FAN5355UC07X [FAIRCHILD]

1A / 0.8A, 3MHz Digitally Programmable TinyBuckTM Regulator; 1A / 0.8A , 3MHz的数字可编程TinyBuckTM稳压器
FAN5355UC07X
型号: FAN5355UC07X
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

1A / 0.8A, 3MHz Digitally Programmable TinyBuckTM Regulator
1A / 0.8A , 3MHz的数字可编程TinyBuckTM稳压器

稳压器
文件: 总27页 (文件大小:1995K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2008  
FAN5355  
1A / 0.8A, 3MHz Digitally Programmable TinyBuckTM Regulator  
Features  
Description  
The FAN5355 device is a high-frequency, ultra-fast transient  
response, synchronous step-down DC-DC converter  
optimized for low-power applications using small, low-cost  
inductors and capacitors. The FAN5355 supports up to  
800mA or 1A(1) load current.  
ƒ 91% Efficiency at 3MHz  
ƒ 800mA or 1A Output Current(1)  
ƒ 2.7V to 5.5V Input Voltage Range  
ƒ 6 or 7-bit VOUT Programmable from 0.75 to 1.975V  
ƒ 3MHz Fixed-Frequency Operation  
ƒ Excellent Load and Line Transient Response  
ƒ Small Size, 1μH Inductor Solution  
ƒ ±2% PWM DC Voltage Accuracy  
ƒ 35ns Minimum On-Time  
The device is ideal for mobile phones and similar portable  
applications powered by a single-cell Lithium-Ion battery. With  
an output voltage range adjustable via I2C™ interface from  
0.75V to 1.975V, the device supports low-voltage DSPs and  
processors, core power supplies in smart phones, PDAs, and  
handheld computers.  
The FAN5355 operates at 3MHz (nominal) fixed switching  
frequency using either its internal oscillator or external SYNC  
frequency.  
ƒ High-Efficiency, Low-Ripple, Light-Load PFM  
ƒ Smooth Transition between PWM and PFM  
ƒ 37μA Operating PFM Quiescent Current  
During light-load conditions, the regulator includes a PFM  
mode to enhance light-load efficiency. The regulator  
transitions smoothly between PWM and PFM modes with no  
glitches on VOUT. Normal PFM (NPFM) mode offers the lowest  
quiescent current, at the expense of setpoint accuracy.  
Enhanced PFM (EPFM) mode features higher accuracy, as  
well as a 25kHz minimum PFM frequency, designed to  
prevent the regulator from operating in the audible range. In  
shutdown, the current consumption is reduced to less than  
2μA, using software shutdown (EN = 1 with EN_DCDC = 0),  
and less than 200nA in hardware shutdown (EN = 0).  
ƒ Software Selectable 25kHz Minimum PFM Frequency  
Prevents Audible Noise in PFM Mode  
ƒ I2C™-Compatible Interface up to 3.4Mbps  
ƒ Pin-Selectable or I2C™ Programmable Output Voltage  
ƒ On-the-Fly External Clock Synchronization  
ƒ 10-lead MLP (3 x 3mm) or 12-bump CSP Packages  
The serial interface is compatible with Fast/Standard and  
High-Speed mode I2C specifications, allowing transfers up to  
3.4Mbps. This interface is used for dynamic voltage scaling  
with 12.5mV voltage steps, for reprogramming the mode of  
operation (PFM or Forced PWM), or to disable/enable the  
output voltage.  
Applications  
ƒ SmartReflex™-Compliant Power Supply  
ƒ Split Supply DSPs and μP Solutions OMAP™, XSCALE™  
ƒ Cell Phones, Smart Phones, PDAs, Digital Cameras, and  
Portable Media Players  
The chip's advanced protection features include short-circuit  
protection and current and temperature limits. During a  
sustained over-current event, the IC shuts down and restarts  
after a delay to reduce average power dissipation into a fault.  
ƒ Micro DC-DC Converter Modules  
ƒ Handset Graphic Processors (NVIDIA®, ATI)  
During start-up, the IC controls the output slew rate to  
minimize input current and output overshoot at the end of soft-  
start. The IC maintains a consistent soft-start ramp, regardless  
of output load during start-up.  
I2C is a trademark of Philips Corporation.  
SmartReflex and OMAP are trademarks of Texas Instruments.  
XSCALE is a trademark of Intel Corporation.  
The FAN5355 is available in 10-lead MLP (3x3mm) and  
12-bump CSP packages.  
NVIDIA is a registered trademark of NVIDIA Corporation.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
www.fairchildsemi.com  
Ordering Information  
Slave  
Address LSB  
Power-up  
Defaults  
VOUT Programming  
Order Number (4) Option  
Package (4)  
A1  
0
A0  
0
DAC  
MIN.  
0.7500  
0.7500  
0.7500  
0.7500  
1.1875  
0.7500(3)  
0.7500(3)  
MAX. VSEL0 VSEL1  
FAN5355UC00X  
FAN5355MP00X  
FAN5355UC02X  
FAN5355UC03X  
FAN5355UC06X  
FAN5355UC07X  
FAN5355MP07X  
00  
00  
6
6
6
6
6
7
7
1.5375  
1.5375  
1.4375(2)  
1.5375  
1.9750  
1.9750  
1.9750  
1.05  
1.05  
1.05  
1.00  
1.80  
1.05  
1.05  
1.35  
1.35  
1.20  
1.20  
1.80  
1.35  
1.35  
WLCSP-12, 2.23x1.46mm  
MLP-10, 3x3mm  
0
0
02  
1
0
WLCSP-12, 2.23x1.46mm  
WLCSP-12, 2.23x1.46mm  
WLCSP-12, 2.23x1.46mm  
WLCSP-12, 2.23x1.46mm  
MLP-10, 3x3mm  
03  
0
0
06(1)  
07(1)  
07(1)  
0
0
1
1
1
1
Notes:  
1. Option 06 and 07 is rated for 1A output current. All other options are rated for 800mA output current.  
2. VOUT is limited to the maximum voltage for all VSEL codes greater than the maximum VOUT listed.  
3. VOUT may be programmed down 100mV for option 07. Performance below 0.75V is not guaranteed.  
4.  
All packages are “green” per JEDEC: J-STD-020B standard. The “X” designator specifies tape and reel packaging.  
Typical Application  
AVIN  
PVIN  
VIN  
Q1  
Q2  
CIN  
EN  
VSEL  
SYNC  
VOUT  
SW  
L OUT  
MODULATOR  
COUT  
SDA  
SCL  
PGND  
VOUT  
AGND  
Figure 1. Typical Application  
Component  
Description  
1μH nominal  
Vendor  
Parameter  
Min. Typ. Max.  
Units  
μH  
L(5)  
0.7  
1.0  
1.2  
Murata LQM31P  
or FDK MIPSA2520  
L1 (LOUT  
)
DCR (series R)  
100  
mΩ  
0603 (1.6x0.8x0.8)  
10μF X5R or better  
Murata or equivalent  
GRM188R60G106ME47D  
COUT  
CIN  
C(6)  
C(6)  
5.6  
3.0  
10.0  
4.7  
12.0  
5.6  
μF  
μF  
0603 (1.6x0.8x0.8)  
4.7μF X5R or better  
Murata or equivalent  
GRM188R60J475KE19D  
Table 1. Recommended External Components  
Notes:  
5. Minimum L incorporates both tolerance, temperature, and partial saturation effects (L decreases with increasing current).  
6. Minimum C is a function of initial tolerance, maximum temperature, and the effective capacitance being reduced due to  
frequency, dielectric, and voltage bias effects.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
2
www.fairchildsemi.com  
Pin Configuration  
PVIN  
