FIN224AC_11 [FAIRCHILD]

22-Bit Bi-Directional Serializer/Deserializer; 22位双向​​串行器/解串器
FIN224AC_11
型号: FIN224AC_11
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

22-Bit Bi-Directional Serializer/Deserializer
22位双向​​串行器/解串器

文件: 总19页 (文件大小:1042K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for this datasheet  
translated into Korean!  
April 2011  
FIN224AC  
22ꢀBit BiꢀDirectional Serializer/Deserializer  
Features  
Description  
• Industry smallest 22ꢀbit Serializer/Deserializer pair  
The FIN224AC ꢁSerDes™ is a lowꢀpower serializer/  
deserializer (SerDes) that can help minimize the cost  
and power of transferring wide signal paths. Through the  
use of serialization, the number of signals transferred  
from one point to another can be significantly reduced.  
Typical reduction is 4:1 to 6:1 for unidirectional paths.  
For bidirectional operation, using half duplex for multiple  
sources, it is possible to reach signal reduction close to  
10:1. Through the use of differential signaling, shielding  
and EMI filters can also be minimized, further reducing  
the cost of serialization. The differential signaling is also  
important for providing a noiseꢀinsensitive signal that can  
withstand radio and electrical noise sources. Major  
reduction in power consumption allows minimal impact  
on battery life in ultraꢀportable applications. It is possible  
to use a single PLL for most applications including biꢀ  
directional operation.  
• Low power for minimum impact on battery life  
– Multiple powerꢀdown modes  
• 100nA in standby mode, 5mA typical operating  
conditions  
• Highly rolled LVCMOS edge rate option to meet  
regulatory requirements  
• Cable reduction: 25:4 or greater  
• Differential signaling:  
––90dBm EMI when using CTL in lab conditions  
–Minimized shielding  
–Minimized EMI filter  
–Minimum susceptibility to external interference  
• Up to 22 bits in either direction  
• Voltage translation from 1.65V to 3.6V  
• High ESD protection: > 15kV HBM  
• Parallel I/O power supply (VDDP) range, 1.65V ꢀ 3.6V  
• Can support Microcontroller or RGB pixel interface  
FIN224AC to FIN24AC Comparison  
• Up to 20% power reduction  
• Double wide CKP pulse on FIN224AC, Mode 3  
Applications  
• Rolled edge rate for deserializer outputs on  
FIN224AC, for single display applications  
• Image sensors  
• Small displays  
– LCD, cell phone, digital camera, portable gaming,  
printer, PDA, video camera, automotive  
• Same voltage range  
• Same pinout and package  
Ordering Information  
Operating  
Order  
Packing  
Temperature  
Number  
Package Description  
Method  
Range  
42ꢀBall, UltraꢀSmall Scale Ball Grid Array (USSꢀBGA),  
JEDEC MOꢀ195, 3.5mm Wide (Slow LVCMOS Edge Rate)  
FIN224ACGFX  
FIN224ACMLX  
ꢀ30 to +70°C  
ꢀ30 to +70°C  
Tape and Reel  
Tape and Reel  
40ꢀTerminal, Molded Leadless Package (MLP), Quad,  
JEDEC MOꢀ220, 6mm Square (Slow LVCMOS Edge Rate)  
ꢁSerDesTM is a trademark of Fairchild Semiconductor Corporation.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
Basic Concept  
LVCMOS  
22  
LVCMOS  
CTL  
4
FIN224AC  
Serializer  
FIN224AC  
Deserializer  
22  
Figure 1. Conceptual Diagram  
Functional Block Diagram  
+
-
CKS0+  
PLL  
0
CKREF  
CKS0-  
STROBE  
I
cksint  
Serializer  
Control  
DP[21:22]  
DP[1:20]  
DSO+/DSI-  
DSO-/DSI+  
+
-
Serializer  
oe  
100 Gated  
Termination  
+
-
Deserializer  
Deserializer  
Control  
cksint  
+
CKSI+  
CKSI-  
DP[23:24]  
-
100  
Termination  
WORD CK  
Generator  
CKP  
Control Logic  
S1  
DIRO  
Freq  
Control  
Direction  
Control  
S2  
oe  
DIRI  
Power Down  
Control  
Figure 2. Block Diagram  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
2
Terminal Description  
Terminal  
I/O Type  
Name  
Number of  
Terminals  
Description of Signals  
DP[1:20]  
DP[21:22]  
DP[23:24]  
CKREF  
I/O  
I
20  
2
LVCMOS parallel I/O, Direction controlled by DIRI pin  
LVCMOS parallel unidirectional inputs  
O
2
LVCMOS unidirectional parallel outputs  
LVCMOS clock input and PLL reference  
LVCMOS strobe signal for latching data into the serializer  
LVCMOS word clock output  
IN  
1
STROBE  
CKP  
IN  
1
OUT  
1
CTL differential serial I/O data signals(1.)  
