To udpdate data on the falling edge, this pin must be pulled "High".  
Host Mode  
µPTS[2:1] pins are used to select the type of microprocessor to be used for Host  
communication.  
"00" = 8051 Intel Asynchronous  
"01" = 68K Motorola Asynchronous  
NOTE: This pin is internally pulled “Low” with a 50kresistor.  
6
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TRANSMIT SECTION  
REV. 1.0.7  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
TCLKE/µPTS2  
L15  
Transmit Clock Edge  
Hardware Mode  
This pin is used to select which edge of the transmit clock is used to sample data  
on the transmitter on the TPOS/TNEG inputs. By default, data is sampled on the  
falling edge. To sample data on the rising edge, this pin must be pulled "High".  
Host Mode  
µPTS[2:1] pins are used to select the type of microprocessor to be used for Host  
communication.  
"00" = 8051 Intel Asynchronous  
"01" = 68K Motorola Asynchronous  
NOTE: This pin is internally pulled “Low” with a 50kresistor.  
TTIP0  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
E3  
G4  
O
O
I
Transmit Differential Tip Output  
TTIP is the positive differential output to the line interface. Along with the TRING  
signal, these pins should be coupled to a 1:2 step up transformer for proper opera-  
tion.  
F17  
C16  
R2  
N2  
N16  
P16  
TRING0  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
E2  
F3  
Transmit Differential Ring Output  
TRING is the negative differential output to the line interface. Along with the TTIP  
signal, these pins should be coupled to a 1:2 step up transformer for proper opera-  
tion.  
F15  
E16  
P2  
N4  
R15  
P17  
TPOS0  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TPOS5  
TPOS6  
TPOS7  
C5  
A4  
TPOS/TDATA Input  
Transmit digital input pin. In dual rail mode, this pin is the transmit positive data  
input. In single rail mode, this pin is the transmit non-return to zero (NRZ) data  
input.  
B14  
D14  
V4  
NOTE: Internally pulled "Low" with a 50Kresistor.  
U5  
V15  
T14  
TNEG0  
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TNEG5  
TNEG6  
TNEG7  
C4  
B5  
I
Transmitter Negative NRZ Data Input  
In dual rail mode, this signal is the negative-rail input data for the transmitter. In  
single rail mode, this pin can be left unconnected while in Host mode. However, in  
Hardware mode, this pin is used to select the type of encoding/decoding for the E1/  
T1 data format. Connecting this pin “Low” enables HDB3 in E1 or B8ZS in T1.  
Connecting this pin “High” selects AMI data format.  
D13  
B15  
U4  
V5  
NOTE: Internally pulled “Low” with a 50kresistor.  
U14  
R14  
7
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
TCLK0  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
B4  
A3  
Transmit Clock Input  
TCLK is the input facility clock used to sample the incoming TPOS/TNEG data. If  
TCLK is absent, pulled "Low", or pulled "High", the transmitter outputs at TTIP/  
TRING sends an all zero signal to the line. TPOS/TNEG data can be sampled on  
either edge of TCLK selected by TCLKE.  
A15  
C14  
T3  
NOTE: 1. TCLKE is a global setting that applies to all 8 channels.  
NOTE: 2. Internally pulled "Low" with a 50kresistor.  
T5  
V16  
U15  
TAOS0  
TAOS1  
TAOS2  
TAOS3  
TAOS4  
TAOS5  
TAOS6  
TAOS7  
D6  
B6  
A5  
C6  
T6  
U6  
V6  
R6  
I
Transmit All Ones for Channel  
Hardware Mode Only  
Setting this pin “High” enables the transmission of an all ones pattern to the line  
from TTIP/TRING. If this pin is pulled “Low”, the transmitters operate in normal  
throughput mode.  
NOTE: Internally pulled “Low” with a 50kresistor for all channels. This feature is  
available in Host mode by programming the appropriate channel register.  
TXON0  
TXON1  
TXON2  
TXON3  
TXON4  
TXON5  
TXON6  
TXON7  
A13  
D12  
C12  
B12  
V13  
U13  
R12  
R13  
I
Transmit On/Off Input  
Upon power up, the transmitters are powered off. Turning the transmitters On or  
Off is selected through the microprocessor interface by software control while in  
Host mode. However, if TxONCNTL is set "High" in software, or if in Hardware  
mode, the activity of the transmitter outputs is controlled by the TxON pins.  
NOTE: TxON is ideal for redundancy applications. See the Redundancy  
Applications Section of this datasheet for more details. Internally pulled  
"Low" with a 50Kresistor.  
8
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
PARALLEL MICROPROCESSOR INTERFACE  
REV. 1.0.7  
BGA  
SIGNAL NAME  
LEAD  
#
TYPE  
I
DESCRIPTION  
HW/HOST  
T10  
Mode Control Input  
This pin is used to select Host mode or Hardware mode. By default, the LIU is set in  
Hardware mode. To use Host mode, this pin must be pulled "Low".  
NOTE: Internally pulled “High” with a 50kresistor.  
WR_R/W/EQC0  
D7  
I
Write Input(R/W)/Equalizer Control Signal 0  
Host Mode  
This pin is used to communicate a Read or Write operation according to the which  
microprocessor is chosen. See the Microprocessor Section of this datasheet for  
details.  
Hardware Mode  
EQC[4:0] are used to set the Receiver Gain, Receiver Impedance and the Transmit  
Line Build Out. See Table 22 for more details.  
NOTE: Internally pulled “Low” with a 50kresistor.  
RD_DS/EQC1  
C7  
I
Read Input (Data Strobe)/Equalizer Control Signal 1  
Host Mode  
This pin is used to communicate a Read or Write operation according to the which  
microprocessor is chosen. See the Microprocessor Section of this datasheet for  
details.  
Hardware Mode  
EQC[4:0] are used to set the Receiver Gain, Receiver Impedance and the Transmit  
Line Build Out. See Table 22 for more details.  
NOTE: Internally pulled “Low” with a 50kresistor.  
ALE/EQC2  
A7  
I
Address Latch Input (Address Strobe)  
Host Mode  
This pin is used to latch the address contents into the internal registers within the LIU  
device. See the Microprocessor Section of this datasheet for details.  
Hardware Mode  
EQC[4:0] are used to set the Receiver Gain, Receiver Impedance and the Transmit  
Line Build Out. See Table 22 for more details.  
NOTE: Internally pulled “Low” with a 50kresistor.  
CS/EQC3  
B7  
I
Chip Select Input - Host mode:  
Host Mode  
This pin is used to initiate communication with the microprocessor interface. See the  
Microprocessor Section of this datasheet for details.  
Hardware Mode  
EQC[4:0] are used to set the Receiver Gain, Receiver Impedance and the Transmit  
Line Build Out. See Table 22 for more details.  
NOTE: Internally pulled “Low” with a 50kresistor.  
9
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD  
#
SIGNAL NAME  
TYPE  
DESCRIPTION  
RDY/EQC4  
A6  
I/O Ready Output (Data Transfer Acknowledge)  
Host Mode (Parallel Microprocessor)  
If Pin SER_PAR is pulled "Low", this output pin from the microprocessor block is used  
to inform the local µP that the Read or Write operation has been completed and is  
waiting for the next command. See the Microprocessor Section of this datasheet for  
details.  
Hardware Mode  
EQC[4:0] are used to set the Receiver Gain, Receiver Impedance and the Transmit  
Line Build Out. See Table 22 for more details.  
NOTE: Internally pulled “Low” with a 50kresistor.  
D[7]/Loop14  
D[6]/Loop04  
D[5]/Loop15  
D[4]/Loop05  
D[3]/Loop16  
D[2]/Loop06  
D[1]/Loop17  
D[0]/Loop07  
T7  
U7  
V7  
V8  
V9  
U8  
U9  
R7  
I/O Bi-Directional Data Bust/Loopback Mode Select  
Host Mode  
These pins are used for the 8-bit bi-directional data bus to allow data transfer to and  
from the microprocessor interface.  
Hardware Mode (Channels 4 through 7)  
These pins are used to select the loopback mode. Each channel has two loopback  
pins Loop[1:0].  
"00" = No Loopback  
"01" = Analog Local Loopback  
"10" = Remote Loopback  
"11" = Digital Loopback  
NOTE: Internally pulled “Low” with a 50kresistor.  
A[7]/Loop13  
A[6]/Loop03  
A[5]/Loop12  
A[4]/Loop02  
A[3]/Loop11  
A[2]/Loop01  
A[1]/Loop10  
A[0]/Loop00  
A12  
B11  
C11  
D11  
A11  
B10  
A10  
C10  
I
Direct Address Bus/Loopback Mode Select  
Host Mode  
These pins are used for the 8-bit direct address bus to allow access to the internal  
registers within the microprocessor interface.  
Hardware Mode (Channels 0 through 3)  
These pins are used to select the loopback mode. Each channel has two loopback  
pins Loop[1:0].  
"00" = No Loopback  
"01" = Analog Local Loopback  
"10" = Remote Loopback  
"11" = Digital Loopback  
NOTE: Internally pulled “Low” with a 50kresistor.  
10  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
BGA  
SIGNAL NAME  
LEAD  
#
TYPE  
I
DESCRIPTION  
ATAOS  
T13  
Synchronous Microprocessor Clock/Automatic Transmit All Ones  
Hardware Mode  
This pin is used select an all ones signal to the line interface through TTIP/TRING any  
time that a loss of signal occurs. This feature is avaiable in Host mode by program-  
ming the appropriate global register.  
NOTE: Internally pulled “Low” with a 50kresistor.  
INT  
L16  
O
Interrupt Output  
Host Mode  
This signal is asserted "Low" when a change in alarm status occurs. Once the status  
registers have been read, the interrupt pin will return "High". GIE (Global Interrupt  
Enable) must be set "High" in the appropriate global register to enable interrupt gen-  
eration.  
NOTES:  
1. This pin is an open-drain output that requires an external 10Kpull-up  
resistor.  
2. This pin has an internal PULL-DOWN 50kresistor  
JITTER ATTENUATOR  
SIGNAL  
NAME  
BGA  
LEAD #  
TYPE  
DESCRIPTION  
JASEL0  
JASEL1  
A14  
B13  
I
Jitter Attenuator Select Pins Hardware Mode  
JASEL[1:0] pins are used to place the jitter attenuator in the transmit path, the receive  
path or to disable it.  
JA BW Hz  
JASEL1 JASEL0  
JA Path  
FIFO Size  
T1  
E1  
0
0
1
1
0
1
0
1
Disabled  
Transmit  
Receive  
Receive  
-----  
-----  
--------  
32/32  
32/32  
64/64  
3
3
3
10  
10  
1.5  
NOTE: These pins are internally pulled “Low” with 50kresistors.  
CLOCK SYNTHESIZER  
BGA  
SIGNAL NAME  
LEAD #  
TYPE  
O
DESCRIPTION  
MCLKOUT  
H1  
Synthesized Master Clock Output  
This signal is the output of the Master Clock Synthesizer PLL which is at T1 or E1  
rate based upon the mode of operation.  
MCLKT1  
K1  
I
T1 Master Clock Input  
This signal is an independent 1.544MHz clock for T1 systems with accuracy better  
than ±50ppm and duty cycle within 40% to 60%. MCLKT1 is used in the T1 mode.  
NOTE: All channels must operate at the same clock rate, either T1, E1 or J1. This  
pin is internally pulled "Low" with a 50kresistor.  
11  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
MCLKE1  
J1  
E1 Master Clock Input  
A 2.048MHz clock for with an accuracy of better than ±50ppm and a duty cycle of  
40% to 60% can be provided at this pin. In systems that have only one master clock  
source available (E1 or T1), that clock should be connected to both MCLKE1 and  
MCLKT1 inputs for proper operation.  
NOTE: All channels of the XRT83VSH38 must be operated at the same clock rate,  
either T1, E1 or J1. This pin is internally pulled “Low” with a 50kresistor.  
CLKSEL0  
CLKSEL1  
CLKSEL2  
A8  
B8  
C8  
I
Clock Select inputs for Master Clock Synthesizer  
Hardware Mode Only  
CLKSEL[2:0] are input signals to a programmable frequency synthesizer that can be  
used to generate a master clock from an external accurate clock source according to  
the table below. MCLKRATE is automatically generated from the state of the  
EQC[4:0] pins.  
MCLKE1 MCLKT1  
CLKOUT/  
kHz  
CLKSEL2 CLKSEL1 CLKSEL0 MCLKRATE  
kHz  
2048  
2048  
2048  
1544  
1544  
2048  
kHz  
2048  
2048  
1544  
1544  
1544  
1544  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
2048  
1544  
2048  
1544  
2048  
1544  
NOTE: These pins are internally pulled “Low” with a 50kresistor.  
12  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
ALARM FUNCTIONS/REDUNDANCY SUPPORT  
REV. 1.0.7  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
GAUGE  
J18  
Twisted Pair Cable Wire Gauge Select  
Hardware Mode Only  
This pin is used to match the frequency characteristics according to the gauge of  
wire used in Telecom circuits. By default, the LIU is matched to 22 gauge or 24  
gauge wire. To select 26 gauge, this pin must be pulled "High".  
NOTE: Internally pulled “Low” with a 50kresistor.  
DMO0  
DMO1  
DMO2  
DMO3  
DMO4  
DMO5  
DMO6  
DMO7  
D5  
D4  
O
Digital Monitor Output  
When no transmit output pulse is detected for more than 128 TCLK cycles within the  
transmit output buffer, the DMO pin will go "High" for a minimum of one TCLK cycle.  
DMO will remain "High" until the transmitter sends a valid pulse.  
C15  
C13  
R5  
NOTE: This pin can be used for redundancy applications to initiate an automatic  
switch to a backup card.  
P4  
U17  
V14  
RESET  
T8  
K4  
I
I
Hardware Reset Input  
Active low signal. When this pin is pulled "Low" for more than 10µS, the internal reg-  
isters are set to their default state. See the register description for the default val-  
ues.  
NOTE: Internally pulled "High" with a 50Kresistor.  
SR/DR  
Single-Rail/Dual-Rail Data Format  
Hardware Mode Only  
This pin is used to control the data format on the facility side of the LIU to interface to  
a Framer or Mapper/ASIC device. By default, dual rail mode is selected which relies  
upon the Framer to handle the encoding/decoding functions. To select single rail  
mode, this pin must be pulled "High". If single rail mode is selected, the LIU can  
encode/decode AMI or B8ZS/HDB3 data formats.  
NOTE: Internally pulled “Low” with a 50kresistor.  
RXTSEL  
U11  
I
Receiver Termination Select  
Hardware Mode  
This pin is used to select between the internal and external impedance modes for  
the receive path. By default, the receivers are configured for external impedance  
mode, which is ideal for redundancy applications without relays. To select internal  
impedance, this pin must be pulled "HIgh".  
Host Mode  
Internal/External impedance can be selected by programming the appropriate chan-  
nel registers. However, to assist in redundancy applications, this pin can be used for  
a hard switch if the RxTCNTL bit is set "High" in the appropriate global register. If  
RxTCNTL is set "High", the individual RxTSEL register bits are ignored.  
NOTE: This pin is internally pulled “Low” with a 50kresistor.  
TXTSEL  
V11  
I
Transmitter Termination Select  
Hardware Mode  
This pin is used to select between the internal and external impedance modes for  
