FAN6755 [FAIRCHILD]

Highly Integrated Green-Mode PWM Controller; 高度集成绿色模式PWM控制器
FAN6755
型号: FAN6755
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Highly Integrated Green-Mode PWM Controller
高度集成绿色模式PWM控制器

控制器
文件: 总16页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
February 2010  
FAN6755  
Highly Integrated Green-Mode PWM Controller  
Features  
Description  
This highly integrated PWM controller provides several  
features to enhance the performance of flyback  
converters.  
ƒ
ƒ
ƒ
Internal High-Voltage Startup  
Low Operating Current (Maximum: 2mA)  
Adaptive Decreasing of PWM Frequency to 23KHz  
at Light-Load condition to Improve Light-Load  
Efficiency  
To minimize standby power consumption, a proprietary  
adaptive green-mode function reduces switching  
frequency at light-load condition. To avoid acoustic-  
noise problems, the minimum PWM frequency is set  
above 23kHz. This green-mode function enables the  
power supply to meet international power conservation  
requirements, such as Energy Star®. With the internal  
high-voltage startup circuitry, the power loss caused by  
bleeding resistors is also eliminated. To further reduce  
power consumption, FAN6755 uses the BiCMOS  
process, which allows an operating current of only 2mA.  
The standby power consumption can be under 100mW  
for most of LCD monitor power supply designs.  
ƒ
ƒ
ƒ
ƒ
ƒ
Frequency Hopping to Reduce EMI Emission  
Fixed PWM Frequency: 65KHz  
Internal Leading-Edge Blanking  
Built-in Synchronized Slope Compensation  
Auto-Restart Protection : Feedback Open-Loop  
Protection (OLP), VDD Over-Voltage Protection  
(OVP), Over-Temperature Protection (OTP), and  
Line Over-Voltage Protection  
FAN6755 integrates a frequency-hopping function that  
reduces EMI emission of a power supply with minimum  
line filters. Its built-in synchronized slope compensation  
ƒ
ƒ
ƒ
Soft Gate Drive with Clamped Output Voltage: 18V  
VDD Under-Voltage Lockout (UVLO)  
achieves  
a stable peak-current-mode control and  
Programmable Constant Power Limit (Full AC  
Input Range)  
improves noise immunity. The proprietary, external line  
compensation ensures constant output power limit over  
ƒ
ƒ
ƒ
Internal OTP Sensor with Hysteresis  
Build-in 5ms Soft-Start Function  
a wide AC input voltage range from 90VAC to 264VAC  
.
FAN6755 provides many protection functions. The  
internal feedback open-loop protection circuit protects  
the power supply from open feedback loop condition or  
output short condition. It also has line under-voltage  
protection (brownout protection) and over-voltage  
protection using an input voltage sensing pin (VIN).  
Input Voltage Sensing (VIN Pin) for Brown-in/out  
Protection with Hysteresis and Line Over-Voltage  
Protection  
Applications  
FAN6755 is available in a 7-pin SOP package.  
General-purpose switched-mode power supplies and  
flyback power converters, including:  
ƒ
ƒ
LCD Monitor Power Supply  
Open-Frame SMPS  
Ordering Information  
Operating  
Temperature Range  
Eco  
Status  
Part Number  
Package  
Packing Method  
7-Lead, Small Outline Integrated  
Circuit (SOIC), Depopulated  
FAN6755MY  
-40 to +105°C  
Green  
Reel & Tape  
JEDEC MS-112, .150 Inch Body  
For Fairchild’s definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.  
ENERGY STAR® is a registered trademark of the U.S. Department of Energy and the U.S. Environmental Protection Agency.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
1
Application Diagram  
Figure 1.  
Typical Application  
Internal Block Diagram  
Figure 2.  
Functional Block Diagram  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
2
Marking Information  
7
Z: Plant Code  