AVIN  
SDA  
SW  
1
2
3
4
5
10  
9
A1  
B1  
C1  
D1  
A2  
B2  
C2  
A3  
B3  
C3  
D3  
A3  
B3  
C3  
D3  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
PGND  
AGND  
EN  
PAD  
8
AGND  
SCL  
7
D2  
VSEL  
VOUT  
6
Top View  
Bottom View  
Top View  
Figure 2. WLCSP- 12, 2.23x1.46mm  
Figure 3. MLP10, 3x3mm  
Pin Definitions  
Pin #  
Name Description  
WLCSP  
A1, B1  
A2  
MLP  
9
Power GND. Power return for gate drive and power transistors. Connect to AGND on PCB. The  
connection from this pin to the bottom of CIN should be as short as possible.  
PGND  
SW  
10  
1
Switching Node. Connect to output inductor.  
Power Input Voltage. Connect to input power source. The connection from this pin to CIN should be as  
short as possible.  
A3  
PVIN  
Sync. When toggling and SYNC_EN bit is HIGH, the regulator synchronizes to the frequency on this pin.  
In PWM mode, when this pin is statically LOW or statically HIGH, or when its frequency is outside of the  
specified capture range, the regulator’s frequency is controlled by its internal 3MHz clock.  
B2  
N/A  
SYNC  
Analog Input Voltage. Connect to input power source as close as possible to the input bypass  
capacitor.  
B3  
C1  
2
AVIN  
Analog GND. This is the signal ground reference for the IC. All voltage levels are measured with respect  
to this pin.  
8, PAD  
AGND  
Enable. When this pin is HIGH, the circuit is enabled. When LOW, quiescent current is minimized. This  
pin should not be left floating.  
C2  
C3  
D1  
7
3
6
EN  
SDA  
SDA. I2C interface serial data.  
Output Voltage Monitor. Tie this pin to the output voltage. This is a signal input pin to the control circuit  
and does not carry DC current.  
VOUT  
Voltage Select. When HIGH, VOUT is set by VSEL1. When LOW, VOUT is set by VSEL0. This behavior  
D2  
D3  
5
4
VSEL  
SCL  
can be overridden through I2C register settings. This pin should not be left floating.  
SCL. I2C interface serial clock.  
Note:  
7. All logic inputs (SDA, SCL, SYNC, EN, and VSEL) are high impedance and should not be left floating. For minimum  
quiescent power consumption, tie unused logic inputs to AVIN or AGND. If I2C control is unused, tie SDA and SCL to AVIN.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
3
www.fairchildsemi.com  
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings  
are stress ratings only.  
Symbol Parameter  
Min.  
-0.3  
Max.  
6.5  
AVIN + 0.3(8)  
Units  
V
AVIN, SW, PVIN Pins  
VCC  
Other Pins  
-0.3  
V
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
3.5  
1.5  
KV  
KV  
°C  
ESD  
Electrostatic Discharge Protection Level  
TJ  
TSTG  
TL  
Junction Temperature  
–40  
–65  
+150  
+150  
+260  
Storage Temperature  
°C  
Lead Soldering Temperature, 10 Seconds  
°C  
Note:  
8. Lesser of 6.5V or VCC+0.3V.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding  
them or designing to absolute maximum ratings.  
Symbol Parameter  
Min.  
2.7  
Max.  
5.5  
Units  
V
VIN  
f
Supply Voltage  
Frequency Range  
2.7  
3.3  
MHz  
V
VSW  
TA  
TJ  
SDA and SCL Voltage Swing(9)  
Ambient Temperature  
Junction Temperature  
2.5  
–40  
–40  
+85  
+125  
°C  
°C  
Note:  
9. The I2C interface operates with tHD;DAT = 0 as long as the pull-up voltage for SDA and SCL is less than 2.5V. If voltage  
swings greater than 2.5V are required (for example if the I2C bus is pulled up to VIN), the minimum tHD;DAT must be  
increased to 80ns. Most I2C masters change SDA near the midpoint between the falling and rising edges of SCL, which  
provides ample tHD;DAT  
.
Dissipation Ratings(10)  
(11)  
Package  
RθJA  
Power Rating at TA 25°C  
Derating Factor > TA = 25ºC  
Molded Leadless Package (MLP)  
Wafer-Level Chip-Scale Package (WLCSP)  
49ºC/W  
2050mW  
900mW  
21mW/ºC  
9mW/ºC  
110ºC/W  
Notes:  
10. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any  
allowable ambient temperature is PD = [TJ(max) - TA ] / θJA.  
11. This thermal data is measured with high-K board (four-layer board according to JESD51-7 JEDEC standard).  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
4
www.fairchildsemi.com  
Electrical Specifications  
VIN = 3.6V, EN = VIN, VSEL = VIN, SYNC = GND, VSEL0(6) bit = 1, CONTROL2[4:3] = 00. TA = -40°C to +85°C, unless otherwise  
noted. Typical values are at TA = 25°C. Circuit and components according to Figure 1.  
Symbol Parameter  
Power Supplies  
Conditions  
Min.  
Typ.  
Max.  
Units  
VIN  
Input Voltage Range  
2.7  
5.5  
150  
50  
V
IO = 0mA, EPFM Mode, FPFM = 25kHz  
IO = 0mA, NPFM Mode  
IO = 0mA, 3MHz PWM Mode  
EN = GND  
110  
37  
μA  
μA  
mA  
IQ  
Quiescent Current  
4.8  
0.1  
2.0  
2.0  
I SD  
Shutdown Supply Current  
μA  
EN = VIN, EN_DCDC bit = 0,  
SDA = SCL = VIN  
0.1  
VIN Rising  
VIN Falling  
2.40  
2.15  
250  
2.60  
2.30  
300  
V
V
VUVLO  
Under-Voltage Lockout Threshold  
Under-Voltage Lockout Hysteresis  
2.00  
200  
VUVHYST  
mV  
ENABLE, VSEL, SDA, SCL, SYNC  
VIH  
VIL  
IIN  
HIGH-Level Input Voltage  
LOW-Level Input Voltage  
Input Bias Current  
1.2  
V
V
0.4  
Input tied to GND or VIN  
0.01  
1.00  
μA  
Power Switch and Protection  
VIN = 3.6V, CSP Package  
VIN = 3.6V, MLP Package  
VIN = 2.7V, MLP Package  
VDS = 6V  
145  
165  
200  
RDS(ON)P  
P-channel MOSFET On Resistance  
mΩ  
ILKGP  
P-channel Leakage Current  
1
μA  
VIN = 3.6V, CSP Package  
VIN = 3.6V, MLP Package  
75  
95  
RDS(ON)N  
N-channel MOSFET On Resistance  
mΩ  
V
IN = 2.7V, MLP Package  
101  
ILKGN  
RDIS  
N-channel Leakage Current  
VDS = 6V  
1
μA  
Discharge Resistor for Power-down  
Sequence  
Options 03, 06, 07  
15  
50  
2.7V VIN 4.2V, All Options Except 06  
and 07  
1150  
1350  
1350  
1600  
ILIMPK  
P-MOS Current Limit  
2.7V VIN 5.5V, All Options Except 06  
and 07  
mA  
1050  
1300  
1600  
1800  
2.7V VIN 4.2V, 06 and 07 Option  
1550  
150  
20  
TLIMIT  
THYST  
Thermal Shutdown  
°C  
°C  
Thermal Shutdown Hysteresis  
Frequency Control  
fSW  
Oscillator Frequency  
2.65  
2.7  
20  
3.00  
3.0  
3.35  
3.3  
80  
MHz  
MHz  
%
fSYNC  
Synchronization Range  
DSYNC  
fSYNCVAL  
fPFM(MIN)  
Synchronization Duty Cycle  
SYNC Frequency Rejection  
Minimum PFM Frequency  
1.6  
4.3  
MHz  
kHz  
EPFM Mode, ILOAD = 0  
25  