the transmit path. By default, the receivers are configured for external impedance  
mode, which is ideal for redundancy applications without relays. To select internal  
impedance, this pin must be pulled "HIgh".  
NOTE: This pin is internally pulled "Low".  
13  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
TERSEL1  
TERSEL0  
T11  
R11  
Termination Impedance Select  
Hardware Mode Only  
The TERSEL[1:0] pins are used to select the transmitter and receiver impedance.  
By default, the impedance is set to 100.  
"00" = 100Ω  
"01" = 110Ω  
"10" = 75Ω  
"11" = 120Ω  
NOTE: These pins are internally pulled "Low" with a 50kresistor.  
TEST  
ICT  
U12  
V12  
I
I
Factory Test Mode  
For normal operation, the TEST pin should be tied to ground.  
NOTE: Internally pulled "Low" with a 50kresistor.  
In Circuit Testing  
When this pin is tied "Low", all output pins are forced to "High" impedance for in cir-  
cuit testing.  
NOTE: Internally pulled "High" with a 50Kresistor.  
14  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
SERIAL MICROPROCESSOR INTERFACE  
REV. 1.0.7  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
I
DESCRIPTION  
SER_PAR  
P18  
Serial/Parallel Select Input (Host Mode Only)  
This pin is used in the Host mode to select between the parallel microprocessor  
or serial interface. By default, the Host mode operates in the parallel micropro-  
cessor mode. To configure the device for a serial interface, this pin must be  
pulled "HIgh".  
NOTE: Internally pulled “Low” with a 50kresistor.  
SCLK  
SDI  
T13  
C10  
R7  
I
I
Serial Clock Input (Host Mode Only)  
If Pin SER_PAR is pulled "High", this input pin is used the timing reference for  
the serial microprocessor interface. See the Microprocessor Section of this  
datasheet for details.  
Serial Data Input (Host Mode Only)  
If Pin SER_PAR is pulled "High", this input pin from the serial interface is used  
to input the serial data for Read and Write operations. See the Microprocessor  
Section of this datasheet for details.  
SDO  
O
Serial Data Output (Host Mode Only)  
If Pin SER_PAR is pulled "High", this output pin from the serial interface is used  
to read back the regsiter contents. See the Microprocessor Section of this  
datasheet for details.  
ATP-Tip  
E18  
B18  
Analog JTAG Positive Pin  
Analog JTAG Negative Pin  
ATP-Ring  
TDO  
B1  
R1  
N1  
E1  
Test Data Out  
This pin is used as the output data pin for the boundary scan chain.  
TDI  
Test Data In  
This pin is used as the input data pin for the boundary scan chain.  
TCK  
Test Clock Input  
This pin is used as the input clock source for the boundary scan chain.  
TMS  
Test Mode Select  
This pin is used as the input mode select for the boundary scan chain.  
SENSE  
N18  
****  
Factory Test Pin  
POWER AND GROUND  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
****  
DESCRIPTION  
TGND  
D3  
F2  
Transmitter Analog Ground  
It’s recommended that all ground pins of this device be tied together.  
E15  
C17  
R3  
P3  
T16  
R16  
15  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
****  
DESCRIPTION  
TVDD  
E4  
F4  
Transmit Analog Power Supply (3.3V ±5%)  
TVDD can be shared with DVDD. However, it is recommended that TVDD be  
isolated from the analog power supply RVDD. For best results, use an internal  
power plane for isolation. If an internal power plane is not available, a ferrite  
bead can be used. Each power supply pin should be bypassed to ground  
through an external 0.1µF capacitor.  
F16  
E17  
R4  
P1  
N15  
P15  
RVDD  
C2  
E5  
****  
****  
****  
Receive Analog Power Supply (3.3V ±5%)  
RVDD should not be shared with other power supplies. It is recommended that  
RVDD be isolated from the digital power supply DVDD and the analog power  
supply TVDD. For best results, use an internal power plane for isolation. If an  
internal power plane is not available, a ferrite bead can be used. Each power  
supply pin should be bypassed to ground through an external 0.1µF capacitor.  
G16  
D16  
V2  
N3  
N17  
U18  
RGND  
D2  
G3  
Receiver Analog Ground  
It’s recommended that all ground pins of this device be tied together.  
G17  
D17  
T2  
M2  
M17  
R17  
AVDD-Bias  
K17  
J3  
Analog Power Supply (1.8V ±5%)  
AVDD should be isolated from the digital power supplies. For best results, use  
an internal power plane for isolation. If an internal power plane is not available,  
a ferrite bead can be used. Each power supply pin should be bypassed to  
ground through at least one 0.1µF capacitor.  
J2  
AGND  
J17  
K3  
L4  
****  
****  
Analog Ground  
It’s recommended that all ground pins of this device be tied together.  
DVDD3v3  
A18  
R9  
Digital Power Supply (3.3V ±5%)  
DVDD should be isolated from the analog power supplies. For best results, use  
an internal power plane for isolation. If an internal power plane is not available,  
a ferrite bead can be used. Every two DVDD power supply pins should be  
bypassed to ground through at least one 0.1µF capacitor.  
D9  
K15  
J4  
DVDD1v8  
V1  
U10  
K18  
D10  
A9  
****  
Digital Power Supply (1.8V ±5%)  
DVDD should be isolated from the analog power supplies. For best results, use  
an internal power plane for isolation. If an internal power plane is not available,  
a ferrite bead can be used. Every two DVDD power supply pins should be  
bypassed to ground through at least one 0.1µF capacitor.  
NOTE: For proper operation, the power-up sequence is: bring up 1.8V power  
befor the 3.3V.  
16  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
BGA  
LEAD #  
SIGNAL NAME  
TYPE  
****  
DESCRIPTION  
DGND  
A1  
R8  
Digital Ground  
It’s recommended that all ground pins of this device be tied together.  
T9  
H17  
B9  
D8  
C9  
G15  
K2  
V18  
17  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FUNCTIONAL DESCRIPTION  
The XRT83VSH38 is a fully integrated 8-channel short-haul line interface unit (LIU) that operates from a 1.8V  
and a 3.3V power supply. Using internal termination, the LIU provides one bill of materials to operate in T1, E1,  
or J1 mode with minimum external components. The LIU features are programmed through a standard  
microprocessor interface or controlled through Hardware mode. EXAR’s LIU has patented high impedance  
circuits that allow the transmitter outputs and receiver inputs to be high impedance when experiencing a power  
failure or when the LIU is powered off. Key design features within the LIU optimize 1:1 or 1+1 redundancy and  
non-intrusive monitoring applications to ensure reliability without using relays. The on-chip clock synthesizer  
generates T1/E1/J1 clock rates from a selectable external clock frequency and outputs a clock reference of the  
line rate chosen. Additional features include RLOS, a 16-bit LCV counter for each channel, AIS, QRSS  
generation/detection, Network Loop Code generation/detection, TAOS, DMO, and diagnostic loopback modes.  
1.0 HARDWARE MODE VS HOST MODE  
The LIU supports a parallel or serial microprocessor interface (Host mode) for programming the internal  
features, or a Hardware mode that can be used to configure the device.  
1.1  
Feature Differences in Hardware Mode  
Some features within the Hardware mode are not supported on a per channel basis. The differences between  
Hardware mode and Host mode are descibed below in Table 1.  
TABLE 1: DIFFERENCES BETWEEN HARDWARE MODE AND HOST MODE  
FEATURE  
HOST MODE  
HARDWARE MODE  
Tx Test Patterns  
Fully Supported  
QRSS diagnostic patterns are not available in Hardware mode.  
The TAOS feature is available.  
RxRES[1:0]  
TERSEL[1:0]  
EQC[4:0]  
Per Channel  
Per Channel  
Per Channel  
In Hardware mode, RxRES[1:0] is a global setting that applies to  
all channels.  
In Hardware mode, TERSEL[1:0] is a global setting that applies to  
all channels.  
In Hardware mode, the EQC[4:0] is a global setting that applies to  
all channels.  
NOTE: In Host mode, all channels have to operate at one line rate  
T1 or E1, however each channel can have an individual  
line build out.  
Dual Loopback  
JASEL[1:0]  
RxTSEL  
Fully Supported  
Per Channel  
Per Channel  
Per Channel  
In Hardware mode, dual loopback mode is not supported.  
Remote, Analog local, and digital loopback modes are available.  
In Hardware mode, the jitter attenuator selection is a global setting  
that applies to all channels.  
In Hardware mode, the receive termination select is a global set-  
ting that applies to all channels.  
TxTSEL  
In Hardware mode, the transmit termination select is a global set-  
ting that applies to all channels.  
18  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
2.0 MASTER CLOCK GENERATOR  
REV. 1.0.7  
Using external clock sources, the on-chip frequency synthesizer generates the T1 (1.544MHz) or E1  
(2.048MHz) master clocks necessary for the transmit pulse shaping and receive clock recovery circuit. There  
are two master clock inputs MCLKE1 and MCLKT1. In systems where both T1 and E1 master clocks are  
available these clocks can be connected to the respective pins. All channels of a given XRT83VSH38 must be  
operated at the same clock rate, either T1, E1 or J1 modes. In systems that have only one master clock  
source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper  
operation.  
FIGURE 3. TWO INPUT CLOCK SOURCE  
Two Input Clock Sources  
2.048MHz  
MCLKE1  
+/-50ppm  
1.544MHz  
or  
MCLKOUT  
2.048MHz  
1.544MHz  
+/-50ppm  
MCLKT1  
FIGURE 4. ONE INPUT CLOCK SOURCE  
One Input Clock Source  
Input Clock Options  
1.544kHz  
MCLKE1  
1.544MHz  
or  
2.048MHz  
MCLKOUT  
2.048kHz  
MCLKT1  
TABLE 2: MASTER CLOCK GENERATOR  
MCLKE1  
KHZ  
MCLKT1  
KHZ  
MASTER CLOCK  
KHZ  
CLKSEL2  
CLKSEL1  
CLKSEL0  
MCLKRATE  
2048  
2048  
2048  
1544  
1544  
2048  
2048  
2048  
1544  
1544  
1544  
1544  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
2048  
1544  
2048  
1544  
2048  
1544  
19  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
3.0 RECEIVE PATH LINE INTERFACE  
The receive path of the XRT83VSH38 LIU consists of 8 independent T1/E1/J1 receivers. The following section  
describes the complete receive path from RTIP/RRING inputs to RCLK/RPOS/RNEG outputs. A simplified  
block diagram of the receive path is shown in Figure 5.  
FIGURE 5. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH  
RTIP  
RCLK  
RPOS  
RNEG  
HDB3/B8ZS  
Decoder  
Rx Jitter  
Attenuator  
Clock & Data  
Recovery  
Peak Detector  
& Slicer  
RRING  
3.1  
Line Termination (RTIP/RRING)  
3.1.1  
CASE 1: Internal Termination  
The input stage of the receive path accepts standard T1/E1/J1 twisted pair or E1 coaxial cable inputs through  
RTIP and RRING. The physical interface is optimized by placing the terminating impedance inside the LIU.  
This allows one bill of materials for all modes of operation reducing the number of external components  
necessary in system design. The receive termination impedance is selected by programming TERSEL[1:0] to  
match the line impedance. Selecting the internal impedance is shown in Table 3.  
TABLE 3: SELECTING THE INTERNAL IMPEDANCE  
TERSEL[1:0]  
0h (00)  
RECEIVE TERMINATION  
100Ω  
110Ω  
75Ω  
1h (01)  
2h (10)  
3h (11)  
120Ω  
The XRT83VSH38 has the ability to switch the internal termination to "High" impedance by programming  
RxTSEL in the appropriate channel register. For internal termination, set RxTSEL to "1". By default, RxTSEL  
is set to "0" ("High" impedance). For redundancy applications, a dedicated hardware pin (RxTSEL) is also  
available to control the receive termination for all channels simultaneously. This hardware pin takes priority  
over the register setting if RxTCNTL is set to "1" in the appropriate global register. If RxTCNTL is set to "0", the  
state of this pin is ignored. See Figure 6 for a typical connection diagram using the internal termination.  
FIGURE 6. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION  
XRT83VSH38 LIU  
RTIP  
1:1  
Receiver  
Input  
Line Interface T1/E1/J1  
RRING  
One Bill of Materials  
Internal Impedance  
20  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
3.1.2  
CASE 2: Internal Termination With One External Fixed Resistor for All Modes  
Along with the internal termination, a high precision external fixed resistor can be used to optimize the return  
loss. This external resistor can be used for all modes of operation ensuring one bill of materials. There are  
three resistor values that can be used by setting the RxRES[1:0] bits in the appropriate channel register.  
Selecting the value for the external fixed resistor is shown in Table 4.  
TABLE 4: SELECTING THE VALUE OF THE EXTERNAL FIXED RESISTOR  
RXRES[1:0]  
0h (00)  
EXTERNAL FIXED RESISTOR  
None  
240Ω  
210Ω  
150Ω  
1h (01)  
2h (10)  
3h (11)  
By default, RxRES[1:0] is set to "None" for no external fixed resistor. If an external fixed resistor is used, the  
XRT83VSH38 uses the parallel combination of the external fixed resistor and the internal termination as the  
input impedance. See Figure 7 for a typical connection diagram using the external fixed resistor.  
NOTE: Without the external resistor, the XRT83VSH38 meets all return loss specifications. This mode was created to add  
flexibility for optimizing return loss by using a high precision external resistor.  
FIGURE 7. TYPICAL CONNECTION DIAGRAM USING ONE EXTERNAL FIXED RESISTOR  
XRT83VSH38 LIU  
RTIP  
1:1  
Receiver  
Input  
R
Line Interface T1/E1/J1  
RRING  
R=240, 210, or 150Ω  
Internal Impedance  
21  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
3.2  
Clock and Data Recovery  
The receive clock (RCLK) is recovered by the clock and data recovery circuitry. An internal PLL locks on the  
incoming data stream and outputs a clock that’s in phase with the incoming signal. This allows for multi-  
channel T1/E1/J1 signals to arrive from different timing sources and remain independent. In the absence of an  
incoming signal, RCLK maintains its timing by using the internal master clock as its reference. The recovered  
data can be updated on either edge of RCLK. By default, data is updated on the rising edge of RCLK. To  
update data on the falling edge of RCLK, set RCLKE to "1" in the appropriate global register. Figure 8 is a  
timing diagram of the receive data updated on the rising edge of RCLK. Figure 9 is a timing diagram of the  