X: 1-Digit Year Code  
Y: 1-Digit Week Code  
TT: 2-Digit Die Run Code  
T: Package Type (M:SOP)  
P: Y=Green Package  
M: Manufacture Flow Code  
ZXYTT  
6755  
TPM  
1
Figure 3. Top Mark  
Pin Configuration  
SOP-7  
VIN  
FB  
1
2
3
4
7
HV  
SENSE  
6
5
VDD  
GND  
GATE  
Figure 4.  
Pin Configuration (Top View)  
Pin Definitions  
Pin #  
Name Description  
Line-voltage detection. The line-voltage detection is used for brownout protection with  
hysteresis. Constant output power limit over universal AC input range is also achieved using this  
VIN pin. It is suggested to add a low-pass filter to filter out line ripple on the bulk capacitor.  
Pulling VIN HIGH also triggers auto-restart protection.  
1
VIN  
FB  
The signal from the external compensation circuit is fed into this pin. The PWM duty cycle is  
determined in response to the signal on this pin and the current-sense signal on the SENSE pin.  
2
3
Current sense. The sensed voltage is used for peak-current-mode control and cycle-by-cycle  
current limiting.  
SENSE  
GND  
4
5
Ground  
GATE The totem-pole output driver. Soft-driving waveform is implemented for improved EMI.  
Power supply. The internal protection circuit disables PWM output as long as VDD exceeds the  
OVP trigger point.  
6
7
VDD  
HV  
For startup, this pin is pulled HIGH to the line input or bulk capacitor via resistors.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device  
reliability. The absolute maximum ratings are stress ratings only.  
Symbol  
VVDD  
VFB  
Parameter  
Min.  
Max.  
30  
Unit  
V
DC Supply Voltage(1, 2)  
FB Pin Input Voltage  
-0.3  
-0.3  
-0.3  
7.0  
V
VSENSE  
VVIN  
SENSE Pin Input Voltage  
VIN Pin Input Voltage  
7.0  
V
7.0  
V
VHV  
HV Pin Input Voltage  
700  
400  
V
Power Dissipation (TA50°C)  
PD  
mW  
Thermal Resistance (Junction to Air)  
Operating Junction Temperature  
150  
ΘJA  
TJ  
°C/W  
°C  
-40  
-55  
+125  
+150  
+260  
TSTG  
TL  
Storage Temperature Range  
°C  
Lead Temperature (Wave Soldering or IR, 10 Seconds)  
°C  
Human Body Model,  
All Pins Except HV Pin  
JEDEC: JESD22-A114  
4.5  
1.0  
ESD  
kV  
Charged Device Model,  
All Pins Except HV Pin  
JEDEC: JESD22-C101  
Notes:  
1. All voltage values, except differential voltages, are given with respect to the network ground terminal.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. ESD with HV pin CDM=1000V and HBM=500V.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
4
Electrical Characteristics  
VDD=15V, TA=25°C, unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
VDD Section  
VOP  
Continuously Operating Voltage  
Start Threshold Voltage  
22  
17  
11  
8.8  
30  
2
V
V
VDD-ON  
15  
9
16  
10  
VDD-OFF Protection Mode  
V
UVLO  
IDD-ST  
Normal Mode  
6.8  
7.8  
V
Startup Current  
VDD-ON – 0.16V  
µA  
mA  
µA  
IDD-OP  
IDD-OLP  
Operating Supply Current  
Internal Sink Current  
VDD=15V, GATE Open  
VTH-OLP+0.1V  
30  
6.5  
25  
75  
60  
7.5  
26  
90  
Threshold Voltage on VDD for HV  
JFET Turn-On  
VDD-OLP  
8.0  
27  
V
V
VDD-OVP VDD Over-Voltage Protection  
VDD Over-Voltage Protection  
tD-VDDOVP  
125  
200  
µs  
Debounce Time  
Figure 5.  
VDD Behavior  
Continued on the following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
5
Electrical Characteristics  
VDD=15V, TA=25°C, unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
HV Section  
Supply Current Drawn from HV  
Pin  
VDC=120V, VDD=10µF,  
IHV  
mA  
µA  
2.0  
3.5  
1
5.0  
20  
VDD=0V  
HV=700V, VDD=VDD-  
OFF+1V  
IHV-LC  
Leakage Current after Startup  
Oscillator Section  
62  
±4.5  
20  
65  
±5.2  
23  
68  
±5.9  
26  
Center Frequency  
Hopping Range  
fOSC  
Frequency in Normal Mode  
KHz  