Continued on the following page…  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
5
www.fairchildsemi.com  
Electrical Specifications (Continued)  
VIN = 3.6V, EN = VIN, VSEL = VIN, SYNC = GND, VSEL0(6) bit = 1, CONTROL2[4:3] = 00. TA = -40°C to +85°C, unless otherwise  
noted. Typical values are at TA = 25°C. Circuit and components according to Figure 1  
Symbol Parameter  
Output Regulation  
Conditions  
Min.  
Typ.  
Max.  
Units  
IOUT(DC) = 0, Forced PWM, VOUT = 1.35V  
–1.5  
–2  
1.5  
2
%
%
2.7V VIN 5.5V, VOUT from 0.75 to 1.5375,  
IOUT(DC) = 0 to 800mA, Forced PWM  
Option 00  
Option 02  
2.7V VIN 5.5V, VOUT from 0.75 to 1.5375,  
–1.5  
–1.5  
–2  
3.5  
1.5  
2
%
%
%
I
OUT(DC) = 0 to 800mA, NPFM Mode  
IOUT(DC) = 0, Forced PWM, VOUT = 1.20V  
2.7V VIN 5.5V, VOUT from 0.75 to 1.4375,  
IOUT(DC) = 0 to 800mA, Forced PWM  
2.7V VIN 5.5V, VOUT from 0.75 to 1.4375,  
IOUT(DC) = 0 to 800mA, NPFM Mode  
–1.5  
–1.5  
–2  
3.5  
1.5  
2
%
%
%
IOUT(DC) = 0, Forced PWM, VOUT = 1.20V  
2.7V VIN 5.5V, VOUT from 0.75 to 1.5375,  
IOUT(DC) = 0 to 800mA, Forced PWM  
Option 03  
Option 06  
Option 07  
2.7V VIN 5.5V, VOUT from 0.75 to 1.5375,  
IOUT(DC) = 0 to 800mA, NPFM Mode  
–1.5  
3.5  
%
VOUT  
VOUT Accuracy  
2.7V VIN 5.5V, VOUT from 0.75 to 1.5375,  
IOUT(DC) = 0 to 800mA, EPFM Mode  
–0.5  
–1.5  
–2  
2
1.5  
2
%
%
%
IOUT(DC) = 0, Forced PWM, VOUT = 1.800V  
2.7V VIN 5.5V, VOUT from 1.185 to 1.975,  
I
OUT(DC) = 0 to 1A, Forced PWM  
2.7V VIN 5.5V, VOUT from 1.185 to 1.975,  
IOUT(DC) = 0 to 1A, NPFM Mode  
–1.5  
3.5  
%
2.7V VIN 5.5V, VOUT from 1.185 to 1.975,  
IOUT(DC) = 0 to 1A, EPFM Mode  
–0.5  
–1.5  
–2  
2
1.5  
2
%
%
%
IOUT(DC) = 0, Forced PWM, VOUT = 1.35V  
2.7V VIN 5.5V, VOUT from 0.75 to 1.6875,  
I
OUT(DC) = 0 to 1A, Forced PWM  
2.7V VIN 5.5V, VOUT from 0.75 to 1.6875,  
IOUT(DC) = 0 to 1A, NPFM Mode  
–1.5  
–0.5  
3.5  
2
%
%
2.7V VIN 5.5V, VOUT from 0.75 to 1.6875,  
IOUT(DC) = 0 to 1A, EPFM Mode  
ΔVOUT  
ΔILOAD  
Load Regulation  
Line Regulation  
I
OUT(DC) = 0 to 800mA, Forced PWM  
–0.5  
0
%/A  
%/V  
ΔVOUT  
2.7V VIN 5.5V, IOUT(DC) = 300mA  
ΔV  
IN  
PWM Mode, VOUT = 1.35V  
PFM Mode, IOUT(DC) = 10mA  
2.2  
20  
mVP-P  
mVP-P  
VRIPPLE  
Output Ripple Voltage  
Continued on the following page…  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
6
www.fairchildsemi.com  
Electrical Specifications (Continued)  
VIN = 3.6V, EN = VIN, VSEL = VIN, SYNC = GND, VSEL0(6) bit = 1, CONTROL2[4:3] = 00. TA = -40°C to +85°C, unless otherwise  
noted. Typical values are at TA = 25°C. Circuit and components according to Figure 1.  
Symbol Parameter  
DAC  
Conditions  
Min.  
Typ.  
Max.  
Units  
Option 07  
7
6
Bits  
Bits  
LSB  
Resolution  
All Other Options  
Differential Nonlinearity  
Monotonicity Assured by Design  
0.8  
Timing  
I2CEN  
EN HIGH to I2C Start  
250  
μs  
μs  
RLOAD = 75Ω, Transition from 1.0 to 1.5375V  
tV(L-H)  
VOUT LOW to HIGH Settling  
7
V
OUT Settled to within 2% of Setpoint  
Soft-Start  
Option 06  
170  
140  
210  
180  
RLOAD > 5Ω, to VOUT = 1.8000V  
LOAD > 5Ω, to VOUT = Power-up Default  
μs  
μs  
Regulator Enable  
to Regulated  
VOUT  
tSS  
All Other  
Options  
R
VSLEW  
Soft-start VOUT Slew Rate(12)  
18.75  
V/ms  
Note:  
12. Option 06 slew rate is 35.5V/ms during the first 16μs of soft-start.  
AVIN  
PVIN  
VIN  
Q1  
Q2  
CIN  
7-bit  
DAC  
REF  
EN  
VSEL  
SYNC  
SDA  
VOUT  
SW  
I2C  
SOFT START  
FPWM  
L OUT  
INTERFACE  
AND LOGIC  
COUT  
MODULATOR  
EN_REG  
CLK  
SCL  
PGND  
VOUT  
AGND  
3 MHz Osc  
Figure 4. Block Diagram  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
7
www.fairchildsemi.com  
I2C Timing Specifications  
Guaranteed by design.  
Symbol Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Standard mode  
100  
400  
kHz  
kHz  
kHz  
kHz  
μs  
μs  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
pF  
Fast mode  
fSCL  
SCL Clock Frequency  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
3400  
1700  
4.7  
1.3  
4
Bus-free Time between STOP and  
START Conditions  
tBUF  
Fast mode  
Standard mode  
START or Repeated START Hold  
Time  
tHD;STA  
Fast mode  
600  
160  
4.7  
1.3  
160  
320  
4
High-Speed mode  
Standard mode  
Fast mode  
tLOW  
SCL LOW Period  
SCL HIGH Period  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
Fast mode  
600  
60  
tHIGH  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
120  
4.7  
600  
160  
250  
100  
10  
tSU;STA  
Repeated START Setup Time  
Data Setup Time  
Fast mode  
High-Speed mode  
Standard mode  
tSU;DAT  
Fast mode  
High-Speed mode  
Standard mode  
0
0
0
0
3.45  
900  
70  
Fast mode  
tHD;DAT  
Data Hold Time(9)  
SCL Rise Time  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
150  
1000  
300  
80  
20+0.1CB  
Fast mode  
20+0.1CB  
tRCL  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
10  
20  
160  
300  
300  
40  
20+0.1CB  
20+0.1CB  
Fast mode  
tFCL  
SCL Fall Time  
SDA Rise Time  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
10  
20  
80  
20+0.1CB  
20+0.1CB  
1000  
300  
80  
tRDA  
Fast mode  
Rise Time of SCL After a Repeated  
START Condition and After ACK Bit  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
10  
20  
tRCL1  
160  
300  
300  
80  
20+0.1CB  
20+0.1CB  
Fast mode  
tFDA  
SDA Fall Time  
High-Speed mode, CB < 100pF  
High-Speed mode, CB < 400pF  
Standard mode  
10  
20  
4
160  
tSU;STO  
CB  
Stop Condition Setup Time  
Fast mode  
600  
160  
High-Speed mode  
Capacitive Load for SDA and SCL  
400  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
8
www.fairchildsemi.com  
Timing Diagrams  
tF  
tSU;STA  
tBUF  
SDA  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
SCL  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 5. I2C Interface Timing for Fast and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pull-up  
= RP Resistor Pull-up  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 6. I2C Interface Timing for High-Speed Mode  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
9
www.fairchildsemi.com  
Typical Performance Characteristics  
Unless otherwise specified, Auto-PWM/NPFM, VIN = 3.6V, TA = 25°C, and recommended components as specified in Table 1.  
Efficiency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