receive data updated on the falling edge of RCLK. The timing specifications are shown in Table 5.  
FIGURE 8. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK  
RCLKR  
RCLKF  
RDY  
RCLK  
RPOS  
or  
RNEG  
ROH  
FIGURE 9. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK  
RCLKF  
RCLKR  
RDY  
RCLK  
RPOS  
or  
RNEG  
ROH  
TABLE 5: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
RCLK Duty Cycle  
RCDU  
45  
50  
55  
%
Receive Data Setup Time  
Receive Data Hold Time  
RCLK to Data Delay  
RSU  
RHO  
150  
-
-
-
-
-
ns  
ns  
ns  
ns  
150  
-
RDY  
-
-
40  
40  
RCLK Rise Time (10% to 90%)  
with 25pF Loading  
RCLKR  
RCLK Fall Time (90% to 10%)  
with 25pF Loading  
RCLKF  
-
-
40  
ns  
NOTE: VDD=3.3V ±5%, TA=25°C, Unless Otherwise Specified  
3.2.1  
Receive Sensitivity  
22  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
To meet short haul requirements, the XRT83VSH38 can accept T1/E1/J1 signals that have been attenuated by  
12dB of flat loss in E1 mode or by 655 feet of cable loss along with 6dB of flat loss in T1 mode. However, the  
XRT83VSH38 can tolerate cable loss and flat loss beyond the industry specifications. The receive sensitivity  
in the short haul mode is approximately 4,000 feet without experiencing bit errors, LOF, pattern  
synchronization, etc. Although data integrity is maintained, the RLOS function (if enabled) will report an RLOS  
condition according to the receiver loss of signal section in this datasheet. The test configuration for  
measuring the receive sensitivity is shown in Figure 10.  
FIGURE 10. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY  
W&G ANT20  
Rx  
Tx  
External Loopback  
Tx  
Rx  
Flat Loss  
Cable Loss  
XRT83VSH38  
8-Channel  
Short Haul LIU  
Network  
Analyzer  
E1 = PRBS 215 - 1  
T1 = PRBS 223 - 1  
3.2.2  
Interference Margin  
The interference margin for the XRT83VSH38 is -15db. The test configuration for measuring the interference  
margin is shown in Figure 11.  
FIGURE 11. TEST CONFIGURATION FOR MEASURING INTERFERENCE MARGIN  
E1 = 1,024kHz  
T1 = 772kHz  
Sinewave  
Flat Loss  
Generator  
E1 = PRBS 215 - 1  
T1 = PRBS 223 - 1  
Rx  
Tx  
External Loopback  
W&G ANT20  
Network  
Analyzer  
Tx  
Cable Loss  
XRT83VSH38  
8-Channel LIU  
Rx  
3.2.3  
General Alarm Detection and Interrupt Generation  
The receive path detects RLOS, AIS, QRPD and FLS. These alarms can be individually masked to prevent the  
alarm from triggering an interrupt. To enable interrupt generation, the Global Interrupt Enable (GIE) bit must be  
set "High" in the appropriate global register. Any time a change in status occurs (it the alarms are enabled), the  
interrupt pin will pull "Low" to indicate an alarm has occurred. Once the status registers have been read, the  
INT pin will return "High". The status registers are Reset Upon Read (RUR). The interrupts are categorized in  
a hierarchical process block. Figure is a simplified block diagram of the interrupt generation process.  
NOTE: The interrupt pin is an open-drain output that requires a 10kexternal pull-up resistor.  
23  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
3.2.3.1  
RLOS (Receiver Loss of Signal)  
The XRT83VSH38 supports both G.775 or ETSI-300-233 RLOS detection scheme.  
In G.775 mode, RLOS is declared when the received signal is less than 375mV for 32 consecutive pulse  
periods (typical). The device clears RLOS when the receive signal achieves 12.5% ones density with no more  
than 15 consecutive zeros in a 32 bit sliding window and the signal level exceeds 425mV (typical).  
In ETSI-300-233 mode the device declares RLOS when the input level drops below 375mV (typical) for more  
than 2048 pulse periods (1msec).  
The device exits RLOS when the input signal exceeds 425mV (typical) and has transitions for more than 32  
pulse periods with 12.5% ones density with no more than 15 consecutive zero’s in a 32 bit sliding window.  
ETSI-300-233 RLOS detection method is only available in Host mode.  
In T1 mode RLOS is declared when the received signal is less than 320mV for 175 consecutive pulse period  
(typical). The device clears RLOS when the receive signal achieves 12.5% ones density with no more than 100  
consecutive zeros in a 128 bit sliding window and the signal level exceeds 425mV (typical).  
3.2.3.2  
EXLOS (Extended Loss of Signal)  
By enabling the extended loss of signal by programming the appropriate channel register, the digital RLOS is  
extended to count 4,096 consecutive zeros before declaring RLOS in T1 and E1 mode. By default, EXLOS is  
disabled and RLOS operates in normal mode.  
3.2.3.3  
AIS (Alarm Indication Signal)  
The XRT83VSH38 adheres to the ITU-T G.775 specification for an all ones pattern. The alarm indication  
signal is set to "1" if an all ones pattern (at least 99.9% ones density) is present for T, where T is 3ms to 75ms  
in T1 mode. AIS will clear when the ones density is not met within the same time period T. In E1 mode, the  
AIS is set to "1" if the incoming signal has 2 or less zeros in a 512-bit window. AIS will clear when the incoming  
signal has 3 or more zeros in the 512-bit window.  
3.2.3.4  
FLSD (FIFO Limit Status Detection)  
The purpose of the FIFO limit status is to indicate when the Read and Write FIFO pointers are within a pre-  
determined range (over-flow or under-flow indication). The FLSD is set to "1" if the FIFO Read and Write  
Pointers are within ±3-Bits.  
3.2.3.5  
LCV (Line Code Violation)  
The LIU contains 8 independent, 16-bit LCV counters. When the counters reach full-scale, they remain  
saturated at FFFFh until they are reset globally or on a per channel basis. For performance monitoring, the  
counters can be updated globally or on a per channel basis to place the contents of the counters into holding  
registers. The LIU uses an indirect address bus to access a counter for a given channel. Once the contents of  
the counters have been placed in holding registers, they can be individually read out 8-bits at a time according  
to the BYTEsel bit in the appropriate global register. By default, the LSB is placed in the holding register until  
the BYTEsel is pulled "High" where upon the MSB will be placed in the holding register for read back. Once  
both bytes have been read, the next channel may be selected for read back.  
By default, the LCV_OFD will be set to a "1" if the receiver is currently detecting line code violations or  
excessive zeros for HDB3 (E1 mode) or B8ZS (T1 mode). In AMI mode, the LCV_OFD will be set to a "1" if the  
receiver is currently detecting bipolar violations or excessive zeros. However, if the LIU is configured to  
monitor the 16-bit LCV counter through software, the LCV_OFD will be set to a "1" if the counter saturates.  
3.3  
Receive Jitter Attenuator  
The receive path has a dedicated jitter attenuator that reduces phase and frequency jitter in the recovered  
clock. The jitter attenuator uses a data FIFO (First In First Out) with a programmable depth of 32-bit or 64-bit.  
If the LIU is used for line synchronization (loop timing systems), the JA should be enabled. When the Read  
and Write pointers of the FIFO are within 2-Bits of over-flowing or under-flowing, the bandwidth of the jitter  
attenuator is widened to track the short term input jitter, thereby avoiding data corruption. When this condition  
occurs, the jitter attenuator will not attenuate input jitter until the Read/Write pointer’s position is outside the 2-  
24  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
Bit window. In T1 mode, the bandwidth of the JA is always set to 3Hz. In E1 mode, the bandwidth is  
programmable to either 10Hz or 1.5Hz (1.5Hz automatically selects the 64-Bit FIFO depth). The JA has a  
clock delay equal to ½ of the FIFO bit depth.  
NOTE: If the LIU is used in a multiplexer/mapper application where stuffing bits are typically removed, the transmit path has  
a dedicated jitter attenuator to smooth out the gapped clock. See the Transmit Section of this datasheet.  
3.4  
HDB3/B8ZS Decoder  
In single rail mode, RPOS can decode AMI or HDB3/B8ZS signals. For E1 mode, HDB3 is defined as any  
block of 4 successive zeros replaced with 000V or B00V, so that two successive V pulses are of opposite  
polarity to prevent a DC component. In T1 mode, 8 successive zeros are replaced with OOOVBOVB. If the  
HDB3/B8ZS decoder is selected, the receive path removes the V and B pulses so that the original data is  
output to RPOS.  
3.5  
RPOS/RNEG/RCLK  
The digital output data can be programmed to either single rail or dual rail formats. Figure 12 is a timing  
diagram of a repeating "0011" pattern in single-rail mode. Figure 13 is a timing diagram of the same fixed  
pattern in dual rail mode.  
FIGURE 12. SINGLE RAIL MODE WITH A FIXED REPEATING "0011" PATTERN  
0
0
0
1
1
RCLK  
RPOS  
FIGURE 13. DUAL RAIL MODE WITH A FIXED REPEATING "0011" PATTERN  
0
0
0
1
1
RCLK  
RPOS  
RNEG  
25  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
3.6  
RxMUTE (Receiver LOS with Data Muting)  
The receive muting function can be selected by setting RxMUTE to "1" in the appropriate global register. If  
selected, any channel that experiences an RLOS condition will automatically pull RPOS and RNEG "Low" to  
prevent data chattering. If RLOS does not occur, the RxMUTE will remain inactive until an RLOS on a given  
channel occurs. The default setting for RxMUTE is "0" which is disabled. A simplified block diagram of the  
RxMUTE function is shown in Figure 14.  
FIGURE 14. SIMPLIFIED BLOCK DIAGRAM OF THE RXMUTE FUNCTION  
RPOS  
RNEG  
RxMUTE  
RLOS  
26  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
4.0 TRANSMIT PATH LINE INTERFACE  
REV. 1.0.7  
The transmit path of the XRT83VSH38 LIU consists of 8 independent T1/E1/J1 transmitters. The following  
section describes the complete transmit path from TCLK/TPOS/TNEG inputs to TTIP/TRING outputs.  
A
simplified block diagram of the transmit path is shown in Figure 15.  
FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT PATH  
TTIP  
TCLK  
TPOS  
TNEG  
HDB3/B8ZS  
Encoder  
Tx Jitter  
Attenuator  
Timing  
Control  
Tx Pulse Shaper  
& Pattern Gen  
Line Driver  
TRING  
4.1  
TCLK/TPOS/TNEG Digital Inputs  
In dual rail mode, TPOS and TNEG are the digital inputs for the transmit path. In single rail mode, TNEG has  
no function and can be left unconnected. The XRT83VSH38 can be programmed to sample the inputs on  
either edge of TCLK. By default, data is sampled on the falling edge of TCLK. To sample data on the rising  
edge of TCLK, set TCLKE to "1" in the appropriate global register. Figure 16 is a timing diagram of the  
transmit input data sampled on the falling edge of TCLK. Figure 17 is a timing diagram of the transmit input  
data sampled on the rising edge of TCLK. The timing specifications are shown in Table 6.  
FIGURE 16. TRANSMIT DATA SAMPLED ON FALLING EDGE OF TCLK  
TCLKR  
TCLKF  
TCLK  
TPOS  
or  
TNEG  
TSU  
THO  
FIGURE 17. TRANSMIT DATA SAMPLED ON RISING EDGE OF TCLK  
TCLKF  
TCLKR  
TCLK  
TPOS  
or  
TNEG  
TSU  
THO  
27  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 6: TIMING SPECIFICATIONS FOR TCLK/TPOS/TNEG  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
TCLK Duty Cycle  
TCDU  
30  
50  
70  
%
Transmit Data Setup Time  
Transmit Data Hold Time  
TCLK Rise Time (10% to 90%)  
TCLK Fall Time (90% to 10%)  
TSU  
THO  
50  
30  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
-
TCLKR  
TCLKF  
40  
40  
-
NOTE: VDD=3.3V ±5%, TA=25°C, Unless Otherwise Specified  
4.2  
HDB3/B8ZS Encoder  
In single rail mode, the LIU can encode the TPOS input signal to AMI or HDB3/B8ZS data. In E1 mode and  
HDB3 encoding selected, any sequence with four or more consecutive zeros in the input will be replaced with  
000V or B00V, where "B" indicates a pulse conforming to the bipolar rule and "V" representing a pulse violating  
the rule. An example of HDB3 encoding is shown in Table 7. In T1 mode and B8ZS encoding selected, an  
input data sequence with eight or more consecutive zeros will be replaced using the B8ZS encoding rule. An  
example with Bipolar with 8 Zero Substitution is shown in Table 8.  
TABLE 7: EXAMPLES OF HDB3 ENCODING  
NUMBER OF PULSES BEFORE  
NEXT 4 ZEROS  
Input  
0000  
000V  
B00V  
HDB3 (Case 1)  
HDB3 (Case 2)  
Odd  
Even  
TABLE 8: EXAMPLES OF B8ZS ENCODING  
PRECEDING PULSE  
NEXT 8 BITS  
Case 1  
Input  
+
00000000  
000VB0VB  
000+-0-+  
B8ZS  
AMI Output  
+
Case 2  
-
Input  
B8ZS  
00000000  
000VB0VB  
000-+0+-  
AMI Output  
-
28  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
4.3  
Transmit Jitter Attenuator  
The XRT83VSH38 LIU is ideal for multiplexer or mapper applications where the network data crosses multiple  
timing domains. As the higher data rates are de-multiplexed down to T1 or E1 data, stuffing bits are typically  
removed which can leave gaps in the incoming data stream. The transmit path has a dedicated jitter  
attenuator with a 32-Bit or 64-Bit FIFO that is used to smooth the gapped clock into a steady T1 or E1 output.  
The maximum gap width of the 8-channel LIU is shown in Table 9.  
TABLE 9: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS  
FIFO DEPTH  
32-Bit  
MAXIMUM GAP WIDTH  
9 UI  
9 UI  
64-Bit  
NOTE: If the LIU is used in a loop timing system, the receive path has a dedicated jitter attenuator. See the Receive  
Section of this datasheet.  
4.4  
TAOS (Transmit All Ones)  
The XRT83VSH38 has the ability to transmit all ones on a per channel basis by programming the appropriate  
channel register. This function takes priority over the digital data present on the TPOS/TNEG inputs. For  
example: If a fixed "0011" pattern is present on TPOS in single rail mode and TAOS is enabled, the transmitter  
will output all ones. In addition, if digital or dual loopback is selected, the data on the RPOS output will be  
equal to the data on the TPOS input. Figure 18 is a diagram showing the all ones signal at TTIP and TRING.  
FIGURE 18. TAOS (TRANSMIT ALL ONES)  
1
1
1
TAOS  
4.5  
Transmit Diagnostic Features  
In addition to TAOS, the XRT83VSH38 offers diagnostic features for analyzing network integrity such as  
ATAOS and QRSS on a per channel basis by programming the appropriate registers. These diagnostic  