DSO: Refers to output signal pair  
DSI: Refers to input signal pair  
DSO+ / DSIꢀ  
DSOꢀ / DSI+  
DIFFꢀI/O  
2
DSO(I)+: Positive signal of DSO(I) pair  
DSO(I)ꢀ: Negative signal of DSO(I) pair  
CTL differential deserializer input bit clock  
CKSI: Refers to signal pair  
CKSI+  
CKSIꢀ  
DIFFꢀIN  
2
2
CKSI+: Positive signal of CKSI pair  
CKSIꢀ: Negative signal of CKSI pair  
CTL differential serializer output bit clock  
CKSO: Refers to signal pair  
CKSO+  
CKSOꢀ  
DIFFꢀOUT  
CKSO+: Positive signal of CKSO pair  
CKSOꢀ: Negative signal of CKSO pair  
S1  
S2  
IN  
IN  
1
1
LVCMOS mode selection terminals used to select frequency range for  
the reflect, CKREF  
LVCMOS control input used to control direction of data flow:  
DIRI = “1” Serializer  
DIRI  
IN  
1
DIRI = “0” Deserializer  
DIRO  
VDDP  
VDDS  
VDDA  
GND  
OUT  
1
1
1
1
2
LVCMOS control output inversion of DIRI  
Power supply for parallel I/O and translation circuitry  
Power supply for core and serial I/O  
Supply  
Supply  
Supply  
Supply  
Power supply for analog PLL circuitry  
For ground signals (2 for ꢁBGA, 1 for MLP)  
Note  
:
1. The DSO/DSI serial port pins have been arranged such that if one device is rotated 180 degrees with respect to the  
other device, the serial connections properly align without the need for any traces or cable signals to cross. Other  
layout orientation may require that traces or cables cross.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
3
Connection Diagrams  
1
DP[9]  
DP[10]  
DP[11]  
DP[12]  
VDDP  
30 DIRO  
29 CKSO+  
28 CKSO-  
27 DSO+  
26 DSO-  
25 CKSI-  
24 CKSI+  
23 DIRI  
2
3
4
5
6
CKP  
7
DP[13]  
DP[14]  
DP[15]  
DP[16]  
8
9
22 S2  
10  
21 VDDS  
Figure 3. Terminal Assignments for MLP (Top View)  
42 MBGA Package  
3.5mm x 4.5mm  
(.5mm Pitcth)  
(Top View)  
Pin Assignments  
1
2
3
4
5
6
A
B
C
D
E
F
DP[9]  
DP[11]  
CKP  
DP[7]  
DP[5]  
DP[6]  
DP[8]  
VDDP  
GND  
DP[3]  
DP[2]  
DP[4]  
GND  
DP[1]  
CKREF  
DIRO  
1
2
3
4
5
6
DP[10]  
DP[12]  
DP[14]  
DP[16]  
DP[18]  
DP[20]  
STROBE  
CKSO+  
A
B
C
D
E
F
CKSOꢀ  
DP[13]  
DP[15]  
DP[17]  
DP[19]  
DSOꢀ/DSI+ DSO+/DSIꢀ  
VDDS  
VDDA  
DP[23]  
CKSI+  
S2  
CKSIꢀ  
DIRI  
S1  
DP[21]  
DP[22]  
G
DP[24]  
G
Figure 4. Terminal Assignments for ꢁBGA (Top View)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
4
TurnꢀAround Functionality  
Control Logic Circuitry  
The device passes and inverts the DIRI signal through  
the device asynchronously to the DIRO signal. Care  
must be taken by the system designer to ensure that no  
contention occurs between the deserializer outputs and  
the other devices on this port. Optimally the peripheral  
device driving the serializer should be put into a HIGHꢀ  
impedance state prior to the DIRI signal being asserted.  
When a device with dedicated data outputs turns from a  
deserializer to a serializer, the dedicated outputs remain  
at the last logical value asserted. This value only  
changes if the device is once again turned around into a  
deserializer and the values are overwritten.  
The FIN224AC has the ability to be used as a 22ꢀbit seriꢀ  
alizer or a 22ꢀbit deserializer. Pins S1 and S2 must be  
set to accommodate the clock reference input frequency  
range of the serializer. Table 1 shows the pin programꢀ  
ming of these options based on the S1 and S2 control  
pins. The DIRI pin controls whether the device is a serialꢀ  
izer or a deserializer. When DIRI is asserted LOW, the  
device is configured as a deserializer. When the DIRI pin  
is asserted HIGH, the device is configured as a serialꢀ  
izer. Changing the state on the DIRI signal reverses the  
direction of the I/O signals and generate the opposite  
state signal on DIRO. For unidirectional operation the  
DIRI pin should be hardwired to the HIGH or LOW state  
and the DIRO pin should be left floating. For biꢀdirecꢀ  
tional operation, the DIRI of the master device is driven  
by the system and the DIRO signal of the master is used  
to drive the DIRI of the slave device.  
PowerꢀDown Mode: (Mode 0)  
Mode 0 is used for powering down and resetting the  
device. When both of the mode signals are driven to a  
LOW state, the PLL and references are disabled, differꢀ  
ential input buffers are shut off, differential output buffers  
are placed into a HIGHꢀimpedance state, LVCMOS outꢀ  
puts are placed into a HIGHꢀimpedance state, and LVCꢀ  
MOS inputs are driven to a valid level internally.  
Additionally all internal circuitry is reset. The loss of  
CKREF state is also enabled to ensure that the PLL only  
powersꢀup if there is a valid CKREF signal.  
Serializer/Deserializer with Dedicated I/O Variation  
The serialization and deserialization circuitry is set up for  
24 bits. Because of the dedicated inputs and outputs,  
only 22 bits of data are serialized or deserialized.  
DP[21:22] inputs to the serializer are transmitted to  
DP[23:24] outputs on the deserializer.  
In a typical application mode, signals of the device do not  
change states other than between the desired frequency  
range and the powerꢀdown mode. This allows for sysꢀ  
temꢀlevel powerꢀdown functionality to be implemented  
via a single wire for a SerDes pair. The S1 and S2 selecꢀ  
tion signals that have their operating mode driven to a  
“logic 0” should be hardwired to GND. The S1 and S2  
signals that have their operating mode driven to a “logic  
1” should be connected to a systemꢀlevel powerꢀdown or  
reset signal.  