fOSC-G  
Green-Mode Frequency  
Hopping Period  
KHz  
ms  
tH OP  
fDV  
fDT  
-
4.20  
5.05  
5.90  
5
Frequency Variation vs. VDD  
Deviation  
VDD=11V to 22V  
%
%
Frequency Variation vs.  
Temperature Deviation  
5
TA=-40 to 85°C  
VIN Section  
VIN-OFF PWM Turn-Off Threshold Voltage  
0.66  
0.70  
0.74  
V
V
VIN-OFF  
0.17  
+
VIN-OFF  
0.20  
+
VIN-OFF  
0.23  
+
VIN-ON  
VIN-Protect  
tVIN-Protect  
PWM Turn-On Threshold Voltage  
PWM Protect Threshold Voltage  
PWM Protect Debounce Time  
5.1  
60  
5.3  
5.5  
V
100  
140  
µs  
Current-Sense Section  
Threshold Voltage for Current  
Limit  
VTH-P at  
VIN=1V  
VIN=1V  
VIN=3V  
0.80  
0.67  
0.83  
0.70  
0.86  
0.73  
V
V
Threshold Voltage for Current  
Limit  
VTH-P at  
VIN=3V  
tPD  
tLEB  
tSS  
Delay to Output  
100  
290  
5.5  
200  
340  
7.0  
ns  
ns  
Leading-Edge Blanking Time  
Period During Soft-Start Time  
240  
4.0  
Startup Time  
ms  
Figure 6.  
VIN vs. VSENSE  
Continued on the following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
6
Electrical Characteristics  
VDD=15V, TA=25°C, unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Feedback Input Section  
Input Voltage to Current-Sense  
Attenuation  
AV  
1/4.5  
1/4.0  
1/3.5  
V/V  
ZFB  
Input Impedance  
11  
5.1  
4.4  
15  
5.3  
4.6  
18  
5.5  
4.8  
k  
V
VFB =4V  
FB Pin Open  
VFB-OPEN Output High Voltage  
VFB-OLP FB Open-Loop Trigger Level  
V
Delay Time of FB Pin Open-loop  
Protection  
tD-OLP  
45.0  
2.8  
62.5  
70.0  
3.2  
ms  
VFB-N  
VFB-G  
Green-Mode Entry FB Voltage  
Green-Mode Ending FB Voltage  
3.0  
V
V
VFB-N - 0.6  
FB Threshold Voltage for Zero-  
Duty Recovery  
VFB-ZDCR  
1.6  
1.4  
1.8  
1.6  
2.0  
1.8  
V
V
V
FB Threshold Voltage for Zero-  
Duty  
VFB-ZDC  
VFB-ZDCR -  
ZDC Hysterisis  
0.12  
0.15  
0.19  
VFB-ZDC  
PWM Frequency  
fOSC  
fOSC-G  
VFB-ZDC  
V
FB-ZDCR VFB-G  
VFB-N  
VFB  
Figure 7.  
VFB vs. PWM Frequency  
Continued on the following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
7
Electrical Characteristics  
VDD=15V, TA=25°C, unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
GATE Section  
DCYMAX Maximum Duty Cycle  
VGATE-L Gate Low Voltage  
VGATE-H Gate High Voltage  
60  
8
75  
90  
%
V
VDD=15V, IO=50mA  
VDD=12V, IO=50mA  
VDD=15V, CL=1nF  
VDD=15V, CL=1nF  
1.5  
V
Gate Rising Time  
Gate Falling Time  
tr  
tf  
ns  
ns  
100  
30  
IGATE-  
SOURCE  
mA  
V
Gate Source Current  
VDD=15V, GATE=6V  
VDD=22V  
700  
VGATE-  
CLAMP_1  
Gate Output Clamping Voltage  
18  
Over-Temperature Protection Section (OTP)  
TOTP  
TRestart  
Notes:  
Protection Junction Temperature(4)  
Restart Junction Temperature(5)  
135  
°C  
°C  
TOTP-25  
4. When activated, the output is disabled and the latch is turned off.  
5. The threshold temperature for enabling the output again and resetting the latch after over-temperature  
protection has been activated.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
Figure 9. Operation Supply Current (IDD-OP  
)
Figure 8. Startup Current (IDD-ST) vs. Temperature  
vs. Temperature  
Figure 10.Start Threshold Voltage (VDD-ON  
)
Figure 11.Minimum Operating Voltage (VDD-OFF  
vs. Temperature  
)
vs. Temperature  
Figure 12.Supply Current Drawn from HV Pin (IHV  
)
Figure 13.HV Pin Leakage Current After Startup  
(IHV-LC) vs. Temperature  
vs. Temperature  
Figure 14.Frequency in Normal Mode (fOSC  
)
Figure 15.Maximum Duty Cycle (DCYMAX  
)
vs. Temperature  
vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
9
Typical Performance Characteristics  
Figure 16.FB Open-Loop Trigger Level (VFB-OLP  
)
Figure 17.Delay Time of FB Pin Open-Loop Protection  
(tD-OLP) vs. Temperature  
vs. Temperature  