features take priority over the digital data present on TPOS/TNEG inputs. The transmitters will send the  
diagnostic code to the line and will be maintained in the digital loopback if selected. When the LIU is  
responsible for sending diagnostic patterns, the LIU is automatically placed in the single rail mode.  
4.5.1  
ATAOS (Automatic Transmit All Ones)  
If ATAOS is selected by programming the appropriate global register, an AMI all ones signal will be transmitted  
for each channel that experiences an RLOS condition. If RLOS does not occur, the ATAOS will remain inactive  
until an RLOS on a given channel occurs. A simplified block diagram of the ATAOS function is shown in  
Figure 19.  
29  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FIGURE 19. SIMPLIFIED BLOCK DIAGRAM OF THE ATAOS FUNCTION  
TTIP  
Tx  
TRING  
TAOS  
ATAOS  
RLOS  
4.5.2  
QRSS/PRBS Generation  
The XRT83VSH38 can transmit a QRSS/PRBS random sequence to a remote location from TTIP/TRING. The  
polynomial is shown in Table 10.  
TABLE 10: RANDOM BIT SEQUENCE POLYNOMIALS  
RANDOM PATTERN  
T1  
E1  
220 - 1  
215 - 1  
220 - 1  
215 - 1  
QRSS  
PRBS  
4.5.3  
T1 Short Haul Line Build Out (LBO)  
The short haul transmitter output pulses are generated using a 7-Bit internal DAC (6-Bit plus the MSB sign bit).  
The line build out can be set to interface to five different ranges of cable attenuation by programming the  
appropriate channel register. The pulse shape is divided into eight discrete time segments which are set to  
fixed values to comply with the pulse template. To program the eight segments individually to optimize a  
special line build out, see the arbitrary pulse section of this datasheet. The short haul LBO settings are shown  
in Table 11.  
TABLE 11: SHORT HAUL LINE BUILD OUT  
LBO SETTING EQC[4:0]  
08h (01000)  
RANGE OF CABLE ATTENUATION  
0 - 133 Feet  
09h (01001)  
133 - 266 Feet  
0Ah (01010)  
266 - 399 Feet  
0Bh (01011)  
399 - 533 Feet  
0Ch (01100)  
533 - 655 Feet  
4.5.4  
Arbitrary Pulse Generator For T1 and E1  
The arbitrary pulse generator divides the pulse into eight individual segments. Each segment is set by a 7-Bit  
binary word by programming the appropriate channel register. This allows the system designer to set the  
overshoot, amplitude, and undershoot for a unique line build out. The MSB (bit 7) is a sign-bit. If the sign-bit is  
set to "0", the segment will move in a positive direction relative to a flat line (zero) condition. If this sign-bit is  
set to "1", the segment will move in a negative direction relative to a flat line condition. The resolution of the  
DAC is typically 45mV per LSB. Thus, writing 7-bit = 1111111 will clamp the output at either voltage rail  
corresponding to a maximum amplitude. A pulse with numbered segments is shown in Figure 20.  
30  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
FIGURE 20. ARBITRARY PULSE SEGMENT ASSIGNMENT  
1
2
3
4
Segment  
Register  
1
2
3
4
5
6
7
8
0xn8  
0xn9  
0xna  
0xnb  
0xnc  
0xnd  
0xne  
0xnf  
8
7
6
5
NOTE: By default, the arbitrary segments are programmed to 0x00h. The transmitter outputs will result in an all zero  
pattern to the line interface.  
4.6  
DMO (Digital Monitor Output)  
The driver monitor circuit is used to detect transmit driver failures by monitoring the activities at TTIP/TRING  
outputs. Driver failure may be caused by a short circuit in the primary transformer or system problems at the  
transmit inputs. If the transmitter of a channel has no output for more than 128 clock cycles, DMO goes "High"  
until a valid transmit pulse is detected. If the DMO interrupt is enabled, the change in status of DMO will cause  
the interrupt pin to go "Low". Once the status register is read, the interrupt pin will return "High" and the status  
register will be reset (RUR).  
4.7  
Line Termination (TTIP/TRING)  
The output stage of the transmit path generates standard return-to-zero (RZ) signals to the line interface for T1/  
E1/J1 twisted pair or E1 coaxial cable. The physical interface is optimized by placing the terminating  
impedance inside the LIU. This allows one bill of materials for all modes of operation reducing the number of  
external components necessary in system design. The transmitter outputs only require one DC blocking  
capacitor of 0.68µF. For redundancy applications (or simply to tri-state the transmitters), set TxTSEL to a "1" in  
the appropriate channel register. A typical transmit interface is shown in Figure 21.  
FIGURE 21. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION  
XRT83VSH38 LIU  
TTIP  
1:2  
C=0.68uF  
Transmitter  
Output  
Line Interface T1/E1/J1  
TRING  
One Bill of Materials  
Internal Impedance  
31  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
5.0 T1/E1 APPLICATIONS  
This applications section describes common T1/E1 system considerations along with references to application  
notes available for reference where applicable.  
5.1  
Loopback Diagnostics  
The XRT83VSH38 supports several loopback modes for diagnostic testing. The following section describes  
the local analog loopback, remote loopback, digital loopback, and dual loopback modes.  
5.1.1  
Local Analog Loopback  
With local analog loopback activated, the transmit output data at TTIP/TRING is internally looped back to the  
analog inputs at RTIP/RRING. External inputs at RTIP/RRING are ignored while valid transmit output data  
continues to be sent to the line. A simplified block diagram of local analog loopback is shown in Figure 22.  
FIGURE 22. SIMPLIFIED BLOCK DIAGRAM OF LOCAL ANALOG LOOPBACK  
QRSS  
TAOS  
TCLK  
TPOS  
TNEG  
Timing  
Control  
TTIP  
TRING  
Encoder  
JA  
JA  
Tx  
RCLK  
RPOS  
RNEG  
Data and  
Clock  
Recovery  
RTIP  
RRING  
Decoder  
Rx  
NOTE: The transmit diagnostic features such as TAOS and QRSS take priority over the transmit input data at TCLK/TPOS/  
TNEG.  
5.1.2  
Remote Loopback  
With remote loopback activated, the receive input data at RTIP/RRING is internally looped back to the transmit  
output data at TTIP/TRING. The remote loopback includes the Receive JA (if enabled). The transmit input  
data at TCLK/TPOS/TNEG are ignored while valid receive output data continues to be sent to the system. A  
simplified block diagram of remote loopback is shown in Figure 23.  
FIGURE 23. SIMPLIFIED BLOCK DIAGRAM OF REMOTE LOOPBACK  
QRSS  
TAOS  
TCLK  
TPOS  
TNEG  
Timing  
Control  
TTIP  
TRING  
Encoder  
JA  
JA  
Tx  
RCLK  
RPOS  
RNEG  
Data and  
Clock  
Recovery  
RTIP  
RRING  
Decoder  
Rx  
32  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
5.1.3  
Digital Loopback  
With digital loopback activated, the transmit input data at TCLK/TPOS/TNEG is looped back to the receive  
output data at RCLK/RPOS/RNEG. The digital loopback mode includes the Transmit JA (if enabled). The  
receive input data at RTIP/RRING is ignored while valid transmit output data continues to be sent to the line. A  
simplified block diagram of digital loopback is shown in Figure 24.  
FIGURE 24. SIMPLIFIED BLOCK DIAGRAM OF DIGITAL LOOPBACK  
QRSS  
TAOS  
TCLK  
TPOS  
TNEG  
Timing  
Control  
TTIP  
TRING  
Encoder  
JA  
JA  
Tx  
RCLK  
RPOS  
RNEG  
Data and  
Clock  
Recovery  
RTIP  
RRING  
Decoder  
Rx  
5.1.4  
Dual Loopback  
With dual loopback activated, the remote loopback is combined with the digital loopback. A simplified block  
diagram of dual loopback is shown in Figure 25.  
FIGURE 25. SIMPLIFIED BLOCK DIAGRAM OF DUAL LOOPBACK  
QRSS  
TAOS  
TCLK  
TPOS  
TNEG  
Timing  
Control  
TTIP  
TRING  
Encoder  
JA  
JA  
Tx  
RCLK  
RPOS  
RNEG  
Data and  
Clock  
Recovery  
RTIP  
RRING  
Decoder  
Rx  
33  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
5.2  
Line Card Redundancy  
Telecommunication system design requires signal integrity and reliability. When a T1/E1 primary line card has  
a failure, it must be swapped with a backup line card while maintaining connectivity to a backplane without  
losing data. System designers can achieve this by implementing common redundancy schemes with the  
XRT83VSH38 LIU. EXAR offers features that are tailored to redundancy applications while reducing the  
number of components and providing system designers with solid reference designs.  
RLOS and DMO  
If an RLOS or DMO condition occurs, the XRT83VSH38 reports the alarm to the individual status registers on a  
per channel basis. However, for redundancy applications, an RLOS or DMO alarm can be used to initiate an  
automatic switch to the back up card. For this application, two global pins RLOS and DMO are used to indicate  
that one of the 8-channels has an RLOS or DMO condition.  
Typical Redundancy Schemes  
1:1 One backup card for every primary card (Facility Protection)  
1+1 One backup card for every primary card (Line Protection)  
·N+1 One backup card for N primary cards  
5.2.1  
1:1 and 1+1 Redundancy Without Relays  
The 1:1 facility protection and 1+1 line protection have one backup card for every primary card. When using  
1:1 or 1+1 redundancy, the backup card has its transmitters tri-stated and its receivers in high impedance. This  
eliminates the need for external relays and provides one bill of materials for all interface modes of operation.  
For 1+1 line protection, the receiver inputs on the backup card have the ability to monitor the line for bit errors  
while in high impedance. The transmit and receive sections of the LIU device are described separately.  
5.2.2  
Transmit Interface with 1:1 and 1+1 Redundancy  
The transmitters on the backup card should be tri-stated. Select the appropriate impedance for the desired  
mode of operation, T1/E1/J1. A 0.68uF capacitor is used in series with TTIP for blocking DC bias. See  
Figure 26. for a simplified block diagram of the transmit section for a 1:1 and 1+1 redundancy.  
FIGURE 26. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR 1:1 AND 1+1 REDUNDANCY  
Backplane Interface  
Primary Card  
XRT83VSH38  
1:2  
0.68uF  
Tx  
Tx  
T1/E1 Line  
Internal Impedence  
Backup Card  
XRT83VSH38  
1:2  
0.68uF  
Internal Impedence  
34  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
5.2.3  
Receive Interface with 1:1 and 1+1 Redundancy  
The receivers on the backup card should be programmed for "High" impedance. Since there is no external  
resistor in the circuit, the receivers on the backup card will not load down the line interface. This key design  
feature eliminates the need for relays and provides one bill of materials for all interface modes of operation.  
Select the impedance for the desired mode of operation, T1/E1/J1. To swap the primary card, set the backup  
card to internal impedance, then the primary card to "High" impedance. See Figure 27. for a simplified block  
diagram of the receive section for a 1:1 redundancy scheme.  
FIGURE 27. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE INTERFACE FOR 1:1 AND 1+1 REDUNDANCY  
Backplane Interface  
Primary Card  
XRT83VSH38  
1:1  
T1/E1 Line  
Rx  
Internal Impedence  
Backup Card  
XRT83VSH38  
1:1  
Rx  
"High" Impedence  
35  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
5.2.4  
N+1 Redundancy Using External Relays  
N+1 redundancy has one backup card for N primary cards. Due to impedance mismatch and signal  
contention, external relays are necessary when using this redundancy scheme. The relays create complete  
isolation between the primary cards and the backup card. This allows all transmitters and receivers on the  
primary cards to be configured in internal impedance, providing one bill of materials for all interface modes of  
operation. The transmit and receive sections of the LIU device are described separately.  
5.2.5  
Transmit Interface with N+1 Redundancy  
For N+1 redundancy, the transmitters on all cards should be programmed for internal impedance. The  
transmitters on the backup card do not have to be tri-stated. To swap the primary card, close the desired  
relays, and tri-state the transmitters on the failed primary card. A 0.68uF capacitor is used in series with TTIP  
for blocking DC bias. See Figure 28 for a simplified block diagram of the transmit section for an N+1  
redundancy scheme.  
FIGURE 28. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR N+1 REDUNDANCY  
Backplane Interface  
Line Interface Card  
Primary Card  
XRT83VSH38  
0.68uF  
1:2  
1:2  
1:2  
Tx  
T1/E1 Line  
T1/E1 Line  
T1/E1 Line  
Internal  
Impedence  
Primary Card  
XRT83VSH38  
0.68uF  
Tx  
Tx  
Tx  
Internal  
Impedence  
Primary Card  
XRT83VSH38  
0.68uF  
Internal  
Impedence  
Backup Card  
XRT83VSH38  
0.68uF  
Internal  
Impedence  
36  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
5.2.6  
Receive Interface with N+1 Redundancy  
For N+1 redundancy, the receivers on the primary cards should be programmed for internal impedance. The  
receivers on the backup card should be programmed for "High" impedance mode. To swap the primary card,  
set the backup card to internal impedance, then the primary card to "High" impedance. See Figure 29 for a  
simplified block diagram of the receive section for a N+1 redundancy scheme.  
FIGURE 29. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE INTERFACE FOR N+1 REDUNDANCY  
Backplane Interface  
Line Interface Card  
Primary Card  
XRT83VSH38  
Rx  
1:1  
1:1  
1:1  
T1/E1 Line  
T1/E1 Line  
T1/E1 Line  
Internal  
Impedence  
Primary Card  
XRT83VSH38  
Rx  
Internal  
Impedence  
Primary Card  
XRT83VSH38  
Rx  
Internal  
Impedence  
Backup Card  
XRT83VSH38  
Rx  
"High"  
Impedence  
37  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
5.3  
Power Failure Protection  
For 1:1 or 1+1 line card redundancy in T1/E1 applications, power failure could cause a line card to change the  
characteristics of the line impedance, causing a degradation in system performance. The XRT83VSH38 was  
designed to ensure reliability during power failures. The LIU has patented high impedance circuits that allow  
the receiver inputs and the transmitter outputs to be in "High" impedance when the LIU experiences a power  
failure or when the LIU is powered off.  
NOTE: For power failure protection, a transformer must be used to couple to the line interface. See the TAN-56 application  
note for more details.  
5.4  
Overvoltage and Overcurrent Protection  
Physical layer devices such as LIUs that interface to telecommunications lines are exposed to overvoltage  