Auto PWM/NPFM  
Forced PWM  
Auto PWM/NPFM  
Forced PWM  
VIN = 3.6 V  
VOUT = 1.35 V  
VIN = 3.6 V  
VOUT = 1.05 V  
1
10  
100  
1000  
1
10  
100  
1000  
I LOAD Output Current (mA)  
I LOAD Output Current (ma)  
Figure 7. Efficiency vs. Load at VOUT = 1.05V  
Figure 8. Efficiency vs. Load at VOUT = 1.35V  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
Auto PWM/NPFM  
Forced PWM  
VIN = 3.6 V  
VOUT = 1.5 V  
1
10  
100  
1000  
I LOAD Output Current (ma)  
Figure 9. Efficiency vs. Load at VOUT = 1.50V  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
10  
www.fairchildsemi.com  
Typical Performance Characteristics  
Unless otherwise specified, Auto-PWM/NPFM, VIN = 3.6V, TA = 25°C, and recommended components as specified in Table 1.  
1.064  
1.062  
1.060  
1.058  
1.056  
1.054  
1.052  
1.050  
1.048  
1.364  
1.362  
1.360  
1.358  
1.356  
1.354  
1.352  
1.350  
1.348  
Auto PWM/NPFM  
Forced PWM  
Auto PWM/NPFM  
Forced PWM  
1
10  
100  
1000  
1
10  
100  
1000  
5.5  
5.5  
I LOAD Output Current (mA)  
I LOAD Output Current (mA)  
Figure 10. Load Regulation at VOUT = 1.05V  
Figure 11. Load Regulation at VOUT = 1.35V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
-
VSEL = 1.8V  
VSEL = 0V  
VSEL = 1.8V  
VSEL = 0V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VIN Input Voltage (V)  
VIN Input Voltage (V)  
Figure 12. Quiescent Current, ILOAD = 0, EN = 1.8V  
Figure 13. Shutdown Current, ILOAD = 0, EN = 0  
230  
0.10%  
0.05%  
0.00%  
-0.05%  
-0.10%  
210  
190  
170  
150  
130  
110  
90  
P-Channel  
N-Channel  
-0.15%  
VIN = 2.7V  
VIN = 3.6V  
-0.20%  
VIN = 5.5V  
70  
-0.25%  
-0.30%  
50  
30  
-40  
-20  
0
20  
40  
60  
80  
2
2.5  
3
3.5  
4
4.5  
5
Temperature (C)  
VIN Input Voltage (V)  
Figure 14. % VOUT Shift vs. Temperature (Normalized)  
Figure 15. Output Stage RDS(ON) vs. VIN  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
11  
www.fairchildsemi.com  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, VIN = 3.6V, VOUT = 1.35V, and load step tR = tF < 100ns.  
Load Transient Response  
Figure 16. 50mA to 400mA to 50mA, Forced PWM  
Figure 17. 50mA to 400mA to 50mA, Auto PWM/NPFM  
Figure 18. 400mA to 750mA to 400mA, Auto PWM/NPFM  
Figure 19. 0mA to 125mA to 0mA, Auto PWM/NPFM  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
12  
www.fairchildsemi.com  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, VIN = 3.6V.  
VSEL Transitions  
Figure 20. Single-Step, RLOAD = 6.2Ω  
Figure 21. Single-Step, RLOAD = 6.2Ω  
Figure 22. Single-Step, RLOAD = 50Ω  
Figure 23. Single-Step, RLOAD = 50Ω  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
13  
www.fairchildsemi.com  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, VIN = 3.6V.  
VSEL Transitions  
Figure 24. Single-Step from Forced PWM (MODE1=0),  
RLOAD = 50Ω  
Figure 25. Single Step, RLOAD = 6.2Ω  
Figure 26. Single–Step from Auto PWM/PFM (MODE1=1),  
RLOAD = 50Ω  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
14  
www.fairchildsemi.com  
Typical Performance Characteristics (Continued)  
RLOAD is switched with N-channel MOSFET from VOUT to GND. VIN = 3.6V, initial VOUT = 1.35V, initial ILOAD = 0mA.  
Short Circuit and Over-Current Fault Response  
Figure 27. Metallic Short Applied at VOUT  
Figure 28. Metallic Short Applied at VOUT  
Figure 29. RLOAD = 660mΩ  
Figure 30. RLOAD = 660mΩ  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
15  
www.fairchildsemi.com  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, VIN = 3.6V.  
Figure 31. SW-Node Jitter (Infinite Persistence),  
Figure 32. SW-Node Jitter, External Synchronization  
(Infinite Persistence), ILOAD = 200mA  
I
LOAD = 200mA  
70  
60  
IOUT=500mA  
50  
IOUT=150mA  
IOUT=20mA  
40  
30  
20  
10  
-
(10)  
0.1  
1.0  
10.0  
100.0  
1,000.0  
Frequency (KHz)  
Figure 34. VIN Ripple Rejection (PSRR)  
Figure 33. Soft-Start, RLOAD = 50Ω  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
16  
www.fairchildsemi.com  
Circuit Description  
Overview  
Power-up, EN, and Soft-start  
The FAN5355 is a synchronous buck regulator that typically  
operates at 3MHz with moderate to heavy load currents. At  
light load currents, the converter operates in power-saving  
PFM mode. The regulator automatically transitions between  
fixed-frequency PWM and variable-frequency PFM mode to  
maintain the highest possible efficiency over the full range of  
load current.  
All internal circuits remain de-biased and the IC is in a very  
low quiescent current state until the following are true:  
1.  
VIN is above its rising UVLO threshold, and  
2. EN is HIGH.  
At that point, the IC begins a soft-start cycle, its I2C interface is  
enabled, and its registers loaded with their default values.  
The FAN5355 uses a very fast non-linear control architecture  
to achieve excellent transient response with minimum-sized  
external components.  
The FAN5355 integrates an I2C-compatible interface, allowing  
transfers up to 3.4Mbps. This communication interface can be  
used to:  
During the initial soft-start, VOUT ramps linearly to the setpoint  
programmed in the VSEL register selected by the VSEL pin.  
The soft start features a fixed output voltage slew rate of  
18.75V/ms, and achieves regulation approximately 90μs after  
EN rises. PFM mode is enabled during soft-start until the  
output is in regulation, regardless of the MODE bit settings.  
This allows the regulator to start into a partially charged output  
without discharging it; in other words, the regulator does not  
allow current to flow from the load back to the battery.  
1. Dynamically re-program the output voltage in 12.5mV  
increments.  
2. Reprogram the mode of operation to enable or disable  
PFM mode.  
As soon as the output has reached its setpoint, the control  
forces PWM mode for about 85μs to allow all internal control  
circuits to calibrate.  
3. Control voltage transition slew rate.  
4. Control the frequency of operation by synchronizing to an  
external clock.  
Symbol  
Description  
Value (μs)  
Time from EN to start of  
soft-start ramp  
5. Enable / disable the regulator.  
For more details, refer to the I2C Interface and Register  
Description sections.  