VIN-ON  
VIN-OFF  
Figure 18.PWM Turn-Off Threshold Voltage (VIN-OFF  
VIN-ON) vs. Temperature  
&
Figure 19.VDD Over-Voltage Protection (VDD-OVP  
)
vs. Temperature  
Figure 20.VIN vs. VLIMIT  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
10  
Functional Description  
Startup Current  
Gate Output / Soft Driving  
For startup, the HV pin is connected to the line input  
(1N4007 / 100Krecommended) or bulk capacitor  
through a resistor, RHV. Startup current drawn from pin  
HV (typically 3.5mA) charges the hold-up capacitor  
through the diode and resistor. When the VDD capacitor  
level reaches VDD-ON, the startup current switches off. At  
this moment, the VDD capacitor only supplies the  
FAN6755 to maintain VDD before the auxiliary winding of  
the main transformer to provide the operating current.  
The BiCMOS output stage is a fast totem-pole gate  
driver. Cross conduction has been avoided to minimize  
heat dissipation, increase efficiency, and enhance  
reliability. The output driver is clamped by an internal  
18V Zener diode to protect power MOSFET transistors  
against undesirable gate over voltage. A soft driving  
waveform is implemented to minimize EMI.  
Soft Start  
For many applications, it is necessary to minimize the  
inrush current at startup. The built-in 5.5ms soft-start  
circuit significantly reduces the startup current spike  
and output voltage overshoot.  
Operating Current  
Operating current is around 2mA. The low operating  
current enables better efficiency and reduces the  
requirement of VDD hold-up capacitance.  
Slope Compensation  
Green-Mode Operation  
The sensed voltage across the current-sense resistor is  
used for peak-current-mode control and pulse-by-pulse  
current limiting. Built-in slope compensation improves  
stability and prevents sub-harmonic oscillation.  
FAN6755 inserts a synchronized positive-going ramp at  
every switching cycle.  
The proprietary green-mode function provides an off-  
time modulation to reduce the switching frequency in  
light-load and no-load conditions. The on time is limited  
for better abnormal or brownout protection. VFB, which is  
derived from the voltage feedback loop, is taken as the  
reference. Once VFB is lower than the threshold voltage,  
switching frequency is continuously decreased to the  
minimum green-mode frequency of around 23KHz.  
Constant Output Power Limit  
For constant output power limit over universal input-  
voltage range, the peak-current threshold is adjusted by  
the voltage of the VIN pin. Since the VIN pin is  
connected to the rectified AC input line voltage through  
the resistive divider, a higher line voltage generates a  
higher VIN voltage. The threshold voltage decreases as  
VIN increases, making the maximum output power at  
high-line input voltage equal to that at low-line input.  
The value of R-C network should not be so large that it  
affects the power limit (shown in Figure 21). Usually, R  
Current Sensing / PWM Current Limiting  
Peak-current-mode control is utilized to regulate output  
voltage and provide pulse-by-pulse current limiting. The  
switch current is detected by a sense resistor into the  
SENSE pin. The PWM duty cycle is determined by this  
current sense signal and VFB, the feedback voltage.  
When the voltage on the SENSE pin reaches around  
VCOMP=(VFB–0.6)/4,  
a
switch cycle is terminated  
immediately. VCOMP is internally clamped to a variable  
voltage around 0.83V for output power limit.  
and  
respectively.  
C should be less than 100Ω and 470pF,  
Leading-Edge Blanking (LEB)  
Each time the power MOSFET is switched on, a turn-on  
spike occurs on the sense resistor. To avoid premature  