Table 1. Control Logic Circuitry  
Mode  
S2  
S1  
DIRI  
Description  
Number  
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
x
1
0
1
0
1
0
PowerꢀDown Mode  
22ꢀBit Serializer 2MHz to 5MHz CKREF  
22ꢀBit Deserializer  
1
2
3
22ꢀBit Serializer 5MHz to 15MHz CKREF  
22ꢀBit Deserializer  
22ꢀBit Serializer 10MHz to 26MHz CKREF (Divide by 2 Serial Data)  
22ꢀBit Deserializer  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
5
Serializer Operation Mode  
The serializer configurations are described in the followꢀ  
ing sections. The basic serialization circuitry works  
essentially identically in these modes, but the actual data  
and clock streams differ depending on if CKREF is the  
same as the STROBE signal or not. When it is stated  
that CKREF does not equal STROBE, each signal is disꢀ  
tinct and CKREF must be running at a frequency high  
enough to avoid any loss of data condition. CKREF must  
never be a lower frequency than STROBE.  
The exact frequency that the reference clock needs to  
run at depends upon the stability of the CKREF and  
STROBE signal. If the source of the CKREF signal  
implements spread spectrum technology, the minimun  
frequency of the spread spectrum clock should be used  
in calculating the ratio of STROBE frequency to the  
CKREF frequency. Similarly, if the STROBE signal has  
significant cycleꢀtoꢀcycle variation, the maximum cycleꢀ  
toꢀcycle time needs to be factored into the selection of  
the CKREF frequency.  
Serializer Operation: MODE 1 or MODE 2,  
DIRI = 1, CKREF = STROBE  
Serializer Operation: MODE 3 (S1 = S2 =1),  
DIRI =1. CKREF Divide by 2 Mode.  
The PLL must receive a stable CKREF signal to achieve  
lock prior to any valid data being sent. The CKREF sigꢀ  
nal can be used as the data STROBE signal provided  
that data can be ignored during the PLL lock phase.  
When operating in mode 3, the effective serial speed is  
divided by two. This mode has been implemented to  
accommodate cases where the reference clock freꢀ  
quency is high compared to the actual strobe frequency.  
The actual strobe frequency must be less than or equal  
to 50% of the CKREF frequency for this mode to work  
properly. This mode, in all other ways, operates the  
same as described in the section where CKREF does  
not equal STROBE.  
Once the PLL is stable and locked, the device can begin  
to capture and serialize data. Data is captured on the risꢀ  
ing edge of the STROBE signal and serialized. When  
operating in serializer mode, the internal deserializer cirꢀ  
cuitry is disabled; including the serial clock, serial data  
input buffers, biꢀdirectional parallel outputs, and CKP  
word clock. The CKP word clock is driven HIGH.  
Serializer Operation: DIRI = 1, No CKREF  
A third method of serialization can be acheived by proꢀ  
viding a freeꢀrunning bit clock on the CKSI signal. This  
mode is enabled by grounding the CKREF signal and  
driving the DIRI signal HIGH. At powerꢀup, the device is  
configured to accept a serialization clock from CKSI. If a  
CKREF is received, this device enables the CKREF seriꢀ  
alization mode. The device remains in this mode even if  
CKREF is stopped. To reꢀenable this mode, the device  
must be powered down and then powered back up with a  
“logic 0” on CKREF.  
Serializer Operation: DIRI = 1, CKREF Does Not  
= STROBE  
If the same signal is not used for CKREF and STROBE,  
the CKREF signal must be run at a higher frequency  
than the STROBE rate to serialize the data correctly. The  
actual serial transfer rate remains at 13 times the  
CKREF frequency. A data bit value of zero is sent when  
no valid data is present in the serial bit stream. The operꢀ  
ation of the serializer otherwise remains the same.  
Deserializer Operation Mode  
The operation of the deserializer is dependent on the  
data received on the DSI data signal pair and the CKSI  
clock signal pair. The following sections describe the  
operation of the deserializer under distinct serializer  
source conditions. References to the CKREF and  
STROBE signals refer to the signals associated with the  
serializer device generating the serial data and clock sigꢀ  
nals that are inputs to the deserializer. When operating in  
deserializer mode, the internal serializer circuitry is disꢀ  
abled, including the parallel data input buffers. If there is  
a CKREF signal provided, the CKSO serial clock continꢀ  
ues to transmit bit clocks. Upon powerꢀup (S1 or S2 = 1),  
deserializer output data pins are driven LOW until valid  
data is passed through the deserializer.  
serial port and deserialized through use of the bit clock  
sent with the data.  
Deserializer Operation: DIRI = 0 (Serializer  
Source: CKREF Does Not = STROBE)  
The logical operation of the deserializer remains the  
same if the CKREF is equal in frequency to the STROBE  
or at a higher frequency than the STROBE. The actual  
serial data stream presented to the deserializer is differꢀ  
ent because it has nonꢀvalid data bits sent between  
words. The duty cycle of CKP varies based on the ratio  
of the frequency of the CKREF signal to the STROBE  
signal. The frequency of the CKP signal is equal to the  
STROBE frequency. In modes 1 and 2, the CKP LOW  
time equals half of the CKREF period of the serializer. In  
mode 3, the CKP LOW is equal to the CKREF period.  
The CKP HIGH time is approximately equal to the  
STROBE period, minus the CKP LOW time.  
Deserializer Operation: DIRI = 0 (Serializer  
Source: CKREF = STROBE)  
When the DIRI signal is asserted LOW, the device is  
configured as a deserializer. Data is captured on the  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
6
LVCMOS Data I/O  
The LVCMOS input buffers have a nominal threshold  
value equal to half VDD. The input buffers are only operꢀ  
ational when the device is operating as a serializer.  