transients posed by environmental threats. An Overvoltage transient is a pulse of energy concentrated over a  
small period of time, usually under a few milliseconds. These pulses are random and exceed the operating  
conditions of CMOS transceiver ICs. Electronic equipment connecting to data lines are susceptible to many  
forms of overvoltage transients such as lightning, AC power faults and electrostatic discharge (ESD). There  
are three important standards when designing a telecommunications system to withstand overvoltage  
transients.  
UL1950 and FCC Part 68  
Telcordia (Bellcore) GR-1089  
ITU-T K.20, K.21 and K.41  
5.5  
Non-Intrusive Monitoring  
In non-intrusive monitoring applications, the transmitters are shut off by setting TxON "Low". The receivers  
must be actively receiving data without interfering with the line impedance. The XRT83VSH38’s internal  
termination ensures that the line termination meets T1/E1 specifications for 75Ω, 100or 120while  
monitoring the data stream. System integrity is maintained by placing the non-intrusive receiver in "High"  
impedance, equivalent to that of a 1+1 redundancy application. A simplified block diagram of non-intrusive  
monitoring is shown in Figure 30.  
FIGURE 30. SIMPLIFIED BLOCK DIAGRAM OF A NON-INTRUSIVE MONITORING APPLICATION  
XRT83VSH38  
Line Card Transceiver  
Data Traffic  
Node  
XRT83VSH38  
Non-Intrusive Receiver  
38  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
6.0 MICROPROCESSOR INTERFACE  
REV. 1.0.7  
The microprocessor interface can be accessed through a standard serial interface (BGA Package Only) or a  
standard parallel microprocessor interface. The SER_PAR pin is used to select between the two. By default,  
the chip is configured in the Parallel Microprocessor interace. For Serial communication, this pin must be  
pulled “High”.  
6.1  
Serial Microprocessor Interface Block (BGA Package Only)  
The serial microprocessor uses a standard 3-pin serial port with CS, SCLK, and SDI for programming the LIU.  
Optional pins such as SDO, INT, and RESET allow the ability to read back contents of the registers, monitor  
the LIU via an interrupt pin, and reset the LIU to its default configuration by pulling reset "Low" for more than  
10µS. A simplified block diagram of the Serial Microprocessor is shown in Figure 31.  
FIGURE 31. SIMPLIFIED BLOCK DIAGRAM OF THE SERIAL MICROPROCESSOR INTERFACE  
SDO  
INT  
CS  
SCLK  
SDI  
Serial  
Microprocessor  
Interface  
SER_PAR  
HW/Host  
RESET  
6.1.1  
Serial Timing Information  
The serial port requires 24 bits of data applied to the SDI (Serial Data Input) pin. The Serial Microprocessor  
samples SDI on the rising edge of SCLK (Serial Clock Input). The data is not latched into the device until all 24  
bits of serial data have been sampled. A timing diagram of the Serial Microprocessor is shown in Figure 32.  
FIGURE 32. TIMING DIAGRAM FOR THE SERIAL MICROPROCESSOR INTERFACE  
CS  
8-Bit Address  
7-Bit Don't Care  
Don't Care  
8-Bit Data  
R/W  
ADDR[0] - ADDR[7]  
DATA[0] - DATA[7]  
SDI  
1=Read  
0=Write  
Readback  
DATA[0] - DATA[7]  
SDO  
SCLK  
NOTE: For applications without a free running SCLK, a minimum of 1 SCLK pulse must be applied when CS is “High”,  
befrore pulling CS “Low”.  
39  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
6.1.2  
24-Bit Serial Data Input Descritption  
The serial data input is sampled on the rising edge of SCLK. In readback mode, the serial data output is  
updated on the falling edge of SCLK. The serial data must be applied to the LIU LSB first. The 24 bits of serial  
data are described below.  
6.1.3  
ADDR[7:0] (SCLK1 - SCLK8)  
The first 8 SCLK cycles are used to provide the address to which a Read or Write operation will occur.  
ADDR[0] (LSB) must be sent to the LIU first followed by ADDR[1] and so forth until all 8 address bits have been  
sampled by SCLK.  
6.1.4  
R/W (SCLK9)  
The next serial bit applied to the LIU informs the microprocessor that a Read or Write operation is desired. If  
the R/W bit is set to “0”, the microprocessor is configured for a Write operation. If the R/W bit is set to “1”, the  
microprocessor is configured for a Read operation.  
6.1.5  
Dummy Bits (SCLK10 - SCLK16)  
The next 7 SCLK cycles are used as dummy bits. Seven bits were chosen so that the serial interface can  
easily be divided into three 8-bit words to be compliant with standard serial interface devices. The state of  
these bits are ignored and can hold either “0” or “1” during both Read and Write operations.  
6.1.6  
DATA[7:0] (SCLK17 - SCLK24)  
The next 8 SCLK cycles are used to provide the data to be written into the internal register chosen by the  
address bits. DATA[0] (LSB) must be sent to the LIU first followed by DATA[1] and so forth until all 8 data bits  
have been sampled by SCLK. Once 24 SCLK cycles have been completed, the LIU holds the data until CS is  
pulled “High” whereby, the serial microprocessor latches the data into the selected internal register.  
6.1.7  
8-Bit Serial Data Output Description  
The serial data output is updated on the falling edge of SCLK17 - SCLK24 if R/W is set to “1”. DATA[0] (LSB)  
is provided on SCLK17 to the SDO pin first followed by DATA[1] and so forth until all 8 data bits have been  
updated. The SDO pin allows the user to read the contents stored in individual registers by providing the  
desired address on the SDI pin during the Read cycle.  
40  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
FIGURE 33. TIMING DIAGRAM FOR THE MICROPROCESSOR SERIAL INTERFACE  
t28  
t21  
CS  
t26  
t24  
SCLK  
SDI  
t25  
t23  
ADDR 6  
t22  
R/w  
ADDR 7  
CS  
SCLK  
t29  
t31  
D0  
D2  
D7  
SDO  
SDI  
D1  
Hi-Z  
Don’t Care (Read mode)  
0
TABLE 12: MICROPROCESSOR SERIAL INTERFACE TIMINGS ( T = 25 C, V =3.3V± 5% AND LOAD = 10PF)  
DD  
A
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX  
UNITS  
t21  
CS Low to Rising Edge of SClk  
5
ns  
t22  
t23  
t24  
t25  
t26  
t28  
t29  
t31  
SDI to Rising Edge of SClk  
SDI to Rising Edge of SClk Hold Time  
SClk "Low" Time  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
20  
20  
40  
40  
SClk "High" Time  
SClk Period  
CS Inactive Time  
Falling Edge of SClk to SDO Valid Time  
Rising edge of CS to High Z  
5
5
41  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
6.2  
Parallel Microprocessor Interface Block  
The Parallel Microprocessor Interface section supports communication between the local microprocessor (µP)  
and the LIU. The XRT83VSH38 supports an Intel asynchronous interface and Motorola 68K asynchronous  
interface. The microprocessor interface is selected by the state of the µPTS[2:1] input pins. Selecting the  
microprocessor interface is shown in Table 13.  
TABLE 13: SELECTING THE MICROPROCESSOR INTERFACE MODE  
µPTS[2:1]  
MICROPROCESSOR MODE  
0h (00)  
Intel 68HC11, 8051, 80C188  
(Asynchronous)  
1h (01)  
Motorola 68K (Asynchronous)  
The XRT83VSH38 uses multipurpose pins to configure the device appropriately. The local µP configures the  
LIU by writing data into specific addressable, on-chip Read/Write registers. The microprocessor interface  
provides the signals which are required for a general purpose microprocessor to read or write data into these  
registers. The microprocessor interface also supports polled and interrupt driven environments. A simplified  
block diagram of the microprocessor is shown in Figure 34.  
FIGURE 34. SIMPLIFIED BLOCK DIAGRAM OF THE MICROPROCESSOR INTERFACE BLOCK  
CS  
WR_R/W  
RD_DS  
ALE  
ADDR[7:0]  
Microprocessor  
DATA[7:0]  
Interface  
µPTS [2:1]  
Reset  
RDY  
INT  
42  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
6.3  
The Microprocessor Interface Block Signals  
The LIU may be configured into different operating modes and have its performance monitored by software  
through a standard microprocessor using data, address and control signals. These interface signals are  
described below in Table 14, Table 15, and Table 16. The microprocessor interface can be configured to  
operate in Intel mode or Motorola mode. When the microprocessor interface is operating in Intel mode, some  
of the control signals function in a manner required by the Intel 80xx family of microprocessors. Likewise, when  
the microprocessor interface is operating in Motorola mode, then these control signals function in a manner as  
required by the Motorola microprocessors. (For using a Motorola 68K asynchronous processor, see  
Figure 36 and Table 18) Table 14 lists and describes those microprocessor interface signals whose role is  
constant across the two modes. Table 15 describes the role of some of these signals when the microprocessor  
interface is operating in the Intel mode. Likewise, Table 16 describes the role of these signals when the  
microprocessor interface is operating in the Motorola Power PC mode.  
TABLE 14: XRT83VSH38 MICROPROCESSOR INTERFACE SIGNALS THAT EXHIBIT CONSTANT ROLES IN BOTH INTEL  
AND MOTOROLA MODES  
PIN NAME  
TYPE  
DESCRIPTION  
I
Microprocessor Interface Mode Select Input pins  
µPTS[2:1]  
These two pins are used to specify the microprocessor interface mode. The relationship  
between the state of these two input pins, and the corresponding microprocessor mode is pre-  
sented in Table 13.  
DATA[7:0]  
ADDR[7:0]  
I/O  
I
Bi-Directional Data Bus for register "Read" or "Write" Operations.  
Eight-Bit Address Bus Inputs  
The XRT83VSH38 LIU microprocessor interface uses a direct address bus. This address bus  
is provided to permit the user to select an on-chip register for Read/Write access.  
CS  
I
Chip Select Input  
This active low signal selects the microprocessor interface of the XRT83VSH38 LIU and  
enables Read/Write operations with the on-chip register locations.  
TABLE 15: INTEL MODE: MICROPROCESSOR INTERFACE SIGNALS  
XRT83VSH38  
PIN NAME  
INTEL  
TYPE  
DESCRIPTION  
EQUIVALENTPIN  
ALE  
ALE  
RD  
I
Address-Latch Enable: This active high signal is used to latch the contents on  
the address bus ADDR[7:0]. The contents of the address bus are latched into the  
ADDR[7:0] inputs on the falling edge of ALE.  
RD_DS  
WR_R/W  
I
I
Read Signal: This active low input functions as the read signal from the local µP.  
When this pin is pulled “Low” (if CS is “Low”) the LIU is informed that a read oper-  
ation has been requested and begins the process of the read cycle.  
WR  
RDY  
Write Signal: This active low input functions as the write signal from the local µP.  
When this pin is pulled “Low” (if CS is “Low”) the LIU is informed that a write  
operation has been requested and begins the process of the write cycle.  
O
Ready Output: This active low signal is provided by the LIU device. It indicates  
that the current read or write cycle is complete, and the LIU is waiting for the next  
command.  
RDY  
43  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 16: MOTOROLA MODE: MICROPROCESSOR INTERFACE SIGNALS  
XRT83VSH38  
PIN NAME  
MOTOROLA  
TYPE  
DESCRIPTION  
EQUIVALENTPIN  
ALE  
AS  
I
Address Strobe: This active high signal is used to latch the contents on the  
address bus ADDR[7:0]. The contents of the address bus are latched into the  
ADDR[7:0] inputs on the falling edge of AS.  
WR_R/W  
R/W  
I
Read/Write: This input pin from the local µP is used to inform the LIU  
whether a Read or Write operation has been requested. When this pin is  
pulled “High”, DS will initiate a read operation. When this pin is pulled  
“Low”, DS will initiate a write operation.  
RD_DS  
RDY  
DS  
I
Data Strobe: This active low input functions as the read or write signal from the  
local µP dependent on the state of R/W. When DS is pulled “Low” (If CS  
is “Low”) the LIU begins the read or write operation.  
DTACK  
O
Data Transfer Acknowledge: This active low signal is provided by the LIU  
device. It indicates that the current read or write cycle is complete, and the LIU is  
waiting for the next command.  
44  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
6.4  
Intel Mode Programmed I/O Access (Asynchronous)  
If the LIU is interfaced to an Intel type µP, then it should be configured to operate in the Intel mode. Intel type  
Read and Write operations are described below.  
Intel Mode Read Cycle  
Whenever an Intel-type µP wishes to read the contents of a register, it should do the following.  
1. Place the address of the target register on the address bus input pins ADDR[7:0].  
2. While the µP is placing this address value on the address bus, the address decoding circuitry should  
assert the CS pin of the LIU, by toggling it "Low". This action enables further communication between the  
µP and the LIU microprocessor interface block.  
3. Toggle the ALE input pin "High". This step enables the address bus input drivers, within the microproces-  
sor interface block of the LIU.  
4. The µP should then toggle the ALE pin "Low". This step causes the LIU to latch the contents of the address  
bus into its internal circuitry. At this point, the address of the register has now been selected.  
5. Next, the µP should indicate that this current bus cycle is a Read operation by toggling the RD input pin  
"Low". This action also enables the bi-directional data bus output drivers of the LIU.  
6. After the µP toggles the Read signal "Low", the LIU will toggle the RDY output pin "Low". The LIU does this  
in order to inform the µP that the data is available to be read by the µP, and that it is ready for the next com-  
mand.  
7. After the µP detects the RDY signal and has read the data, it can terminate the Read Cycle by toggling the  
RD input pin "High".  
NOTE: ALE can be tied “High” if this signal is not available.  
The Intel Mode Write Cycle  
Whenever an Intel type µP wishes to write a byte or word of data into a register within the LIU, it should do the  
following.  
1. Place the address of the target register on the address bus input pins ADDR[7:0].  
2. While the µP is placing this address value on the address bus, the address decoding circuitry should  
assert the CS pin of the LIU, by toggling it "Low". This action enables further communication between the  
µP and the LIU microprocessor interface block.  
3. Toggle the ALE input pin "High". This step enables the address bus input drivers, within the microproces-  
sor interface block of the LIU.  