tSSDLY  
25  
Opt 06  
Others  
16 +(VSEL–0.7) X 53  
(VSEL–0.1) X 53  
VOUT ramp start to  
regulation  
tREG  
PWROK (CONTROL2[5])  
rising from tREG  
tPOK  
tCAL  
11  
10  
Output Voltage Programming  
Regulator stays in PWM  
mode during this time  
Option VOUT Equation  
00, 02,  
03  
VOUT = 0.75 + NVSEL 12.5mV  
(1)  
Table 2. Soft-Start Timing (see Figure 35)  
VOUT = 0.100 + NVSEL 25mV  
for NVSEL = 0 to 23  
EN  
TREG  
07  
(2)  
(3)  
VSEL  
VOUT = 0.675 +  
for NVSEL > 23  
(
NVSEL 23 12.5mV  
)
TSSDLY  
VOUT  
TCAL (FPWM)  
VOUT = 1.1875 + NVSEL 12.5mV  
06  
0
TPOK  
PWROK  
where NVSEL is the decimal value of the setting of the VSEL  
register that controls VOUT  
.
Figure 35. Soft-start Timing  
Note:  
13. Option 02 maximum voltage is 1.4375V (see Table 3).  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
17  
www.fairchildsemi.com  
VSEL  
Dec Hex  
VSEL  
Dec Hex VOUT  
VSEL Value  
Dec Binary Hex  
VOUT  
02  
VOUT  
0.1000  
0.1250  
0.1500  
0.1750  
0.2000  
0.2250  
0.2500  
0.2750  
0.3000  
0.3250  
0.3500  
0.3750  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
00, 03  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
06  
0
1
2
3
4
5
6
7
8
9
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
64 00  
65 01  
66 02  
67 03  
68 04  
69 05  
70 06  
71 07  
72 08  
73 09  
74 0A  
75 0B  
76 0C  
77 0D  
78 0E  
79 0F  
80 10  
81 11  
82 12  
83 13  
84 14  
85 15  
86 16  
87 17  
88 18  
89 19  
90 1A  
91 1B  
92 1C  
93 1D  
94 1E  
95 1F  
96 20  
97 21  
98 22  
99 23  
100 24  
101 25  
102 26  
103 27  
104 28  
105 29  
106 2A  
107 2B  
108 2C  
109 2D  
110 2E  
111 2F  
112 30  
113 31  
114 32  
115 33  
116 34  
117 35  
118 36  
119 37  
120 38  
121 39  
122 3A  
123 3B  
124 3C  
125 3D  
126 3E  
127 3F  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
1.6875  
1.7000  
1.7125  
1.7250  
1.7375  
1.7500  
1.7625  
1.7750  
1.7875  
1.8000  
1.8125  
1.8250  
1.8375  
1.8500  
1.8625  
1.8750  
1.8875  
1.9000  
1.9125  
1.9250  
1.9375  
1.9500  
1.9625  
1.9750  
0
1
2
3
4
5
6
7
8
9
000000 00  
000001 01  
000010 02  
000011 03  
000100 04  
000101 05  
000110 06  
000111 07  
001000 08  
001001 09  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4375  
1.4375  
1.4375  
1.4375  
1.4375  
1.4375  
1.4375  
1.4375  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
1.6875  
1.7000  
1.7125  
1.7250  
1.7375  
1.7500  
1.7625  
1.7750  
1.7875  
1.8000  
1.8125  
1.8250  
1.8375  
1.8500  
1.8625  
1.8750  
1.8875  
1.9000  
1.9125  
1.9250  
1.9375  
1.9500  
1.9625  
1.9750  
10 0A  
11 0B  
12 0C  
13 0D  
14 0E  
15 0F  
16 10  
17 11  
18 12  
19 13  
20 14  
21 15  
22 16  
23 17  
24 18  
25 19  
26 1A  
27 1B  
28 1C  
29 1D  
30 1E  
31 1F  
32 20  
33 21  
34 22  
35 23  
36 24  
37 25  
38 26  
39 27  
40 28  
41 29  
42 2A  
43 2B  
44 2C  
45 2D  
46 2E  
47 2F  
48 30  
49 31  
50 32  
51 33  
52 34  
53 35  
54 36  
55 37  
56 38  
57 39  
58 3A  
59 3B  
60 3C  
61 3D  
62 3E  
63 3F  
10 001010 0A  
11 001011 0B  
12 001100 0C  
13 001101 0D  
14 001110 0E  
15 001111 0F  
16 010000 10  
17 010001 11  
18 010010 12  
19 010011 13  
20 010100 14  
21 010101 15  
22 010110 16  
23 010111 17  
24 011000 18  
25 011001 19  
26 011010 1A  
27 011011 1B  
28 011100 1C  
29 011101 1D  
30 011110 1E  
31 011111 1F  
32 100000 20  
33 100001 21  
34 100010 22  
35 100011 23  
36 100100 24  
37 100101 25  
38 100110 26  
39 100111 27  
40 101000 28  
41 101001 29  
42 101010 2A  
43 101011 2B  
44 101100 2C  
45 101101 2D  
46 101110 2E  
47 101111 2F  
48 110000 30  
49 110001 31  
50 110010 32  
51 110011 33  
52 110100 34  
53 110101 35  
54 110110 36  
55 110111 37  
56 111000 38  
57 111001 39  
58 111010 3A  
59 111011 3B  
60 111100 3C  
61 111101 3D  
62 111110 3E  
63 111111 3F  
Table 3. VSEL vs. VOUT for Options 00, 02, 03, 06  
Table 4. VSEL vs. VOUT for Option 07  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
18  
www.fairchildsemi.com  
“create demand” for a pulse if no pulse had been required  
for 40μs. The minimum frequency limit circuit takes effect  
with load currents below about 3.5mA. Above that load  
point, the natural PFM period is less than 40μs. This circuit  
only activates when ILOAD is greater than ~3.5mA. If the load  
remains above 3.5mA, there is no quiescent current penalty  
for EPFM mode and there is some accuracy advantage.  
Software Enable  
The EN_DCDC bit, VSELx[7] can be used to enable the  
regulator in conjunction with the EN pin. Setting EN_DCDC  
with EN HIGH begins the soft-start sequence described  
above.  
EN_DCDC Bit  
EN Pin  
I2C  
REGULATOR  
NPFM allows the switching frequency (fSW) to go as low as  
required to support the load current. This achieves a lower  
quiescent current than EPFM, but sacrifices up to ±15mV of  
DC accuracy when compared to EPFM or PWM modes. As  
shown in Table 6, EPFM and NPFM modes have the same  
frequency when the load is above 4mA. If the load is above  
4mA, EPFM is the preferred mode, since it has tighter DC  
regulation with the same efficiency.  
0
1
1
0
0
1
0
1
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
Table 5. EN_DCDC Behavior  
Light-Load (PFM) Operation  
EPFM can only be enabled by setting the MODE_CTRL  
bits to 11. In versions with MODE_CTRL disabled (see  
Table 12), the PFM mode is NPFM.  
The FAN5355 offers both a Normal PFM (NPFM) and  
Enhanced PFM (EPFM) mode. NPFM is normally used  
when the load current is very low and when quiescent  
current must be minimized. EPFM provides more accurate  
DC regulation and limits the minimum frequency to 25kHz  
typical to prevent operation in the audio band.  
Mode  
EPFM  
NPFM  
IQUIESCENT typical at ILOAD = 0  
DC Accuracy  
110μA  
Better  
38μA  
Good  
VOUT ripple is identical in both modes (less than 20mV), and  
both modes feature very fast response to load transients.  
fSW at ILOAD = 0  
25 kHz  
> 33 kHz  
to 0 Hz  
> 33 kHz  
fSW at ILOAD > 3.5mA  
The FAN5355 incorporates  
modulation that ensures:  
a single-pulse, light-load  
Table 6. PFM Modes Comparison  
PFM mode can be disabled by writing to the mode control  
bits: CONTROL1[3:0] (see Table 12 for details).  
ƒ Smooth transitions between PFM and PWM modes  