When the device is operating as a deserializer, the inputs  
are gated off to conserve power.  
The LVCMOS 3ꢀSTATE output buffers are rated for a  
source / sink current of approximately 0.5mA at 1.8V.  
The outputs are active when the DIRI signal and either  
S1 or S2 is asserted HIGH. When the DIRI signal and  
either S1 or S2 is asserted LOW, the biꢀdirectional LVCꢀ  
MOS I/Os is in a HIGHꢀZ state. Under purely capacitive  
load conditions, the output swings between GND and  
V
DDP. When S1 or S2 initially transitions HIGH, the initial  
state of the deserializer LVCMOS outputs is zero.  
Unused LVCMOS input buffers must be either tied off to  
a valid logic LOW or a valid logic HIGH level to prevent  
static current draw due to a floating input. Unused LVCꢀ  
MOS output should be left floating. Unused biꢀdirectional  
pins should be connected to GND through a highꢀvalue  
resistor. If a FIN224AC device is configured as an unidiꢀ  
rectional serializer, unused data I/O can be treated as  
unused inputs. If the FIN224AC is hardwired as a deseriꢀ  
alizer, unused data I/O can be treated as unused outputs.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
7
Application Mode Diagrams  
SerDesSerializer  
SerDes Deserializer  
U20  
FIN224AC  
U22  
FIN224AC  
TP6  
VDDP  
A6  
B5  
PIXCLK_M  
CKREF  
STROBE  
J6  
F5  
F6  
S1  
S2  
DIRI  
F6  
F5  
J6  
DIRI  
S2  
S1  
TP5  
GPIO_MODE  
C1  
PIXCLK_S  
CKP  
J5  
J4  
J3  
F3  
J2  
J1  
J5  
J4  
J3  
F3  
J2  
J1  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
LCD_ENABLE_S  
B5  
A6  
STROBE  
CKREF  
LCD_ENABLE_M  
LCD_VSYNC_M  
LCD_HSYNC_M  
LCD17_M  
B6  
C1  
LCD_VSYNC_S  
LCD_HSYNC_S  
LCD17_S  
LCD16_S  
LCD15_S  
DIRO  
CKP  
B6  
DIRO  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
LCD16_M  
LCD15_M  
LCD14_M  
LCD13_M  
LCD14_S  
LCD13_S  
D6  
D5  
D5  
D6  
DSO+/DSI-  
DSO-/DSI+  
DSO-/DSI+  
DSO+/DSI-  
LCD12_M  
LCD11_M  
LCD12_S  
LCD11_S  
LCD  
Controller  
Out  
LCD  
Display  
In  
C6  
C5  
E6  
E5  
LCD10_M  
LCD9_M  
LCD8_M  
LCD7_M  
LCD6_M  
LCD5_M  
LCD4_M  
LCD3_M  
LCD2_M  
LCD1_M  
LCD0_M  
LCD10_S  
LCD9_S  
LCD8_S  
LCD7_S  
LCD6_S  
LCD5_S  
LCD4_S  
LCD3_S  
LCD2_S  
LCD1_S  
LCD0_S  
CKSO-  
CKSO+  
CKSI-  
CKSI+  
E6  
E5  
C6  
C5  
CKSI-  
CKSI+  
CKSO-  
CKSO+  
2.8V  
2.8V  
1.8V  
2.8V  
F4  
E4  
D3  
F4  
E4  
D3  
VDDA  
VDDS  
VDDP  
VDDA  
VDDS  
VDDP  
C12  
.01µuF  
C10  
1nF  
C11  
C6  
1nF  
C3  
.01µuF  
2.2uµF  
Assumptions:  
1) 18-bit Unidirectional RGB Application  
2) Mode 3 Operation (10 Mhzto 20Mhz CKREF)  
3) VDDP = (1.65Vto 3.6V)  
Figure 5. FIN224AC RGB  
SerDes Serializer  
SerDes Deserializer  
U21  
FIN224AC  
U23  
FIN224AC  
TP2  
TP1  
VDDP  
A6  
B5  
REFCLK  
LCD_/WRITE_ENABLE_M  
CKREF  
STROBE  
J6  
F5  
F6  
S1  
S2  
DIRI  
F6  
F5  
J6  
DIRI  
S2  
S1  
TP3  
GPIO_MODE  
C1  
LCD_/WRITE_ENABLE_S  
CKP  
J5  
J4  
J3  
F3  
J2  
J1  
J5  
J4  
J3  
F3  
J2  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
B5  
A6  
STROBE  
CKREF  
B6  
C1  
LCD_/CS_M  
LCD_/CS_S  
LCD_ADDRESS_S  
LCD17_S  
LCD16_S  
LCD15_S  
LCD14_S  
LCD13_S  
LCD12_S  
LCD11_S  
DIRO  
CKP  
B6  
J1  
LCD_ADDRESS_M  
LCD17_M  
LCD16_M  
LCD15_M  
LCD14_M  
LCD13_M  
LCD12_M  
LCD11_M  
LCD10_M  
DIRO  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
D6  
D5  
D5  
D6  
DSO+/DSI-  
DSO-/DSI+  
DSO-/DSI+  
DSO+/DSI-  
LCD  
C6  
C5  
E6  
E5  
LCD10_S  
LCD9_S  
LCD8_S  
Controller  
Out  
CKSO-  
CKSO+  
CKSI-  
CKSI+  
LCD  
Display  
In  
LCD9_M  
LCD8_M  
LCD7_M  
LCD6_M  
LCD5_M  
LCD4_M  
LCD3_M  
LCD2_M  
LCD1_M  
LCD0_M  
E6  
E5  
C6  
C5  
LCD7_S  
LCD6_S  
LCD5_S  
LCD4_S  
LCD3_S  
LCD2_S  
LCD1_S  
LCD0_S  
CKSI-  
CKSI+  
CKSO-  
CKSO+  
2.8V  
2.8V  
1.8V  
2.8V  
F4  
E4  
D3  
F4  
E4  
D3  
VDDA  
VDDS  
VDDP  
VDDA  
VDDS  
VDDP  
C9  
.01FuF  
C7  
1nF  
C8  
C5  
1nF  
C2  
.01FuF  
2.2uFF  
Assumptions:  
1) 18-bit Unidirectional Controller Application  
2) Mode 3 Operation (10 Mhz to 20Mhz CKREF)  
3) VDDP= (1.65V to 3.6V)  
4) REFCLK is a continously running clock with a frequency  
greater than /WRITE_ENABLE.  