4. The µP should then toggle the ALE pin "Low". This step causes the LIU to latch the contents of the address  
bus into its internal circuitry. At this point, the address of the register has now been selected.  
5. The µP should then place the byte or word that it intends to write into the target register, on the bi-direc-  
tional data bus DATA[7:0].  
6. Next, the µP should indicate that this current bus cycle is a Write operation by toggling the WR input pin  
"Low". This action also enables the bi-directional data bus input drivers of the LIU.  
7. After the µP toggles the Write signal "Low", the LIU will toggle the RDY output pin "Low". The LIU does this  
in order to inform the µP that the data has been written into the internal register location, and that it is ready  
for the next command.  
NOTE: ALE can be tied “High” if this signal is not available.  
The Intel Read and Write timing diagram is shown in Figure 35. The timing specifications are shown in  
Table 17.  
45  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FIGURE 35. INTEL µP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS  
READ OPERATION  
WRITE OPERATION  
ALE = 1  
ADDR[10:0]  
CS  
t0  
t0  
Valid Address  
Valid Address  
DATA[7:0]  
RD  
Valid Data for Readback  
Data Available to Write Into the LIU  
t1  
t3  
WR  
t2  
t4  
RDY  
TABLE 17: INTEL MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t0  
t1  
Valid Address to CS Falling Edge  
CS Falling Edge to RD Assert  
RD Assert to RDY Assert  
RD Pulse Width (t2)  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
-
-
90  
-
t2  
NA  
t3  
90  
65  
-
CS Falling Edge to WR Assert  
WR Assert to RDY Assert  
WR Pulse Width (t4)  
-
t4  
90  
-
NA  
90  
46  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
6.5  
Motorola Mode Programmed I/O Access (Asynchronous)  
If the LIU is interfaced to a Motorola type µP, it should be configured to operate in the Motorola mode. Motorola  
type programmed I/O Read and Write operations are described below.  
Motorola Mode Read Cycle  
Whenever a Motorola type µP wishes to read the contents of a register, it should do the following.  
1. Place the address of the target register on the address bus input pins ADDR[7:0].  
2. While the µP is placing this address value on the address bus, the address decoding circuitry should  
assert the CS pin of the LIU, by toggling it "Low". This action enables further communication between the  
µP and the LIU microprocessor interface block.  
3. The µP should then toggle the AS pin "Low". This step causes the LIU to latch the contents of the address  
bus into its internal circuitry. At this point, the address of the register has now been selected.  
4. Next, the µP should indicate that this current bus cycle is a Read operation by pulling the R/W input pin  
"High".  
5. Toggle the DS input pin "Low". This action enables the bi-directional data bus output drivers of the LIU.  
6. After the µP toggles the DS signal "Low", the LIU will toggle the DTACK output pin "Low". The LIU does  
this in order to inform the µP that the data is available to be read by the µP, and that it is ready for the next  
command.  
7. After the µP detects the DTACK signal and has read the data, it can terminate the Read Cycle by toggling  
the DS input pin "High".  
Motorola Mode Write Cycle  
Whenever a motorola type µP wishes to write a byte or word of data into a register within the LIU, it should do  
the following.  
1. Place the address of the target register on the address bus input pins ADDR[7:0].  
2. While the µP is placing this address value on the address bus, the address decoding circuitry should  
assert the CS pin of the LIU, by toggling it "Low". This action enables further communication between the  
µP and the LIU microprocessor interface block.  
3. The µP should then toggle the AS pin "Low". This step causes the LIU to latch the contents of the address  
bus into its internal circuitry. At this point, the address of the register has now been selected.  
4. Next, the µP should indicate that this current bus cycle is a Write operation by pulling the R/W input pin  
"Low".  
5. Toggle the DS input pin "Low". This action enables the bi-directional data bus output drivers of the LIU.  
6. After the µP toggles the DS signal "Low", the LIU will toggle the DTACK output pin "Low". The LIU does  
this in order to inform the µP that the data has been written into the internal register location, and that it is  
ready for the next command.  
7. After the µP detects the DTACK signal and has read the data, it can terminate the Read Cycle by toggling  
the DS input pin "High".  
The Motorola Read and Write timing diagram is shown in Figure 36. The timing specifications are shown in  
Table 18.  
47  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
FIGURE 36. MOTOROLA 68K µP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS  
MOTOROLA ASYCHRONOUS MODE  
READ OPERATION  
WRITE OPERATION  
AS  
ADDR[7:0]  
CS  
t0  
t0  
Valid Address  
Valid Address  
t3  
t3  
Valid Data for Readback  
DATA[7:0]  
RD_DS  
Data Available to Write Into the LIU  
t1  
t1  
WR_R/W  
t2  
RDY_DTACK  
t2  
TABLE 18: MOTOROLA 68K MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t0  
t1  
Valid Address to CS Falling Edge  
0
-
ns  
ns  
ns  
ns  
ns  
CS Falling Edge to DS (Pin RD_DS) Assert  
DS Assert to DTACK Assert  
65  
-
-
90  
-
t2  
NA  
t3  
DS Pulse Width (t2)  
90  
0
CS Falling Edge to AS (Pin ALE) Falling Edge  
-
48  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 19: MICROPROCESSOR REGISTER ADDRESS (ADDR[7:0])  
REGISTER  
NUMBER  
ADDRESS (HEX)  
FUNCTION  
0 - 15  
16 - 31  
32 - 47  
48 - 63  
64 - 79  
80 - 95  
96 - 111  
112 - 127  
128 - 142  
192  
0x00 - 0x0F  
0x10 - 0x1F  
0x20 - 0x2F  
0x30 - 0x3F  
0x40 - 0x4F  
0x50 - 0x5F  
0x60 - 0x6F  
0x70 - 0x7F  
0x80 - 0x8E  
0xC0  
Channel 0 Control Registers  
Channel 1 Control Registers  
Channel 2 Control Registers  
Channel 3 Control Registers  
Channel 4 Control Registers  
Channel 5 Control Registers  
Channel 6 Control Registers  
Channel 7 Control Registers  
Global Control Registers Applied to All 8 Channels  
Global Control Register Applied to All 8 Channels  
R/W Registers Reserved for Testing (Except 0xC0h)  
Device "ID"  
143 - 253  
254  
0x8F - 0xFD  
0xFE  
255  
0xFF  
Device "Revision ID"  
TABLE 20: MICROPROCESSOR REGISTER CHANNEL DESCRIPTION  
REG ADDR TYPE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Channel 0 Control Registers (0x00 - 0x0F)  
0
1
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
R/W QRSS/PRBS  
PRBS_Rx/Tx  
TxTSEL  
TxTEST2  
Reserved  
DMOIE  
RxON  
TERSEL1  
TxTEST1  
CODES  
FLSIE  
EQC4  
TERSEL0  
TxTEST0  
RxRES1  
LCV_OFIE  
LCV_OFD  
LCV_OFIS  
Reserved  
1SEG4  
EQC3  
JASEL1  
TxON  
EQC2  
JASEL0  
LOOP2  
INSBPV  
AISIE  
EQC1  
JABW  
EQC0  
FIFOS  
R/W  
R/W  
R/W  
R/W  
RO  
RxTSEL  
INVQRSS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
LOOP1  
INSBER  
RLOSIE  
RLOS  
LOOP0  
Reserved  
QRPDIE  
QRPD  
3
RxRES0  
Reserved  
Reserved  
Reserved  
Reserved  
1SEG3  
2SEG3  
3SEG3  
4SEG3  
5SEG3  
6SEG3  
7SEG3  
8SEG3  
4
5
DMOD  
FLSD  
AISD  
6
RUR  
RO  
DMOIS  
FLSIS  
AISIS  
RLOSIS  
Reserved  
1SEG1  
2SEG1  
3SEG1  
4SEG1  
5SEG1  
6SEG1  
7SEG1  
8SEG1  
QRPDIS  
Reserved  
1SEG0  
2SEG0  
3SEG0  
4SEG0  
5SEG0  
6SEG0  
7SEG0  
8SEG0  
7
Reserved  
1SEG6  
Reserved  
1SEG5  
2SEG5  
3SEG5  
4SEG5  
5SEG5  
6SEG5  
7SEG5  
8SEG5  
Reserved  
1SEG2  
2SEG2  
3SEG2  
4SEG2  
5SEG2  
6SEG2  
7SEG2  
8SEG2  
8
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9
2SEG6  
2SEG4  
10  
11  
12  
13  
14  
15  
3SEG6  
3SEG4  
4SEG6  
4SEG4  
5SEG6  
5SEG4  
6SEG6  
6SEG4  
7SEG6  
7SEG4  
8SEG6  
8SEG4  
49  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 20: MICROPROCESSOR REGISTER CHANNEL DESCRIPTION  
REG ADDR TYPE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Channel (1 -7) Control Registers (0x10 - 0x7F) See Channel 0  
Global Control Registers for All 8 Channels  
128  
129  
130  
131  
140  
141  
142  
192  
0x80  
0x81  
0x82  
0x83  
0x8C  
0x8D  
0x8E  
0xC0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
SR/DR  
LCV_OF  
ATAOS  
RCLKE  
CLKSEL1  
Reserved  
Reserved  
Reserved  
Reserved  
LCVCNT5  
Reserved  
TCLKE  
CLKSEL0  
Reserved  
Reserved  
Reserved  
allRST  
DATAP  
MCLKrate  
Reserved  
SL1  
Reserved  
RxMUTE  
Reserved  
SL0  
GIE  
SRESET  
ICT  
CLKSEL2  
TERCNTL  
Reserved  
Reserved  
Reserved  
LCVCNT6  
Reserved  
EXLOS  
TxONCNTL  
Reserved  
Reserved  
Reserved  
LCVCNT7  
Reserved  
Reserved  
Reserved  
LCVCH1  
chUPDATE  
LCVCNT1  
Reserved  
Reserved  
Reserved  
LCVCH0  
chRST  
LCVCH3  
allUPDATE  
LCVCNT3  
Reserved  
LCVCH2  
BYTEsel  
LCVCNT2  
Reserved  
LCVCNT4  
Reserved  
LCVCNT0  
E1arben  
R/W  
R/W Registers Reserved for Testing (0x8F - 0xFD) Except 0xC0h  
254  
255  
0xFE  
0xFF  
RO Device "ID"  
RO Device "Revision ID"  
50  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 21: MICROPROCESSOR REGISTER 0X00H BIT DESCRIPTION  
CHANNEL 0-7 (0X00H-0X70H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
QRSS/  
PRBS  
QRSS/PRBS Select Bits  
R/W  
0
These bits are used to select between QRSS and PRBS.  
1 = QRSS  
0 = PRBS  
D6  
PRBS_Rx/ PRBS Receive/Transmit Select:  
R/W  
0
Tx  
This bit is used to select where the output of the PRBS Generator  
is directed if PRBS generation is enabled.  
0 = Normal Operation - PRBS generator is output on TTIP and  
TRING if PRBS generation is enabled.  
1 = PRBS Generator is output on RPOS; RNEG is internally  
grounded, if PRBS generation is enabled.  
Bit 6 = "0"  
+
TTIP  
PBRS  
Generator  
-
Tx  
TRING  
Bit 6 = "1"  
+
-
RPOS  
RNEG  
PBRS  
Generator  
Rx  
NOTE: If PRBS generation is disabled, user should set this bit to ’0’  
for normal operation.  
D5  
RxON  
Receiver ON/OFF  
R/W  
0
Upon power up, the receiver is powered OFF. RxON is used to  
turn the receiver ON or OFF if the hardware pin RxON is pulled  
"High". If the hardware pin is pulled "Low", all receivers are turned  
off.  
0 = Receiver is Powered Off  
1 = Receiver is Powered On  
D4  
D3  
D2  
D1  
D0  
EQC4  
EQC3  
EQC2  
EQC1  
EQC0  
Cable Length Setting  
R/W  
0
0
0
0
0
The equalizer control bits are shown in Table 22 below.  
51  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 22: CABLE LENGTH SETTING  
EQC[4:0]  
T1/E1 MODE/RECEIVE SENSITIVITY  
T1 Short Haul/15dB  
T1 Short Haul/15dB  
T1 Short Haul/15dB  
T1 Short Haul/15dB  
T1 Short Haul/15dB  
T1 Short Haul/15dB  
E1 Short Haul/15dB  
E1 Short Haul/15dB  
TRANSMIT LBO  
0 to 133 feet (0.6dB)  
133 to 266 feet (1.2dB)  
266 to 399 feet (1.8dB)  
399 to 533 feet (2.4dB)  
533 to 655 feet (3.0dB)  
Arbitrary Pulse  
CABLE  
100TP  
100TP  
100TP  
100TP  
100TP  
100TP  
75Coax  
120TP  
CODING  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
HDB3  
HDB3  
0x08h  
0x09h  
0x0Ah  
0x0Bh  
0x0Ch  
0x0Dh  
0x1Ch  
0x1Dh  
ITU G.703  
ITU G.703  
TABLE 23: MICROPROCESSOR REGISTER 0X01H BIT DESCRIPTION  
CHANNEL 0-7 (0X01H-0X71H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
RxTSEL Receive Termination Select  
Upon power up, the receiver is in "High" impedance. RxTSEL is  
R/W  
R/W  
R/W  
0
used to switch between the internal termination and "High" imped-  
ance.  
0 = "High" Impedance  
1 = Internal Termination  
D6  
TxTSEL  
Transmit Termination Select  
0
Upon power up, the transmitter is in "High" impedance. TxTSEL is  
used to switch between the internal termination and "High" imped-  
ance.  
0 = "High" Impedance  
1 = Internal Termination  
D5  
D4  
TERSEL1 Receive Line Impedance Select  
0
0
TERSEL0 TERSEL[1:0] are used to select the line impedance for T1/J1/E1.  
TERSEL1 TERSEL0 LINE IMPEDANCE  
0
0
1
1
0
1
0
1
100Ω  
110Ω  
75Ω  
120Ω  
52  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 23: MICROPROCESSOR REGISTER 0X01H BIT DESCRIPTION  
CHANNEL 0-7 (0X01H-0X71H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D3  
D2  
JASEL1  
JASEL0  
Jitter Attenuator Select  
R/W  
0
JASEL[1:0] are used to select the jitter attenuator in the transmit or  
receive path. By default, the jitter attenuator is disabled.  
JASEL1 JASEL0  
JA PATH  
Disabled  
0
0
1
1
0
1
0
1
Transmit Path  
Receive Path  
Receive Path  
D1  
D0  
JABW  
FIFOS  
Jitter Bandwidth (E1 Mode Only, T1 is permanently set to 3Hz)  
R/W  
R/W  
0
0
The jitter bandwidth is a global setting that is applied to both the  
receiver and transmitter jitter attenuator.  
0 = 10Hz  
1 = 1.5Hz  
FIFO Depth Select  
The FIFO depth select is used to configure the part for a 32-bit or  
64-bit FIFO (within the jitter attenuator blocks). The delay of the  
FIFO is equal to ½ the FIFO depth. This is a global setting that is  
applied to both the receiver and transmitter FIFO.  
0 = 32-Bit  
1 = 64-Bit  
53  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 24: MICROPROCESSOR REGISTER 0X02H BIT DESCRIPTION  
CHANNEL 0-7 (0X02H-0X72H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
INVQRSS QRSS inversion  
R/W  
0
INVQRSS is used to invert the transmit QRSS pattern set by the  
TxTEST[2:0] bits. By default, INVQRSS is disabled and the QRSS  
will be transmitted with normal polarity.  
0 = Disabled  
1 = Enabled  
D6  
D5  
D4  
TxTEST2 Test Code Pattern  
TxTEST1 TxTEST[2:0] are used to select a diagnostic test pattern to the line  
R/W  
0
0
0
(transmit outputs).  
0XX = No Pattern  
100 = Tx QRSS  
101 = Tx TAOS  
110 = Reserved  
111 = Reserved  
TxTEST0  
D3  
TxOn  
Transmit ON/OFF  
R/W  
0
Upon power up, the transmitters are powered off. This bit is used  
to turn the transmitter for this channel On or Off if the TxONCNTL  
bit is "Low". If the TxONCNTL bit is "High", the TxON hardware  
pins control the transmitter activity.  
0 = Transmitter is Powered OFF  
1 = Transmitter is Powered ON  
D2  
D1  
D0  
LOOP2  
LOOP1  
LOOP0  
Loopback Diagnostic Select  
LOOP[2:0] are used to select the loopback mode.  
0XX = No Loopback  
R/W  
0
0
0
100 = Dual Loopback  
101 = Analog Loopback  
110 = Remote Loopback  
111 = Digital Loopback  
TABLE 25: MICROPROCESSOR REGISTER 0X03H BIT DESCRIPTION  
CHANNEL 0-7 (0X03H-0X73H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D[7:6]  
D5  
Reserved This Register Bit is Not Used.  
CODES Encoding/Decoding Select (Single Rail Mode Only)  
R/W  
0
0 = HDB3 (E1), B8ZS (T1)  
1 = AMI Coding  