ƒ Minimum frequency, of 25kHz typical, to avoid audible  
Switching Frequency Control and  
Synchronization  
The nominal internal oscillator frequency is 3MHz. The  
regulator runs at its internal clock frequency until these  
conditions are met:  
noise (EPFM only)  
ƒ Single-pulse operation for low ripple  
ƒ Predictable PFM entry and exit currents.  
PFM begins after the inductor current has become  
discontinuous, crossing zero during the PWM cycle in 32  
consecutive cycles. PFM exit occurs when discontinuous  
current mode (DCM) operation cannot supply sufficient  
current to maintain regulation. During PFM mode, the  
inductor current ripple is about 40% higher than in PWM  
mode. The load current required to exit PFM mode is  
thereby about 20% higher than the load current required to  
enter PFM mode, providing sufficient hysteresis to prevent  
“mode chatter.”  
1. EN_SYNC bit, CONTROL1[5], is set; and  
2. A valid frequency appears on the SYNC pin.  
CONTROL2  
FSYNC Valid  
PLL_MULT fSYNC Divider  
Min.  
2.25  
1.13  
0.75  
0.56  
Typ.  
3.00  
1.50  
1.00  
0.75  
Max.  
4.00  
2.00  
1.33  
1.00  
00  
01  
10  
11  
1
2
3
4
While PWM ripple voltage is typically less than 4mVP-P,  
PFM ripple voltage can be up to 30mVP-P during very light  
load. To prevent significant undershoot when a load  
transient occurs, the initial DC setpoint for the regulator in  
PFM mode is set 10mV higher than in PWM mode. This  
offset decays to about 5mV after the regulator has been in  
PFM mode for ~100μs. The maximum instantaneous  
voltage in PFM is 30mV above the setpoint.  
Table 7.SYNC Frequency Validation for fOSC(INTERNAL)=3.0MHz  
If the EN_SYNC is set and SYNC fails validation, the  
regulator continues to run at its internal oscillator frequency.  
The regulator is functional if fSYNC is valid, as defined in  
Table 7, but its performance is compromised if fSYNC is  
outside the fSYNC window in the Electrical Specifications.  
In Enhanced PFM (EPFM) mode, the regulator maintains a  
minimum frequency of 25kHz (typical) to prevent audible  
noise being generated by the external components. To  
achieve this, the regulator turns on the low-side MOSFET to  
When CONTROL1[3:2] = 00 and the VSEL line is LOW, the  
converter operates according to the MODE0 bit,  
CONTROL1[0], with synchronization disabled regardless of  
the state of the EN_SYNC and HW_nSW bits.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
19  
www.fairchildsemi.com  
setpoint and is typically 7μs for a full-range transition (from  
00000 to 11111 for 6-bit DAC options). The PWROK bit,  
CONTROL2[5], goes LOW until the transition is complete  
Output Voltage Transitions  
The IC regulates VOUT to one of two setpoint voltages, as  
determined by the VSEL pin and the HW_nSW bit.  
and VOUT settled. This typically occurs ~2μs after tV(L-H)  
.
VSEL Pin HW_nSW Bit VOUT Setpoint(14)  
PFM  
It is good practice to reduce the load current before making  
positive VSEL transitions. This reduces the time required to  
make positive load transitions and avoids current–limit-  
induced overshoot.  
0
1
x
1
1
0
VSEL0  
VSEL1  
VSEL1  
Allowed  
Per MODE1  
Per MODE1  
tV(L-H)  
Table 8. VOUT Setpoint and Mode Control MODE_CTRL,  
CONTROL1[3:2] = 00  
VHIGH  
98% VHIGH  
Note:  
14. Option 07 uses VSELx[6:0] to set VOUT, while all other  
options use VSELx[5:0].  
VOUT  
VLOW  
If HW_nSW =0, VOUT transitions are initiated through the  
following sequence:  
VSEL  
1. Write the new setpoint in VSEL1.  
tPOK(L-H)  
PWROK  
2. Write desired transition rate in DEFSLEW,  
CONTROL2[2:0], and set the GO bit in CONTROL2[7].  
Figure 37. Single-Step VOUT Transition  
If HW_nSW =1, VOUT transitions are initiated either by  
changing the state of the VSEL pin or by writing to the VSEL  
register selected by the VSEL pin.  
All positive VOUT transitions inhibit PFM until the transition is  
complete, which occurs at the end of tPOK(L-H)  
.
Positive Transitions  
When transitioning to a higher VOUT, the regulator can  
perform the transition using multi-step or single-step mode.  
Negative Transitions  
When moving from VSEL=1 to VSEL=0, the regulator  
enters PFM mode, regardless of the condition of the SYNC  
pin or MODE bits, and remains in PFM until the transition is  
completed. Reverse current through the inductor is blocked,  
and the PFM minimum frequency control inhibited, until the  
new setpoint is reached, at which time the regulator  
resumes control using the mode established by  
MODE_CTRL. The transition time from VHIGH to VLOW is  
controlled by the load current and output capacitance as:  
Multi-step Mode:  
The internal DAC is stepped at a rate defined by  
DEFSLEW, CONTROL2[2:0], ranging from 000 to 110. This  
mode minimizes the current required to charge COUT and  
thereby minimizes the current drain from the battery when  
transitioning. The PWROK bit, CONTROL2[5], remains  
LOW until about 1.5μs after the DAC completes its ramp.  
VHIGH VLOW  
VHIGH  
tV(HL) = COUT  
(4)  
ILOAD  
VHIGH  
VOUT  
VLOW  
VSEL  
VOUT  
VSEL  
tPOK(L-H)  
VLOW  
tV(L-H)  
PWROK  
Figure 36. Multi-step VOUT Transition  
Single-step Mode:  
tPOK(L-H)  
PWROK  
Used if DEFSLEW, CONTROL2[2:0] = 111. The internal  
DAC is immediately set to the higher voltage and the  
regulator performs the transition as quickly as its current  
limit circuit allows, while avoiding excessive overshoot.  
Figure 38. Negative VOUT Transition  
Figure 37 shows single-step transition timing. tV(L-H) is the  
time it takes the regulator to settle to within 2% of the new  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
20  
www.fairchildsemi.com  
Slave Address  
Protection Features  
In Table 10, A1 and A0 are according to the Ordering  
Information table on page 2.  
Current Limit / Auto-Restart  
The regulator includes cycle-by-cycle current limiting, which  
prevents the instantaneous inductor current from exceeding  
~1350mA.  
7
6
5
4
3
2
1
0
1
0
0
1
0
A1  
A0  
R/W  
The IC enters “fault” mode after sustained over-current. If  
current limit is asserted for more than 32 consecutive cycles  
(about 20μs), the IC returns to shutdown state and remains  
in that condition for ~80μs. After that time, the regulator  