Figure 6. FIN224AC Microcontroller  
Flex Circuit Design Guidelines  
The serial I/O information is transmitted at a high serial rate. Care must be taken implementing this serial I/O flex  
cable. The following best practices should be used when developing the flex cabling or Flex PCB:  
Keep all four differential wires the same length.  
Allow no noisy signals over or near differential serial wires. Example: No LVCMOS traces over differential wires.  
Use only one ground plane or wire over the differential serial wires. Do not run ground over top and bottom.  
Do not place test points on differential serial wires.  
Use differential serial wires a minimum of 2cm away from the antenna.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
8
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operaꢀ  
ble above the recommended operating conditions and stressing the parts to these levels is not recommended. In addiꢀ  
tion, extended exposure to stresses above the recommended operating conditions may affect device reliability. The  
absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
ꢀ0.5  
Max.  
+4.6  
+4.6  
Unit  
V
V
Supply Voltage  
DD  
ALL Input/Output Voltage  
ꢀ0.5  
V
I
CTL Output ShortꢀCircuit Duration  
Storage Temperature Range  
Continuous  
ꢀ65  
OS  
T
+150  
+150  
+260  
15.0  
8.0  
°C  
°C  
°C  
STG  
T
Maximum JunctionTemperature  
Lead Temperature (Soldering 4 Seconds)  
IEC61000ꢀ4ꢀ2  
J
T
L
Human Body Model, JESD22ꢀA114, Serial I/O Pin  
Human Body Model, JESD22ꢀA114, All Pins  
Charged Device Model, JESD22ꢀC101  
ESD  
kV  
2.5  
2.0  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to absolute maximum ratings.  
Symbol  
, V  
Parameter  
Min.  
2.5  
Max.  
3.3  
Unit  
V
V
Supply Voltage  
DDA  
DDS  
V
Supply Voltage  
1.65  
ꢀ30  
3.60  
+70  
100  
V
DDP  
(2.)  
T
Operating Temperature  
Supply Noise Voltage  
°C  
A
V
mV  
PP  
DDAꢀPP  
Note  
:
2. Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired.  
The datasheet specification should be met, without exception, to ensure that the system design is reliable over its  
power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside  
datasheet specifications.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
9
DC Electrical Characteristics  
Values are for overꢀsupply voltage and operating temperature ranges, unless otherwise specified. Typical values are  
given for V = 2.775V and T = 25°C. Positive current values refer to the current flowing into the device and negative  
DD  
A
values refer to the current flowing out of the pins. Voltages are referenced to GROUND unless otherwise specified  
(except and V ).  
V
OD  
OD  
Symbol  
LVCMOS I/O  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
V
Input High Voltage  
Input Low Voltage  
0.65 x V  
V
DDP  
IH  
DDP  
V
GND  
0.35 x V  
V
V
IL  
DDP  
V
V
V
V
V
V
= 3.3±0.30  
= 2.5±ꢀ0.20  
= 1.8±0.18  
= 3.3±0.30  
= 2.5±0.20  
= 1.8±0.18  
DDP  
DDP  
DDP  
DDP  
DDP  
DDP  
V
Output High Voltage  
I
I
= 2.0mA  
= 2.0mA  
0.75 x V  
DDP  
OH  
OH  
V
Output Low Voltage  
Input Current  
0.25 x V  
5.0  
V
OL  
OL  
DDP  
I
V
= 0V to 3.6V  
ꢀ5.0  
ꢁA  
IN  
IN  
DIFFERENTIAL I/O  
Output HIGH source current V = 1.0V  
I
ꢀ1.75  
0.950  
mA  
mA  
mA  
ꢁA  
ODH  
OS  
I
Output LOW sink current  
V = 1.0V  
OS  
ODL  
Driver Enabled  
Driver Disabled  
ShortꢀCircuit Output  
Current  
V
= 0V  
OUT  
I
OS  
±5  
±5  
Disabled Output  
Leakage Current  
CKSO, DSO = 0V to V  
S2 = S1 = 0V  
DDS  
I
±1  
ꢁA  
ꢁA  
ꢁA  
OZ  
Differential Input Threshold  
High Current  
I
50  
TH  
Differential Input Threshold  
Low Current  
I
ꢀ50  
±5  
TL  
Disabled Input Leakage  
Current  
CKSI, DSI = 0V to V  
S2 = S1 = 0V  
DDS  
I
±1  
ꢁA  
mA  
V
IZ  
I
ShortꢀCircuit Input Current  
V
= V  
DDS  
IS  
OUT  
DDS  
Input Common Mode  
Range  
V
V
= 2.775 ±5%  
0.5  
V
DDSꢀ1  
ICM  
CKSI, DS Internal Receiver V = 50mV, V = 925mV, DIRI = 0  
ID  
IC  
R
100  
+
TRM  
Termination Resistor  
| CKSI – CKSI | = V  
ID  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
10  
Power Supply Currents  
Typical values are given for V = 2.775V and T = 25°C. Positive current values refer to the current flowing into the  
DD  
A
device and negative values refer to the current flowing out of the pins. Voltages are referenced to GROUND unless  
otherwise specified (except and V ).  