54  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 25: MICROPROCESSOR REGISTER 0X03H BIT DESCRIPTION  
CHANNEL 0-7 (0X03H-0X73H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D4  
D3  
RxRES1 Receive External Fixed Resistor  
R/W  
0
0
RxRES0 RxRES[1:0] are used to select the value for a high precision exter-  
nal resistor to improve return loss.  
00 = None  
01 = 240Ω  
10 = 210Ω  
11 = 150Ω  
D2  
D1  
D0  
INSBPV Insert Bipolar Violation  
R/W  
R/W  
0
0
When this bit transitions from a "0" to a "1", a bipolar violation will  
be inserted in the transmitted QRSS/PRBS pattern. The state of  
this bit will be sampled on the rising edge of TCLK. To ensure  
proper operation, it is recommended to write a "0" to this bit before  
writing a "1".  
INSBER Insert Bit Error  
When this bit transitions from a "0" to a "1", a bit error will be  
inserted in the transmitted QRSS/PRBS pattern. The state of this  
bit will be sampled on the rising edge of TCLK. To ensure proper  
operation, it is recommended to write a "0" to this bit before writing  
a "1".  
Reserved  
TABLE 26: MICROPROCESSOR REGISTER 0X04H BIT DESCRIPTION  
CHANNEL 0-7(0X04H-0X74H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
Reserved This Register Bit is Not Used.  
DMOIE  
Digital Monitor Output Interrupt Enable  
R/W  
R/W  
R/W  
0
0 = Masks the DMO function  
1 = Enables Interrupt Generation  
D5  
D4  
D3  
FLSIE  
FIFO Limit Status Interrupt Enable  
0 = Masks the FLS function  
0
0
1 = Enables Interrupt Generation  
LCV_OFIE Line Code Violation / Counter Overflow Interrupt Enable  
0 = Masks the LCV/OF function  
1 = Enables Interrupt Generation  
Reserved This Register Bit is Not Used.  
55  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 26: MICROPROCESSOR REGISTER 0X04H BIT DESCRIPTION  
CHANNEL 0-7(0X04H-0X74H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D2  
AISIE  
Alarm Indication Signal Interrupt Enable  
0 = Masks the AIS function  
R/W  
R/W  
R/W  
0
1 = Enables Interrupt Generation  
D1  
D0  
RLOSIE Receiver Loss of Signal Interrupt Enable  
0 = Masks the RLOS function  
0
0
1 = Enables Interrupt Generation  
QRPDIE Quasi Random Signal Source Interrupt Enable  
0 = Masks the QRPD function  
1 = Enables Interrupt Generation  
NOTE: The GIE bit in the global register 0xE0h must be set to "1" in addition to the individual register bits to enable the  
interrupt pin.  
TABLE 27: MICROPROCESSOR REGISTER 0X05H BIT DESCRIPTION  
CHANNEL 0-7 (0X05H-0X75H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
Reserved This Register Bit is Not Used.  
DMOD  
Digital Monitor Output Detection  
RO  
0
The digital monitor output is always active regardless if the inter-  
rupt generation is disabled. This bit indicates the DMO activity. An  
interrupt will not occur unless the DMOIE is set to "1" in the chan-  
nel register 0x04h and GIE is set to "1" in the global register  
0xE0h.  
0 = No Alarm  
1 = Transmit output driver has failures  
D5  
FLSD  
FIFO Limit Status Detection  
RO  
0
The FIFO limit status is always active regardless if the interrupt  
generation is disabled. This bit indicates whether the RD/WR  
pointers are within 3-Bits. An interrupt will not occur unless the  
FLSIE is set to "1" in the channel register 0x04h and GIE is set to  
"1" in the global register 0xE0h.  
0 = No Alarm  
1 = RD/WR FIFO pointers are within ±3-Bits  
56  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
NOTE: The GIE bit in the global register 0xE0h must be set to "1" in addition to the individual register bits to enable the  
interrupt pin.  
TABLE 27: MICROPROCESSOR REGISTER 0X05H BIT DESCRIPTION  
CHANNEL 0-7 (0X05H-0X75H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D4  
LCV_OFD Line Code Violation / Counter Overflow Detection  
RO  
0
This bit serves a dual purpose. By default, this bit monitors the line  
code violation activity. However, if bit 7 in register 0x81h is set to a  
"1", this bit monitors the overflow status of the internal LCV  
counter. An interrupt will not occur unless the LCV_OFIE is set to  
"1" in the channel register 0x04h and GIE is set to "1" in the global  
register 0x80h.  
0 = No Alarm  
1 = A line code violation, bipolar violation, or excessive zeros has  
occurred  
D3  
D2  
Reserved This Register Bit is Not Used.  
AISD  
RLOSD  
QRPD  
Alarm Indication Signal Detection  
RO  
RO  
RO  
0
0
0
The alarm indication signal detection is always active regardless if  
the interrupt generation is disabled. This bit indicates the AIS  
activity. An interrupt will not occur unless the AISIE is set to "1" in  
the channel register 0x04h and GIE is set to "1" in the global regis-  
ter 0xE0h.  
0 = No Alarm  
1 = An all ones signal is detected  
D1  
Receiver Loss of Signal Detection  
The receiver loss of signal detection is always active regardless if  
the interrupt generation is disabled. This bit indicates the RLOS  
activity. An interrupt will not occur unless the RLOSIE is set to "1"  
in the channel register 0x04h and GIE is set to "1" in the global  
register 0xE0h.  
0 = No Alarm  
1 = An RLOS condition is present  
D0  
Quasi Random Pattern Detection  
The quasi random pattern detection is always active regardless if  
the interrupt generation is disabled. This bit indicates that a QRPD  
has been detected. An interrupt will not occur unless the QRPDIE  
is set to "1" in the channel register 0x04h and GIE is set to "1" in  
the global register 0xE0h.  
0 = No Alarm  
1 = A QRP is detected  
57  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 28: MICROPROCESSOR REGISTER 0X06H BIT DESCRIPTION  
CHANNEL 0-7 (0X06H-0X76H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
Reserved This Register Bit is Not Used.  
DMOIS  
Digital Monitor Output Status  
0 = No change  
RUR  
RUR  
RUR  
0
1 = Change in status occurred  
D5  
D4  
FLSIS  
FIFO Limit Status  
0
0
0 = No change  
1 = Change in status occurred  
LCV_OFIS Line Code Violation / Overflow Status  
0 = No change  
1 = Change in status occurred  
D3  
D2  
Reserved This Register Bit is Not Used.  
AISIS  
Alarm Indication Signal Status  
0 = No change  
RUR  
RUR  
RUR  
0
0
0
1 = Change in status occurred  
D1  
D0  
RLOSIS Receiver Loss of Signal Status  
0 = No change  
1 = Change in status occurred  
QRPDIS Quasi Random Pattern Detection Status  
0 = No change  
1 = Change in status occurred  
NOTE: Any change in status will generate an interrupt (if enabled in channel register 0x04h and GIE is set to "1" in the  
global register 0x80h). The status registers are reset upon read (RUR).  
58  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 29: MICROPROCESSOR REGISTER 0X08H BIT DESCRIPTION  
CHANNEL 0-7 (0X08H-0X78H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1SEG6  
1SEG5  
1SEG4  
1SEG3  
1SEG2  
1SEG1  
1SEG0  
Arbitrary Pulse Generation  
R/W  
0
0
0
0
0
0
0
The transmit output pulse is divided into 8 individual segments.  
This register is used to program the first segment which corre-  
sponds to the overshoot of the pulse amplitude. There are four  
segments for the top portion of the pulse and four segments for the  
bottom portion of the pulse. Segment number 5 corresponds to  
the undershoot of the pulse. The MSB of each segment is the sign  
bit.  
Bit 6 = 0 = Negative Direction  
Bit 6 = 1 = Positive Direction  
TABLE 30: MICROPROCESSOR REGISTER 0X09H BIT DESCRIPTION  
CHANNEL 0-7 (0X09H-0X79H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
2SEG[6:0] Segment Number Two, Same Description as Register 0x08h  
R/W  
TABLE 31: MICROPROCESSOR REGISTER 0X0AH BIT DESCRIPTION  
CHANNEL 0-7 (0X0AH-0X7AH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
3SEG[6:0] Segment Number Three, Same Description as Register 0x08h  
R/W  
59  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 32: MICROPROCESSOR REGISTER 0X0BH BIT DESCRIPTION  
CHANNEL 0-7 (0X0BH-0X7BH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
4SEG[6:0] Segment Number Four, Same Description as Register 0x08h  
R/W  
TABLE 33: MICROPROCESSOR REGISTER 0X0CH BIT DESCRIPTION  
CHANNEL 0-7 (0X0CH-0X7CH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
5SEG[6:0] Segment Number Five, Same Description as Register 0x08h  
R/W  
TABLE 34: MICROPROCESSOR REGISTER 0X0DH BIT DESCRIPTION  
CHANNEL 0-7 (0X0DH-0X7DH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
6SEG[6:0] Segment Number Six, Same Description as Register 0x08h  
R/W  
TABLE 35: MICROPROCESSOR REGISTER 0X0EH BIT DESCRIPTION  
CHANNEL 0-7 (0X0EH-0X7EH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
7SEG[6:0] Segment Number Seven, Same Description as Register 0x08h  
R/W  
60  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 36: MICROPROCESSOR REGISTER 0X0FH BIT DESCRIPTION  
CHANNEL 0-7 (0X0FH-0X7FH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
Reserved This Register Bit is Not Used  
X
0
D[6:0]  
8SEG[6:0] Segment Number Eight, Same Description as Register 0x08h  
R/W  
TABLE 37: MICROPROCESSOR REGISTER 0X80H, BIT DESCRIPTION  
REGISTER ADDRESS  
0X80H  
REGISTER  
TYPE  
RESET  
VALUE  
NAME  
FUNCTION  
BIT #  
D7  
SR/DR  
Single-rail/Dual-rail Select: Writing a “1” to this bit configures  
all 4channels in the XRT83VSH38 to operate in the Single-rail  
mode.  
R/W  
0
Writing a “0” configures the XRT83VSH38 to operate in Dual-  
rail mode.  
D6  
D5  
ATAOS  
RCLKE  
Automatic Transmit All Ones Upon RLOS: Writing a “1” to  
this bit enables the automatic transmission of All "Ones" data  
to the line for the channel that detects an RLOS condition.  
R/W  
R/W  
0
0
Writing a “0” disables this feature.  
Receive Clock Edge: Writing a “1” to this bit selects receive  
output data of all channels to be updated on the negative edge  
of RCLK.  
Wring a “0” selects data to be updated on the positive edge of  
RCLK.  
D4  
D3  
TCLKE  
DATAP  
Transmit Clock Edge: Writing a “0” to this bit selects transmit  
data at TPOS_n/TDATA_n and TNEG_n/CODES_n of all  
channels to be sampled on the falling edge of TCLK_n.  
R/W  
R/W  
0
0
Writing a “1” selects the rising edge of the TCLK_n for sam-  
pling.  
DATA Polarity: Writing a “0” to this bit selects transmit input  
and receive output data of all channels to be active “High”.  
Writing a “1” selects an active “Low” state.  
D2  
D1  
Reserved  
GIE  
0
0
Global Interrupt Enable: Writing a “1” to this bit globally  
enables interrupt generation for all channels.  
R/W  
R/W  
Writing a “0” disables interrupt generation.  
D0  
SRESET  
Software Reset µP Registers: Writing a “1” to this bit longer  
than 10µs initiates a device reset through the microprocessor  
interface. All internal circuits are placed in the reset state with  
this bit set to a “1” except the microprocessor register bits.  
0
61  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
CLOCK SELECT REGISTER  
The input clock source is used to generate all the necessary clock references internally to the LIU. The  
microprocessor timing is derived from a PLL output which is chosen by programming the Clock Select Bits and  
the Master Clock Rate in register 0x81h. Therefore, if the clock selection bits or the MCLRATE bit are being  
programmed, the frequency of the PLL output will be adjusted accordingly. During this adjustment, it is  
important to "Not" write to any other bit location within the same register while selecting the input/output clock  
frequency. For best results, register 0x81h can be broken down into two sub-registers with the MSB being bits  
D[7:3] and the LSB being bits D[2:0] as shown in Figure 37. Note: Bit D[7] is a reserved bit.  
FIGURE 37. REGISTER 0X81H SUB REGISTERS  
MSB  
D5  
LSB  
D1  
D4  
D3  
D2  
D0  
D7  
D6  
Clock Selection Bits  
ExLOS, ICT  
Programming Examples:  
Example 1: Changing bits D[7:3]  
If bits D[7:3] are the only values within the register that will change in a WRITE process, the microprocessor  
only needs to initiate ONE write operation.  
Example 2: Changing bits D[2:0]  
If bits D[2:0] are the only values within the register that will change in a WRITE process, the microprocessor  
only needs to initiate ONE write operation.  
Example 3: Changing bits within the MSB and LSB  
In this scenario, one must initiate TWO write operations such that the MSB and LSB do not change within ONE  
write cycle. It is recommended that the MSB and LSB be treated as two independent sub-registers. One can  
either change the clock selection (MSB) and then change bits D[2:0] (LSB) on the SECOND write, or vice-  
versa. No order or sequence is necessary.  
62  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 38: MICROPROCESSOR REGISTER 0X81H, BIT DESCRIPTION  
REGISTER ADDRESS  
0X81H  
REGISTER  
TYPE  
RESET  
VALUE  
NAME  
FUNCTION  
BIT #  
D7  
LCV_OF  
Line Code Violation / Over Flow Select  
0 = LCV_OFD monitors LCV activity  
1 = LCV_OFD monitors OF activity  
R/W  
R/W  
0
0
D6  
CLKSEL2  
Clock Select Inputs for Master Clock Synthesizer bit 2:  
In Host mode, CLKSEL[2:0] are input signals to a programma-  
ble frequency synthesizer that can be used to generate a mas-  
ter clock from an external accurate clock source according to  
the following table;  
MCLKE1 MCLKT1  
CLKOUT/  
kHz  
CLKSEL2 CLKSEL1 CLKSEL0 MCLKRATE  
kHz  
2048  
2048  
2048  
1544  
1544  
2048  
kHz  
2048  
2048  
1544  
1544  
1544  
1544  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
2048  
1544  
2048  
1544  
2048  
1544  
In Hardware mode, the state of these signals are ignored and  
the master frequency PLL is controlled by the corresponding  
Hardware pins.  
D5  
D4  
D3  
CLKSEL1  
CLKSEL0  
Clock Select inputs for Master Clock Synthesizer bit 1:  
R/W  
R/W  
R/W  
0
0
0
See description of bit D6 for function of this bit.  
Clock Select inputs for Master Clock Synthesizer bit 0:  
See description of bit D6 for function of this bit.  
MCLKRATE Master clock Rate Select: The state of this bit programs the  
Master Clock Synthesizer to generate the T1/J1 or E1 clock.  
The Master Clock Synthesizer will generate the E1 clock when  
MCLKRATE = “0”, and the T1/J1 clock when MCLKRATE =  
“1”.  
D2  
RXMUTE  
Receive Output Mute: Writing a “1” to this bit, mutes receive  
outputs at RPOS/RDATA and RNEG/LCV pins to a “0” state for  
any channel that detects an RLOS condition.  
R/W  
0
NOTE: RCLK is not muted.  
D1  
D0  
EXLOS  
ICT  
Extended LOS: Writing a “1” to this bit extends the number of  