termination of the switching pulse, a leading-edge  
blanking time is built in. During this blanking period, the  
current-limit comparator is disabled and cannot switch  
off the gate driver.  
Under-Voltage Lockout (UVLO)  
The turn-on and turn-off thresholds are fixed internally  
at 16V and 7.8V in normal mode. During startup, the  
hold-up capacitor must be charged to 16V through the  
startup resistor to enable the IC. The hold-up capacitor  
continues to supply VDD before the energy can be  
delivered from auxiliary winding of the main transformer.  
VDD must not drop below 7.8V during startup. This  
UVLO hysteresis window ensures that the hold-up  
capacitor is adequate to supply VDD during startup.  
Figure 21. Current-Sense R-C Filter  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
11  
VDD Over-Voltage Protection  
Limited Power Control  
VDD over-voltage protection prevents damage due to  
abnormal conditions. Once the VDD voltage is over the  
over-voltage protection voltage (VDD-OVP), and lasts for  
The FB voltage is saturated HIGH when the power  
supply output voltage drops below its nominal value and  
shut regulator (KA431) does not draw current through  
the opto-coupler. This occurs when the output feedback  
loop is open or output is short circuited. If the FB  
voltage is higher than a built-in threshold for longer than  
t
D-VDDOVP, the PWM pulses are disabled. When the VDD  
voltage drops below the UVLO, PWM pulses start  
again. Over-voltage conditions are usually caused by  
open feedback loops.  
t
D-OLP, PWM output is turned off. As PWM output is  
turned off, VDD begins decreasing since no more energy  
is delivered from the auxiliary winding.  
Brownout Protection  
When VDD goes below the turn-off threshold (~7.8V),  
the controller is totally shut down. VDD is charged up to  
the turn-on threshold voltage of 16V through the startup  
resistor until PWM output is restarted. This protection  
feature continues as long as the over loading condition  
persists. This prevents the power supply from  
overheating due to overloading conditions.  
Since the VIN pin is connected through a resistive  
divider to the rectified AC input line voltage, it can also  
be used for brownout protection. If VIN is less than 0.7V,  
the PWM output is shut off. When VIN reaches over  
0.9V, the PWM output is turned on again. The  
hysteresis window for ON/OFF is around 0.2V. The  
brownout voltage setting is determined by the potential  
divider formed with RUpper and RLower. Equations to  
calculate the resistors are shown below:  
Noise Immunity  
Noise on the current sense or control signal may cause  
significant pulse-width jitter, particularly in continuous-  
conduction mode. Slope compensation helps alleviate  
this problem. Good placement and layout practices  
should be followed. Avoiding long PCB traces and  
component leads, locating compensation and filter  
components near the FAN6755, and increasing the  
power MOS gate resistance improve performance.  
RLower  
VIN =  
×VAC 2, (unit = V)  
(1)  
RLower + RUpper  
Thermal Overload Protection  
Thermal overload protection limits total power  
dissipation. When the junction temperature exceeds TJ=  
+135°C, the thermal sensor signals the shutdown logic  
and turns off most of the internal circuitry. The thermal  
sensor turns internal circuitry on again after the IC’s  
junction temperature drops by 25°C. Thermal overload  
protection is designed to protect the FAN6755 in the  
event of a fault condition. For continual operation, do  
not exceed the absolute maximum junction temperature  
of TJ = +150°C.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