V
OD  
OD  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
VDDA Serializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 1  
IDDA1  
450  
550  
4
ꢁA  
ꢁA  
mA  
mA  
ꢁA  
VDDA Deserializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 0  
IDDA2  
IDDS1  
IDDS2  
IDD_PD  
VDDS Serializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 1  
VDDS Deserializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 0  
4.5  
0.1  
VDD PowerꢀDown Supply Current  
IDD_PD = IDDA  
S1 = S2 = 0 All Inputs at GND or VDD  
1.2MHz  
S2 = 0  
9
14  
9
S1 = 1  
5MHz  
26:1 Dynamic Serializer  
5MHz  
CKREF = STROBE S2 = 1  
IDD_SER1 Power Supply Current  
IDD_SER1 = IDDA+IDDS+IDDP  
mA  
DIRI = H  
S1 = 0  
15MHz  
10MHz  
26MHz  
2MHz  
17  
9
S2 = 1  
S1 = 1  
16  
5
S2 = 0  
S1 = 1  
5MHz  
6
26:1 Dynamic Deserializer  
IDD_DES1 Power Supply Current  
IDD_DES1 = IDDA+IDDS+IDDP  
5MHz  
4
CKREF = STROBE S2 = 1  
mA  
DIRI = L  
S1 = 0  
15MHz  
10MHz  
26MHz  
2MHz  
5
7
S2 = 1  
S1 = 1  
11  
8
NO CKREF  
STROBE Active  
CKSI = 15x STROBE  
DIRI = H  
26:1 Dynamic Serializer  
IDD_SER2 Power Supply Current  
IDD_SES2 = IDDA+IDDS+IDDP  
5MHz  
8
mA  
10MHz  
15MHz  
10  
12  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
11  
AC Electrical Characteristics  
Characteristics at recommended overꢀsupply voltage and operating temperature ranges, unless otherwise specified.  
Typical values are given for V  
= 2.775V and T = 25°C. Positive current values refer to the current flowing into  
DD  
A
device and negative values means current flowing out of the pins. Voltages are referenced to GROUND unless otherꢀ  
wise specified (except  
V
and V ).  
OD OD  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
Serializer Input Operating Conditions  
S2=0 S1=1  
200  
66  
500  
CKREF Clock Period  
tTCP  
CKREF = STROBE  
Figure 7.  
S2=1 S1=0  
S2=1 S1=1  
200  
ns  
(2MHz – 26MHz)  
38.46  
100.00  
CKREF Frequency Relative to  
STROBE  
CKREF does not =  
STROBE  
2.25 x  
fSTROBE  
fREF  
S2=0 S1=1  
MHz  
tCPWH  
tCPWL  
tCLKT  
CKREF Clock High Time  
0.2  
0.2  
0.5  
0.5  
T
T
CKREF Clock Low Time  
LVCMOS Input Transition Time  
STROBE Pulse Width HIGH/LOW  
Figure 9.  
Figure 9.  
90.0  
(Tx22)/26  
130  
ns  
ns  
tSPWH  
(Tx4)/26  
52  
S2=0 S1=1  
S2=1 S1=0  
S2=1 S1=1  
fMAX  
Maximum Serial Data Rate  
CKREF x 26  
DIRI = 1  
Mb/s  
130  
260  
2.5  
390  
676  
tSTC  
tHTC  
DP(n) Setup to STROBE  
DP(n) Hold to STROBE  
ns  
ns  
2.0  
Serializer AC Electrical Characteristics  
Transmitter Clock Input to Clock  
Output Delay  
tTCCD  
CKREF = STROBE  
33a+1.5  
ꢀ50  
35a+6.5  
250  
ns  
ps  
tSPOS  
CKSO Position Relative to DS(3.)  
PLL AC Electrical Characteristics  
Serializer Phase Lock Loop  
tTPLLS0  
Figure 11.  
200  
ꢁs  
Stabilization Time  
tTPLLD0 PLL Disable Time Loss of Clock  
tTPLLD1 PLL PowerꢀDown Time(4.)  
Figure 12.  
Figure 13.  
30  
20  
ꢁs  
ns  
Deserializer Input Operating Conditions  
Serial Port Setup Time,  
tS_DS  
1.4  
ns  
ps  
DSꢀtoꢀCKSI(5.)  
Serial Port Hold Time,  
tH_DS  
ꢀ250  
DSꢀtoꢀCKS(5.)  
Deserializer AC Electrical Characteristics  
Deserializer Clock Output  
tRCOP  
Figure 10.  
50  
500  
ns  
(CKP OUT) Period(6.)  
tRCOL  
tRCOH  
CKP OUT Low Time(6.)  
CKP OUT High Time  
(Rising Edge STROBE) Serializer  
source STROBE = CKREF  
Figure 10.  
13aꢀ3  
13aꢀ3  
13a+3  
13a+3  
ns  
ns  
(Rising Edge STROBE)  
Figure 10.  
tPDV  
tROLH  
tROHL  
Data Valid to CKP LOW  
8aꢀ6  
8a+1  
ns  
ns  
ns  
CL = 8pF  
Figure 7.  