attempts to restart with a normal soft-start cycle. If the fault  
has not cleared, it shuts down ~10μs later.  
Table 10. I2C Slave Address  
Bus Timing  
As shown in Figure 39, data is normally transferred when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
If the fault is a short circuit, the initial current limit is ~30% of  
the normal current limit, which produces a very small drain  
on the system power source.  
Data change allowed  
Thermal Protection  
When the junction temperature of the IC exceeds 150°C,  
the device turns off all output MOSFETs and remains in a  
low quiescent current state until the die cools to 130°C  
before commencing a normal soft-start cycle.  
SDA  
TH  
TSU  
SCL  
Under-Voltage Lockout (UVLO)  
The IC turns off all MOSFETs and remains in a very low  
quiescent current state until VIN rises above the UVLO  
threshold.  
Figure 39. Data Transfer Timing  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a “START” condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH,  
as shown in Figure 40.  
I2C Interface  
The FAN5355’s serial interface is compatible with standard,  
fast, and HS mode I2C bus specifications. The FAN5355’s  
SCL line is an input and its SDA line is a bi-directional open-  
drain output; it can only pull down the bus when active. The  
SDA line only pulls LOW during data reads and when  
signaling ACK. All data is shifted in MSB (bit 7) first.  
THD;STA  
Slave Address  
MS Bit  
SDA  
SCL  
SDA and SCL are normally pulled up to a system I/O power  
supply (VCCIO), as shown in Figure 1. If the I2C interface is  
not used, SDA and SCL should be tied to AVIN to minimize  
quiescent current consumption.  
Figure 40. Start Bit  
A transaction ends with a “STOP” condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH, as  
shown in Figure 41.  
Addressing  
Slave Releases  
Master Drives  
FAN5355 has four user-accessible registers:  
tHD;STO  
ACK(0) or  
NACK(1)  
Address  
SDA  
SCL  
7
6
5
4
3
2
1
0
VSEL0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
VSEL1  
CONTROL1  
CONTROL2  
Figure 41. Stop Bit  
Table 9. I2C Register Addresses  
During a read from the FAN5355 (Figure 44), the master  
issues a “Repeated Start” after sending the register  
address, and before resending the slave address. The  
“Repeated Start” is a 1 to 0 transition on SDA while SCL is  
HIGH, as shown in Figure 42.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
21  
www.fairchildsemi.com  
High-Speed (HS) Mode  
Read and Write Transactions  
The protocols for High-Speed (HS), Low-Speed (LS), and  
Fast-Speed (FS) modes are identical, except the bus speed  
for HS mode is 3.4MHz. HS mode is entered when the bus  
master sends the HS master code 00001XXX after a start  
condition. The master code is sent in FS mode (less than  
400kHz clock) and slaves do not ACK this transmission.  
The following figures outline the sequences for data read and  
write. Bus control is signified by the shading of the packet,  
Master Drives Bus  
defined as  
and  
Slave Drives Bus  
.
All addresses and data are MSB first.  
The master then generates a repeated start condition  
(Figure 42) that causes all slaves on the bus to switch to HS  
mode. The master then sends I2C packets, as described  
above, using the HS mode clock rate and timing.  
Symbol Definition  
S
START, see Figure 40.  
ACK. The slave drives SDA to 0 to acknowledge the  
preceding packet.  
A
The bus remains in HS mode until a stop bit (Figure 41) is  
sent by the master. While in HS mode, packets are  
separated by repeated start conditions (Figure 42).  
NACK. The slave sends a 1 to NACK the preceding  
packet.  
A
R
P
Repeated START, see Figure 42.  
Slave Releases  
tSU;STA  
tHD;STA  
STOP, see Figure 41.  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
Table 11. I2C Bit Definitions for Figure 43 - Figure 44  
Figure 42. Repeated Start Timing  
0
0
0
7 bits  
8 bits  
8 bits  
Data  
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 43. Write Transaction  
0
0
0
1
7 bits  
Slave Address  
8 bits  
7 bits  
8 bits  
Data  
S
0
A
Reg Addr  
A
R
Slave Address  
1
A
A
P
Figure 44. Read Transaction  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
22  
www.fairchildsemi.com  
Register Descriptions  
Default Values  
Each option of the FAN5355 (see Ordering Information on page 2) has different default values for the some of the register bits.  
Table 12 defines both the default values and the bit’s type (as defined in Table 13) for each available option.  
VSEL0  
VSEL1  
Option  
00  
7
1
1
1
1
1
6
1
1
1
1
1
5
0
0
0
0
1
4
1
1
1
1
1
3
1
1
0
1
0
2
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
VOUT  
1.05  
1.05  
1.00  
1.05  
1.80  
Option  
00  
7
1
1
1
1
1
6
1
1
1
1
1
5
1
1
1
1
1
4
1
0
0
1
1
3
2
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
VOUT  
1.35  
1.20  
1.20  
1.35  
1.80  
0
0
0
0
0
02  
02  
03  
03  
07  
07  
06  
06  
CONTROL1  
CONTROL2  
Option  
00, 02  
03  
7
6
0
0
0
5
0
0
0
4
1
1
1
3
0
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Option  
00, 02  
03  
7
6
0
0
0
5
0
0
0
4
0
0
0
3
2
1
1
1
1
0
1
1
1
1
0
1
0
0
0
0
0
0
1
1
1
06, 07  
06, 07  
Table 12. Default Values and Bit Types for VSEL and CONTROL Registers  
#
#
#
Active bit. Changing this bit changes the behavior of the converter, as described below.  
Disabled. Converter logic ignores changes made to this bit. Bit can be written to and read-back.  
Read-only. Writing to this bit through I2C does not change the read-back value, nor does it change converter behavior.  
Table 13. Bit Type Definitions for Table 12.  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
23  
www.fairchildsemi.com  
Bit Definitions  
The following table defines the operation of each register bit. Superscript characters define the default state for each option.  
Superscripts 0,2,3,6,7 signify the default values for options 00, 02, 03, 06, and 07, respectively. A signifies the default for all options.  
Bit Name  
VSEL0  
Value Description  
Register Address: 00  
Device in shutdown regardless of the state of the EN pin. This bit is mirrored in VSEL1. A write to bit 7 in either  
register establishes the EN_DCDC value.  
0
EN_DCDC  
7
1A  