12  
Applications Information  
R6  
R7  
12V1  
1
12V  
P1  
C7  
N18  
L2  
2
12V  
C5  
1
R8  
C10  
C8  
C9  
+
+
F1  
2
N1  
N1A  
R1  
N2  
3
BD1  
C1  
C2  
CN1  
TX1  
L
L1  
4
1
N4  
4
12  
11  
N17 D1  
M1  
1
2
3
C3  
N28  
R4  
R5  
N21  
ZD1  
VIN  
C4  
R3  
C6  
ACIN  
R2  
8
N20  
7
5V1  
1
5V  
P2  
L3  
2
5V  
N
N3  
N5 N6  
6
1
C11  
+
1
3
D3  
R14  
2
N7  
10  
9
R17  
2
D4  
C15  
C13  
C14  
+
+
C12  
R13  
D5  
R9  
N8  
P3  
SGND  
Q1  
N30  
R10  
R16  
N10  
D2  
1 N9  
R11  
R12  
N29  
R15  
HV  
VIN  
C16  
U1  
VIN  
1
8
7
6
5
HV  
NA  
R20  
FB  
2
3
4
VDD  
FB  
5V1  
R22  
R19  
N12  
N13  
SENSE  
VDD  
GATE  
U2  
GATE  
GND  
12V  
5V  
C18  
C19  
FAN67 55  
+
R28  
C17  
SENSE  
R23  
R24  
R25  
C20  
R21  
R
N14  
N15  
U3  
N16  
R18  
R26  
R27  
Figure 22. 44W Flyback 12V/2A, 5V/4A Application Circuit  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
13  
Build of Materials  
Designator  
Part Type  
BD 4A/600V  
Designator  
Part Type  
MOS 9A/600V  
BD1  
C1  
Q1  
R1  
R2  
R3  
YC 2200pF/Y1  
YC 2200pF/Y1  
XC 0.33µF/300V  
NC  
R 1.5MΩ 1/4W  
R 1.5MΩ 1/4W  
R 10MΩ 1/4W  
R 47Ω 1/4W  
NC  
C2  
C3  
C4  
R4, R5, R6, R7  
C5  
R8, R17, R25, R27  
YC 2200pF/Y1  
CC 2200pF/100V  
CC 1000pF/100V  
EC 1000µF/25V  
EC 470µF/25V  
CC 100pF/50V  
EC 100µF/400V  
C 1µF/50V  
C6  
R9  
R 50KΩ 1/4W  
R 50KΩ 1/4W  
R 0Ω 1/8W  
C7  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R26  
R28  
TX1  
U1  
C8  
C9  
R 47Ω 1/8W  
R 100KΩ 1/8W  
R 0Ω 1/4W  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
R 10KΩ 1/8W  
R 1Ω 1/8W  
EC 1000µF/10V  
EC 470µF/10V  
CC 100pF/50V  
C 1nF/50V  
R 0Ω 1/8W  
R 100Ω 1/8W  
R 1KΩ 1/8W  
R 4.7KΩ 1/8W  
R 7.5KΩ 1/8W  
R 120KΩ 1/8W  
R 15KΩ 1/8W  
R 10KΩ 1/8W  
R 0.43Ω 2W  
800µH(ERL-28)  
IC FAN6755  
IC PC817  
C 470pF/50V  
EC 47µF/50V  
C 0.01µF/50V  
C 0.1µF/50V  
FYP1010  
D2  
1N4148  
D3  
FR107  
D4  
FR103  
D5  
U2  
FYP1010  
ZD1  
F1  
P6KE150A  
U3  
IC TL431  
FUSE 4A/250V  
VZ 9G  
M1  
L1  
13mH  
L2  
Inductor (2µH)  
Inductor (2µH)  
L3  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
14  
Physical Dimensions  
3.81  
5.00  
4.80  
A
0.65TYP  
1.75TYP  
3.81  
8
5
B
6.20  
5.80  
4.00  
3.80  
3.85 7.35  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.10  
C
0.51  
0.33  
OPTION A - BEVEL EDGE  
0.50  
0.25  
x 45¢X  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8¢X  
0¢X  
0.90  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA, ISSUE C,  
DATED MAY 1990 EXCEPT PIN# 7 IS REMOVED.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
(1.04)  
0.406  
D) STANDARD LEAD FINISH:  
200 MICROINCHES / 5.08 MICRONS MIN.  
LEAD/TIN (SOLDER) ON COPPER.  
E) DRAWING FILENAME : M07AREV2  
DETAIL A  
SCALE: 2:1  
Figure 23. 7-Lead, Small Outline Package (SOP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
15  
© 2009 Fairchild Semiconductor Corporation  
FAN6755 • Rev. 1.0.0  
www.fairchildsemi.com  
16  

相关型号:

FAN6755MY

Highly Integrated Green-Mode PWM Controller
FAIRCHILD

FAN6755UW

mWSaver™ PWM Controller
FAIRCHILD

FAN6755UWMY

mWSaver™ PWM Controller
FAIRCHILD

FAN6755W

mWSaver™ PWM Controller
FAIRCHILD

FAN6755WMY

mWSaver™ PWM Controller
FAIRCHILD

FAN6755WMY

用于 65 KHz 反激式转换器的绿色模式 PWM 控制器,提供线路过压保护和通电/欠压保护
ONSEMI

FAN6755_10

Highly Integrated Green-Mode PWM Controller
FAIRCHILD

FAN6756

FAN6756— mWSaver™ PWM Controller
FAIRCHILD

FAN6756AMRMY

FAN6756— mWSaver™ PWM Controller
FAIRCHILD

FAN6756MLMY

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD

FAN6756MRMY

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD

FAN6757MRMX

Switching Controller, Current-mode, 68kHz Switching Freq-Max, PDSO8
FAIRCHILD