Output Rise Time (20% to 80%)  
Output Fall Time (20% to 80%)  
18  
18  
CL = 8pF  
Figure 7.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
12  
Notes  
:
3. Skew is measured from either the rising or falling edge of CKSO clock to the rising or falling edge of data (DSO).  
Signals are edge aligned. Both outputs should have identical load conditions for this test to be valid.  
4. The powerꢀdown time is a function of the CKREF frequency prior to CKREF being stopped HIGH or LOW and the  
state of the S1/S2 mode pins. The specific number of clock cycles required for the PLL to be disabled varies  
dependent upon the operating mode of the device.  
5. Signals are transmitted from the serializer source synchronously. Note that, in some cases, data is transmitted when  
the clock remains at a HIGH state. Skew should only be measured when data and clock are transitioning at the same  
time. Total measured input skew would be a combination of output skew from the serializer, load variations, and ISI  
and jitter effects.  
6. a = (1/f)/13) Rising edge of CKP appears approximately 13 bit times after the falling edge of the CKP output. Falling  
edge of CKP occurs approximately eight bit times after a data transition or six bit times after the falling edge of  
CKSO. Variation of the data with respect to the CKP signal is due to internal propagation delay differences of the  
data and CKP path and propagation delay differences on the various data pins. Note that if the CKREF is not equal  
to STROBE for the serializer, the CKP signal does not maintain a 50% duty cycle.The low time of CKP remains 13  
bit times.  
Control Logic Timing Controls  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
t
t
,
Propagation Delay  
DIRIꢀtoꢀDIRO  
PHL_DIR  
DIRI LOWꢀtoꢀHIGH or HIGHꢀtoꢀLOW  
17  
25  
25  
ns  
ns  
ns  
PLH_DIR  
Propagation Delay  
DIRIꢀtoꢀDP  
t
t
, t  
DIRI LOWꢀtoꢀHIGH  
DIRI HIGHꢀtoꢀLOW  
PLZ PHZ  
Propagation Delay  
DIRIꢀtoꢀDP  
, t  
PZL PZH  
DIRI = 0,  
Deserializer Disable Time:  
S0 or S1 to DP  
t
t
t
t
, t  
S1(2) = 0 and S2(1) = LOWꢀtoꢀHIGH,  
Figure 14.  
25  
2
ns  
ꢁs  
ns  
ns  
PLZ PHZ  
(7.)  
DIRI = 0,  
Deserializer Enable Time:  
S0 or S1 to DP  
, t  
S1(2) = 0 and S2(1) = LOWꢀtoꢀHIGH  
Figure 14.  
PZL PZH  
DIRI = 1,  
Serializer Disable Time:  
S0 or S1 to CKSO, DS  
, t  
S1(2) = 0 and S2(1) = HIGHꢀtoꢀLOW,  
Figure 13.  
25  
65  
PLZ PHZ  
DIRI = 1,  
Serializer Enable Time:  
S0 or S1 to CKSO, DS  
, t  
S1(2) and S2(1) = LOWꢀtoꢀHIGH,  
Figure 13.  
PZL PZH  
Note  
:
7. Deserializer Enable Time includes the time required for internal voltage and current references to stabilize. This time  
is significantly less than the PLL Lock Time and therefore does not limit overall system startup time.  
Capacitance  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
Capacitance of Input Only Signals, DIRI = 1, S1 = S2 = 0,  
C
2
2
2
pF  
pF  
pF  
IN  
IO  
CKREF, STROBE, S1, S2, DIRI = 2.5V  
V
DD  
Capacitance of Parallel Port Pins DIRI = 1, S1 = S2 = 0,  
DP = 2.5V  
C
V
1:12  
DD  
Capacitance of Differential I/O  
Signals  
DIRI = 0, S1 = S2 = 0,  
C
IOꢀDIFF  
V
= 2.775V  
DD  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
13  
AC Loading and Waveforms  
Setup Time  
t
STC  
STROBE  
DP[1:12]  
t
t
ROHL  
ROLH  
80%  
80%  
Data  
20%  
20%  
DPn  
t
Hold Time  
HTC  
DPn  
STROBE  
DP[1:12]  
Data  
8pF  
Setup: MODE0 = “0” or “1”, MODE1 = “1”, SER/DES = “1”  
Figure 7. LVCMOS Output Load and Transition  
Times  
Figure 8. Serial Setup and Hold Times  
Data Time  
t
PDV  
t
t
CLKT  
CLKT  
90%  
90%  
CKP  
Data  
DP[1:12]  
10%  
10%  
t
RCOP  
t
TCP  
75%  
50%  
25%  
50%  
CKREF  
V
IH  
CKREF  
50%  
50%  
V
IL  
t
t
RCOL  
RCOH  
t
t
CPWL  
CPWH  
EN_DES = “1”, CKSI and DSI are valid signals  
Setup:  
Figure 9. LVCMOS Clock Parameters  
Figure 10. Deserializser Data Valid Window Time and  
Clock Output Parameters  
tTPLLS0  
VDD/VDDA  
S1 or S2  
CKREF  
CKS0  
Note: CKREF Signal is free running.  