Device enabled when EN pin is HIGH, disabled when EN is LOW.  
Reserved 0,2,3,6  
or DAC6 7  
Has no effect in options 00, 02, 03, 06, and defaults to 1. In option 07, it is the MSB of the 7-bit DAC value to set  
6
Table  
12  
VOUT  
.
6-bit DAC value to set VOUT. The six LSBs of the 7-bit value for option 07.  
DAC[5:0]  
5:0  
VSEL1  
Register Address: 01  
Device in shutdown regardless of the state of the EN pin. This bit is mirrored in VSEL0. A write to bit 7 in either  
register establishes the EN_DCDC value.  
0
EN_DCDC  
7
1A  
Device enabled when EN pin is HIGH, disabled when EN is LOW.  
Reserved 0,2,3,6  
or DAC6 7  
Has no effect in options 00, 02, 03, 06, and defaults to 1. In option 07, it is the MSB of the 7-bit DAC value to set  
6
Table  
12  
VOUT  
.
6-bit DAC value to set VOUT. The six LSBs of the 7-bit value for option 07.  
DAC[5:0]  
5:0  
CONTROL1  
Register Address: 02  
100,2,5,6 Vendor ID bits. Writing to these bits has no effect on regulator operation. These bits can be used to distinguish  
between vendors via I2C.  
7:6  
5
Reserved  
003  
0A  
Disables external signal on SYNC from affecting the regulator.  
EN_SYNC  
HW_nSW  
When a valid frequency is detected on SYNC, the regulator synchronizes to it and PFM is disabled, except  
when MODE = 00, VSEL pin = LOW, and HW_nSW = 1.  
1
0
1A  
00A  
01  
10  
11  
0A  
1
VOUT is controlled by VSEL1. Voltage transitions occur by writing to the VSEL1, then setting the GO bit.  
VOUT is programmed by the VSEL pin. VOUT = VSEL1 when VSEL is HIGH, and VSEL0 when VSEL is LOW.  
Operation follows MODE0, MODE1.  
4
NPFM with automatically transitions to PWM, regardless of VSEL.  
3:2 MODE_CTRL  
PFM disabled (forced PWM), regardless of VSEL.  
EPFM (FSW(MIN) = 25kHz) with automatically transitions to PWM, regardless of VSEL.  
PFM disabled (forced PWM) when regulator output is controlled by VSEL1.  
NPFM with automatic transitions to PWM when regulator output is controlled by VSEL1.  
1
0
MODE1  
MODE0  
0A  
1
NPFM with automatic transitions to PWM when VSEL is LOW. Changing this bit has no effect on the operation  
of the regulator.  
CONTROL2  
Register Address: 03  
0A  
1
This bit has no effect when HW_nSW = 1. At the end of a VOUT transition, this bit is reset to 0.  
Starts a VOUT transition if HW_nSW = 0.  
7
6
5
GO  
0A  
When the regulator is disabled, VOUT is not discharged.  
When the regulator is disabled, VOUT discharges through an internal pull-down.  
VOUT is not in regulation or is in current limit.  
OUTPUT_  
DISCHARGE  
1
0
PWROK  
(read only)  
1
VOUT is in regulation.  
00A  
01  
fSW = fSYNC when synchronization is enabled.  
fSW = 2 X fSYNC when synchronization is enabled.  
fSW = 3 X fSYNC when synchronization is enabled.  
fSW = 4 X fSYNC when synchronization is enabled.  
4:3 PLL_MULT  
10  
11  
000  
001  
010  
011  
100  
101  
110  
V
V
V
V
V
V
V
OUT slews at 0.15mV/μs during positive VOUT transitions.  
OUT slews at 0.30mV/μs during positive VOUT transitions.  
OUT slews at 0.60mV/μs during positive VOUT transitions.  
OUT slews at 1.20mV/μs during positive VOUT transitions.  
OUT slews at 2.40mV/μs during positive VOUT transitions.  
OUT slews at 4.80mV/μs during positive VOUT transitions.  
OUT slews at 9.60mV/μs during positive VOUT transitions.  
2:0 DEFSLEW  
111A Positive VOUT transitions use single-step mode (see Figure 37).  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
24  
www.fairchildsemi.com  
Physical Dimensions  
BALL A1  
INDEX AREA  
E
A
0.50  
B
D
(Ø0.25)  
Cu PAD  
0.03 C  
1.00  
A1  
2X  
(Ø0.35)  
0.50  
SOLDER MASK  
OPENING  
0.03 C  
TOP VIEW  
2X  
RECOMMENDED LAND PATTERN (NSMD)  
0.06 C  
0.332±0.018  
0.250±0.025  
0.625  
0.539  
0.05 C  
D
C
SEATING PLANE  
SIDE VIEWS  
(X)+/-.018  
0.005  
12 X Ø0.315 +/- .025  
C A B  
0.50  
A. NO JEDEC REGISTRATION APPLIES  
B. DIMENSIONS ARE IN MILLIMETERS.  
D
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994  
C
B
A
0.50  
D
DATUM C, THE SEATING PLANE, IS DEFINED  
BY THE SPHERICAL CROWNS OF THE BALLS.  
(Y)+/-.018  
F
FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
1
2
3
F. BALL COMPOSITION: Sn95.5Ag3.9Cu0.6  
SAC405 ALLOY  
BOTTOM VIEW  
G. DRAWING FILENAME: MKT-UC012AArev2  
Figure 45. 12-Bump WLCSP, 0.5mm Pitch  
Product-Specific Dimensions  
Product  
D
E
X
Y
FAN5355UC  
2.230 +/-0.030  
1.460 +/-0.030  
0.230  
0.365  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty  
therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
25  
www.fairchildsemi.com  
Physical Dimensions  
10  
6
3.0  
A
B
0.10 C  
2.25  
2.40  
2.00  
2X  
3.0  
0.23  
0.10 C  
0.50  
0.02  
0.25  
2X  
D
1
5
TOP VIEW  
0.8 MAX  
0.10  
C
RECOMMENDED LAND PATTERN  
(0.20)  
0.08 C  
0.05  
0.00  
C
SEATING  
PLANE  
SIDE VIEW  
±0.10  
(3.00  
)
2.40  
(0.38)  
PIN #1 IDENT  
5
1
±0.10  
(3.00  
)
1.40  
0.55±0.10  
E
0.30  
0.20  
10  
6
0.5  
0.10  
0.05  
C A B  
C
2.0  
BOTTOM VIEW  
A. CONFORMS TO JEDEC REGISTRATION MO-229,  
VARIATION WEED-5 EXCEPT WHERE NOTED  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994  
D. LAND PATTERN DIMENSIONS ARE NOMINAL  
REFERENCE VALUES ONLY  
E. NOT COMPLIANT  
MLP10ArevB  
Figure 46. 10-pin, 3x3mm Molded Leadless Package (MLP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty  
therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
26  
www.fairchildsemi.com  
© 2008 Fairchild Semiconductor Corporation  
FAN5355 • Rev. 1.0.4  
27  
www.fairchildsemi.com  

相关型号:

FAN5355UC08X

1.1A / 1A / 0.8A、3MHz数字可编程调节器
ONSEMI

FAN5355_10

1A / 0.8A, 3MHz Digitally Programmable Regulator
FAIRCHILD

FAN5358

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN5358S710X

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN5358S712X

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN5358S713X

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN5358S718X

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN5358_10

2MHz, 500mA, SC70 Synchronous Buck Regulator
FAIRCHILD

FAN53600

3 MHz, 600 mA / 1A Synchronous Buck Regulator
FAIRCHILD

FAN53600

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI

FAN53600AUC28X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI

FAN53600AUC33X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
FAIRCHILD