zeros at the receive input of each channel before RLOS is  
declared to 4096 bits. Writing a “0” reverts to the normal mode  
(175+75 bits for T1 and 32 bits for E1).  
R/W  
R/W  
0
0
In-Circuit-Testing: Writing a “1” to this bit configures all the  
output pins of the chip in high impedance mode for In-Circuit-  
Testing. Setting the ICT bit to “1” is equivalent to connecting  
the Hardware ICT pin 88 to ground.  
63  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 39: MICROPROCESSOR REGISTER 0X82H BIT DESCRIPTION  
GLOBAL REGISTER (0X82H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
TxONCNTL Transmit On Control  
This bit grants access to controlling the transmitter output activity.  
R/W  
0
0 = Register Bits  
1 = Hardware Pins  
D6  
TERCNTL Receive Termination Select Control  
R/W  
0
0
This bit sets the LIU to control the RxTSEL function with either the  
individual channel register bit or the global hardware pin.  
0 = Control of the receive termination is set to the register bits  
1 = Control of the receive termination is set to the RxTSEL hard-  
ware pin  
D[5:0]  
Reserved These Register Bits are Not Used  
R/W  
TABLE 40: MICROPROCESSOR REGISTER 0X83H BIT DESCRIPTION  
GLOBAL REGISTER (0X83H)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D{7:4]  
D[3:2]  
Reserved  
SL[1:0]  
R/W  
R/W  
0
Slicer Level Select  
00 = 60%  
00  
01 = 65%  
10 = 70%  
11 = 55%  
D[1:0]  
Reserved These Register Bits are Not Used  
R/W  
0
64  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 41: MICROPROCESSOR REGISTER 0X8CH BIT DESCRIPTION  
GLOBAL REGISTER (0X8CH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
D5  
D4  
Reserved This Register Bit is Not Used  
Reserved This Register Bit is Not Used  
Reserved This Register Bit is Not Used  
Reserved This Register Bit is Not Used  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
D3  
D2  
D1  
D0  
LCVCH3 Line Code Violation Counter Select  
0
0
0
0
LCVCH2 These bits are used to select which channel is to be addressed for  
reading the contents in register 0x8Eh. It is also used to address  
the counter for a given channel when performing an update or  
reset on a per channel basis. By default, Channel 0 is selected.  
LCVCH1  
LCVCH0  
0000 = None  
0001 = Channel 0  
0010 = Channel 1  
0011 = Channel 2  
0100 = Channel 3  
0100 = Channel 4  
0100 = Channel 5  
0100 = Channel 6  
0100 = Channel 7  
TABLE 42: MICROPROCESSOR REGISTER 0X8DH BIT DESCRIPTION  
GLOBAL REGISTER (0X8DH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
D5  
D4  
Reserved This Register Bit is Not Used  
Reserved This Register Bit is Not Used  
Reserved This Register Bit is Not Used  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
allRST  
LCV Counter Reset for All Channels  
This bit is used to reset all internal LCV counters to their default  
state 0000h. This bit must be set to "1" for 1µS.  
0 = Normal Operation  
1 = Resets all Counters  
D3  
allUPDATE LCV Counter Update for All Channels  
R/W  
0
This bit is used to latch the contents of all counters into holding  
registers so that the value of each counter can be read. The chan-  
nel is addressed by using bits D[3:0] in register 0x8Ch.  
0 = Normal Operation  
1 = Updates all Counters  
65  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 42: MICROPROCESSOR REGISTER 0X8DH BIT DESCRIPTION  
GLOBAL REGISTER (0X8DH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D2  
BYTEsel LCV Counter Byte Select  
This bit is used to select the MSB or LSB for Reading the contents  
R/W  
R/W  
R/W  
0
of the LCV counter for a given channel. The channel is addressed  
by using bits D[3:0] in register 0x8Ch. By default, the LSB byte is  
selected.  
0 = Low Byte  
1 = High Byte  
D1  
chUPDATE LCV Counter Update Per Channel  
0
This bit is used to latch the contents of the counter for a given  
channel into a holding register so that the value of the counter can  
be read. The channel is addressed by using bits D[3:0] in register  
0x8Ch.  
0 = Normal Operation  
1 = Updates the Selected Channel  
D0  
chRESET LCV Counter Reset Per Channel  
0
This bit is used to reset the LCV counter of a given channel to its  
default state 0000h. The channel is addressed by using bits D[3:0]  
in register 0x8Ch. This bit must be set to "1" for 1µS.  
0 = Normal Operation  
1 = Resets the Selected Channel  
TABLE 43: MICROPROCESSOR REGISTER 0X8EH BIT DESCRIPTION  
GLOBAL REGISTER (0X8EH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LCVCNT7 Line Code Violation Byte Contents  
R/W  
0
0
0
0
0
0
0
0
LCVCNT6 These bits contain the LCV counter contents of the Byte selected  
by bit D2 in register 0x8Dh for a given channel. The channel is  
addressed by using bits D[3:0] in register 0x8Ch. By default, the  
contents contain the LSB, however no channel is selected..  
LCVCNT5  
LCVCNT4  
LCVCNT3  
LCVCNT2  
LCVCNT1  
LCVCNT0  
66  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 44: MICROPROCESSOR REGISTER 0XC0H BIT DESCRIPTION  
GLOBAL REGISTER (0XC0H)  
FUNCTION  
Register  
Type  
Default  
Value  
BIT  
NAME  
(HW reset)  
D[7:1]  
D0  
Reserved These register bits are not used.  
R/W  
R/W  
0
0
E1Arben E1 Arbitrary Pulse Enable  
This bit is used to enable the Arbitrary Pulse Generators for shap-  
ing the transmit pulse shape when E1 mode is selected. If this bit  
is set to "1", all 8 channels will be configured for the Arbitrary  
Mode. However, each channel is individually controlled by pro-  
gramming the channel registers 0xn8 through 0xnF, where n is the  
number of the channel.  
"0" = Disabled (Normal E1 Pulse Shape ITU G.703)  
"1" = Arbitrary Pulse Enabled  
TABLE 45: MICROPROCESSOR REGISTER 0XFEH BIT DESCRIPTION  
DEVICE "ID" REGISTER (0XFEH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Device "ID" The device "ID" of the XRT83VSH38 short haul LIU is 0xF1h.  
Along with the revision "ID", the device "ID" is used to enable soft-  
ware to identify the silicon adding flexibility for system control and  
debug.  
RO  
1
1
1
1
0
1
0
1
TABLE 46: MICROPROCESSOR REGISTER 0XFFH BIT DESCRIPTION  
REVISION "ID" REGISTER (0XFFH)  
Register  
Type  
Default  
Value  
BIT  
NAME  
FUNCTION  
(HW reset)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Revision The revision "ID" of the XRT83VSH38 LIU is used to enable soft-  
RO  
0
0
0
0
0
0
0
1
"ID"  
ware to identify which revision of silicon is currently being tested.  
The revision "ID" for the first revision of silicon will be 0x01h.  
67  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
7.0 ELECTRICAL CHARACTERISTICS  
TABLE 47: ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Operating Temperature  
Supply Voltage  
Vin  
-65°C to +150°C  
-40°C to +85°C  
-0.5V to +3.8V  
-0.5V to +5.5V  
125°C  
Maximum Junction Temperature  
Theta JA  
Theta JC  
24°C/W  
10°C/W  
TABLE 48: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
PARAMETER  
Power Supply Voltage  
Input High Voltage  
SYMBOL  
VDD  
MIN  
3.13  
2.0  
TYP  
3.3  
-
MAX  
3.46  
5.0  
UNITS  
V
V
VIH  
Input Low Voltage  
VIL  
VOH  
VOL  
IL  
-0.5  
-
0.8  
V
V
Output High Voltage IOH=2.0mA  
Output Low Voltage IOL=2.0mA  
Input Leakage Current  
2.4  
-
-
-
-
-
-
-
0.4  
V
±10  
µA  
pF  
pF  
Input Capacitance  
CI  
5.0  
-
Output Lead Capacitance  
CL  
25  
NOTE: Input leakage current excludes pins that are internally pulled "Low" or "High"  
TABLE 49: AC ELECTRICAL CHARACTERISTICS  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
PARAMETER  
MCLKin Clock Duty Cycle  
MCLKin Clock Tolerance  
SYMBOL  
MIN  
40  
-
TYP  
-
MAX  
60  
-
UNITS  
%
±50  
ppm  
68  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 50: POWER CONSUMPTION  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
SUPPLY  
TEST  
CONDITION  
MODE  
IMPEDANCE  
RECEIVER  
TRANSMITTER  
TYP  
MAX  
UNIT  
VOLTAGE  
E1  
3.3V  
75Ω  
1:1  
1:2  
1.188  
0.891  
-
W
100% ones  
50% ones  
E1  
T1  
3.3V  
3.3V  
120Ω  
100Ω  
1:1  
1:1  
1:2  
1:2  
1.056  
0.825  
-
-
W
W
100% ones  
50% ones  
1.683  
1.155  
100% ones  
50% ones  
NOTE: The typical power consumption of the 1.8V supply represents ~ 36mW of the above listed.  
TABLE 51: E1 RECEIVER ELECTRICAL CHARACTERISTICS  
(VDD=3.3V±5%, TA=25°C UNLESS OTHERWISE SPECIFIED)  
PARAMETER  
MIN  
TYP.  
MAX  
UNIT  
TEST CONDITIONS  
Receiver loss of signal:  
Number of consecutive  
zeros before LOS is set  
-
32  
-
bit  
Cable attenuation @1024KHz  
ITU-G.775, ETS1 300 233  
Input signal level at LOS  
RLOS Clear  
13  
12.5  
9
16  
-
-
-
-
dB  
% ones  
dB  
Receiver Sensitivity  
-
With nominal pulse amplitude of 3.0V for  
120and 2.37V for 75application.  
Interference Margin  
Input Impedance  
-18  
15  
-14  
-
-
dB  
With 6dB cable loss  
KΩ  
Jitter Tolerance:  
1 Hz  
37  
-
-
-
-
UIpp  
UIpp  
10KHz---100KHz  
0.3  
ITU G.823  
Recovered Clock Jitter  
Transfer Corner Frequency  
Peaking Amplitude  
-
20  
36  
KHz  
dB  
ITU G.736  
0.5  
Jitter Attenuator Corner  
Frequency(-3dB curve)  
ITU G.736  
ITU G.703  
-
-
10  
-
-
Hz  
Hz  
JABW=0  
JSBW=1  
1.5  
Return Loss:  
51KHz --- 102KHz  
102KHz --- 2048KHz  
2048KHz --- 3072KHz  
12  
8
-
-
-
-
-
-
dB  
dB  
dB  
8
69  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
TABLE 52: T1 RECEIVER ELECTRICAL CHARACTERISTICS  
VDDIO = 3.3V + 5% , VDDCORE = 1.8V + 5%, T =25°C, UNLESS OTHERWISE SPECIFIED  
A
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
TEST CONDITIONS  
Receiver loss of signal:  
Number of consecutive zeros before  
RLOS is set  
175  
16  
Input signal level at RLOS  
13  
-
dB  
Cable attenuation @772kHz  
RLOS Clear  
12.5  
9
-
-
-
-
% ones ITU-G.775, ETSI 300 233  
Receiver Sensitivity  
dB  
With nominal pulse amplitude of 3.0V  
for 100termination  
Interference Margin  
Input Impedance  
-18  
15  
-14  
-
-
-
dB  
With 6db of cable loss  
kΩ  
Jitter Tolerance:  
1Hz  
138  
0.4  
-
-
-
-
UIpp  
AT&T Pub 62411  
10kHz - 100kHz  
Recovered Clock Jitter  
Transfer Corner Frequency  
Peaking Amplitude  
-
-
10  
3
-
KHz  
dB  
TR-TSY-000499  
AT&T Pub 62411  
0.1  
Jitter Attenuator Corner Frequency  
(-3dB curve)  
-
Hz  
Return Loss:  
51kHz - 102kHz  
102kHz - 2048kHz  
2048kHz - 3072kHz  
14  
20  
16  
-
-
-
-
-
-
dB  
dB  
dB  
TABLE 53: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
TEST CONDITION  
AMI Output Pulse Amplitude  
75Ω  
120Ω  
2.13  
2.70  
2.37  
3.00  
2.60  
3.30  
V
V
1:2 Transformer  
Output Pulse Width  
224  
0.95  
0.95  
244  
264  
1.05  
1.05  
ns  
Output Pulse Width Ratio  
Output Pulse Amplitude Ratio  
-
-
ITU-G.703  
ITU-G.703  
70  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
TABLE 53: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
TEST CONDITION  
Jitter Added by the Transmitter  
Output  
-
0.025  
0.05  
UIp-p  
Broad Band with jitter free TCLK  
applied to the input.  
Output Return Loss  
51kHz - 102kHz  
15  
9
-
-
-
-
-
-
dB  
dB  
dB  
ETSI 300 166  
102kHz - 2048kHz  
2048kHz - 3072kHz  
8
TABLE 54: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS  
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
TEST CONDITION  
AMI Output Pulse Amplitude  
2.4  
3.0  
3.6  
V
1:2 Transformer measured at  
DSX-1  
Output Pulse Width  
338  
350  
362  
20  
ns  
ANSI T1.102  
ANSI T1.102  
ANSI T1.102  
Output Pulse Width Imbalance  
-
-
-
-
Output Pulse Amplitude Imbal-  
ance  
±200  
mV  
Jitter Added by the Transmitter  
Output  
-
0.025  
0.05  
UIp-p  
Broad Band with jitter free TCLK  
applied to the input.  
Output Return Loss  
51kHz - 102kHz  
17  
12  
10  
-
-
-
-
-
-
dB  
dB  
dB  
102kHz - 2048kHz  
2048kHz - 3072kHz  
71  
XRT83VSH38  
REV. 1.0.7  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
PACKAGE DIMENSIONS  
225 BALL PLASTIC BALL GRID ARRAY (BOTTOM VIEW)  
(19.0 X 19.0 X 1.0mm)  
18  
16  
14  
12  
10  
8
6
4
2
A1  
17  
15  
13  
11  
9
7
5
3
1
Feature / Mark  
A
B
C
D
E
F
G
H
J
D
D1  
K
L
M
N
P
R
T
U
V
D1  
D
(A1 corner feature is mfger option)  
D2  
A2  
Seating Plane  
b
e
A3  
A1  
A
Note: The control dimension is in millimeter.  
INCHES MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
1.24  
0.40  
0.32  
0.52  
18.80  
MAX  
2.45  
0.60  
0.60  
1.22  
19.20  
A
0.049  
0.016  
0.013  
0.020  
0.740  
0.096  
0.024  
0.024  
0.048  
0.756  
A1  
A2  
A3  
D
D1  
D2  
b
0.669 BSC  
17.00 BSC  
0.665  
0.020  
0.669  
0.028  
16.90  
0.50  
17.00  
0.70  
e
0.039 BSC  
1.00 BSC  
72  
XRT83VSH38  
8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT  
REV. 1.0.7  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40°C to +85°C  
XRT83VSH38IB  
225 Ball BGA  
REVISIONS  
REVISION #  
1.0.0  
DATE  
DESCRIPTION  
07/14/06  
07/17/06  
08/0306  
Removed reference to on chip frquency multiplier. Release to production.  
Pin number correction, changed SDO pin number from A6 to R7.  
1.0.1  
1.0.2  
Added note to figure 32, (For applications without a free running SCLK, a minimum  
of 1 SCLK pulse must be applied when CS is "High", befor CS is pulled "Low".  
1.0.3  
1.0.4  
1.0.5  
1.0.6  
1.0.7  
08/10/06  
09/06/06  
09/08/06  
11/09/06  
03/14/07  
Added timing diagram and timing information for uP Serial Interface  
Corrected the Device ID from 0xF5 to 0xF1.  
Modified table 22 EQC[4:0] addresses 0xEh to 0x1Ch and 0x0Fh to 0x1Dh.  
General edits, changed the Gapped Clock tolerance to 9UI.  
Added Max Junct Temp, Theta JA & Theta JC to table 47 (Absokute Maximum Rat-  
ings).  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2007 EXAR Corporation  
Datasheet March 2007.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
73  

相关型号:

XRT83VSH38IB

8-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT
EXAR

XRT83VSH38IB-F

Peripheral Drivers & Components (PCIs) 8 Channel Short-Haul
EXAR

XRT84L38

OCTAL T1/E1/J1 FRAMER
EXAR

XRT84L38IB

OCTAL T1/E1/J1 FRAMER
EXAR

XRT84L38_06

OCTAL T1/E1/J1 FRAMER
EXAR

XRT84V24IV-208

Framer, PQFP208, 28 X 28 MM, PLASTIC, QFP-208
EXAR

XRT85L61

BITS (BUILDING INTEGRATED TIMING SUPPLY) CLOCK EXTRACTOR
EXAR

XRT85L61IG

BITS (BUILDING INTEGRATED TIMING SUPPLY) CLOCK EXTRACTOR
EXAR

XRT85L61IG-F

BITS (Building Integrated Timing Supply) Clock Extractor
EXAR

XRT85L61IV

Telecom Circuit, 1-Func, PDSO28, TSSOP-28
EXAR

XRT85L61_10

BITS (Building Integrated Timing Supply) Clock Extractor
EXAR

XRT86L30

SINGLE T1/E1/J1 FRAMER/LIU COMBO
EXAR