Figure 11. Serializer PLL Lock Time  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
14  
AC Loading and Waveforms (Continued)  
t
TPPLD0  
CKREF  
CKS0  
Note: CKREF Signal can be stopped either High or LOW  
Figure 12. PLL Loss of Clock Disable Time  
t
t
PZL(ZH)  
PLZ(HZ)  
S1 or S2  
t
TPPLD1  
DS+,CKS0+  
S1 or S2  
CKS0  
HIGHZ  
DS+,CKS0-  
Note: CKREF must be active and PLL must be stable  
Figure 13. PLL PowerꢀDown Time  
Figure 14. Serializer Enable and Disable Time  
t
t
PLZ(HZ)  
PZL(ZH)  
S1 or S2  
DP  
Note: If S1(2) transitioning then S2(1) must = 0 for test to be valid  
Figure 15. Deserializer Enable and Disable Times  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
15  
Tape and Reel Specification  
MLP Embossed Tape Dimension  
Dimensions are in millimeters.  
D
P
0
P
2
T
E
F
K
0
W
W
c
B
0
Tc  
A
0
D
1
P
1
User Direction of Feed  
A0  
B0  
D
D1  
E
F
K0  
P1  
P0  
P2  
T
TC  
W
WC  
Package ±0.1 ±0.1 ±0.05 Min. ±0.1 ±0.1 ±0.1 Typ. Typ. ±0/05 Typ. ±0.005 ±0.3 Typ.  
5 x 5  
6 x 6  
5.35 5.35 1.55 1.50 1.75 5.50 1.40 8.00 4.00 2.00 0.30  
6.30 6.30 1.55 1.50 1.75 5.50 1.40 8.00 4.00 2.00 0.30  
0.07 12.00 9.30  
0.07 12.00 9.30  
Notes  
:
Ao, Bo, and Ko dimensions are determined with respect to the EIA/JEDEC RSꢀ481 rotational and lateral movement  
requirements (see sketches A, B, and C).  
Shipping Reel Dimension  
Dimensions are in millimeters.  
1.0mm  
maximum  
10° maximum  
Typical component  
cavity center line  
1.0mm  
maximum  
B0  
Typical component  
center line  
10°maximum component rotation  
Sketch A (Side or Front Sectional View)  
Sketch C (Top View)  
A0  
Sketch B (Top View)  
Component Rotation  
Component lateral movement  
Component Rotation  
W1 Measured at Hub  
W2 max Measured at Hub  
B Min  
Dia C  
Dia D  
min  
Dia A  
max  
Dia N  
DETAIL AA  
See detail AA  
W3  
Tape  
Width  
Dia A  
Max.  
Dim B  
Min.  
Dia C  
+0.5/–0.2  
Dia D  
Min.  
Dim N  
Min.  
Dim W1  
+2.0/–0  
Dim W2  
Max.  
Dim W3  
(LSL–USL)  
8
330.0  
330.0  
330.0  
1.5  
1.5  
1.5  
13.0  
13.0  
13.0  
20.2  
20.2  
20.2  
178.0  
178.0  
178.0  
8.4  
14.4  
18.4  
22.4  
7.9 ~ 10.4  
11.9 ~ 15.4  
15.9 ~ 19.4  
12  
16  
12.4  
16.4  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
16  
Physical Dimensions  
0.15  
C
6.00  
B
A
(0.80)  
6.00  
PIN #1 IDENT  
6.38MIN  
4.37MAX  
0.15  
C
4.77MIN  
0.80 MAX  
0.10  
C
(0.20)  
C
0.20MIN  
X4  
0.08  
C
0.05  
0.00  
0.28 MAX  
X40  
0.50TYP  
SEATING  
PLANE  
E
4.20  
4.00  
0.50  
0.30  
0.50  
4.20  
4.00  
(DATUM B)  
PIN #1 ID  
(DATUM A)  
0.18ꢀ0.30  
0.10  
0.05  
C
C
A B  
0.50  
NOTES:  
A. CONFORMS TO JEDEC REGISTRATION MOꢀ220, VARIATION  
WJJDꢀ2 WITH EXCEPTION THAT THIS IS A SAWN VERSION..  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5Mꢀ1994.  
D. LAND PATTERN PER IPC SMꢀ782.  
E. WIDTH REDUCED TO AVOID SOLDER BRIDGING.  
F. DIMENSIONS ARE NOT INCLUSIVE OF BURRS, MOLD FLASH, OR  
TIE BAR PROTRUSIONS.  
G. DRAWING FILENAME: MKTꢀMLP40Arev3.  
Figure 16. 40ꢀTerminal, Molded Leadless Package (MLP), Quad, JEDEC MO0220, 6mm Square  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
17  
Physical Dimensions (Continued)  
2X  
0.10  
C
3.50  
2X  
(0.35)  
(0.5)  
0.10  
C
(0.6)  
2.5  
(0.75)  
TERMINAL  
A1 CORNER  
INDEX AREA  
4.50  
3.0  
0.5  
0.5  
Ø0.3±0.05  
X42  
BOTTOM VIEW  
0.15  
C
C
A B  
0.05  
0.89±0.082  
0.45±0.05  
(QA CONTROL VALUE)  
1.00 MAX  
0.21±0.04  
0.10  
C
0.08  
C
+0.1  
0.2  
C
0.23±0.05  
ꢀ0.0  
SEATING PLANE  
LAND PATTERN  
RECOMMENDATION  
Figure 17. 42ꢀBall, Ultra Small Scale Ball Grid Array (USSꢀBGA), JEDEC MOꢀ195, 3.5mm Wide  
Note: Click here for tape and reel specifications, available at:  
http://www.fairchildsemi.com/products/analog/packaging/bga42.html.  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
18  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.6  
www.fairchildsemi.com  
19  

相关型号:

FIN224C

24-Bit Low-Power Serializer/Deserializer
FAIRCHILD

FIN224CMLX

24-Bit Low-Power Serializer/Deserializer
FAIRCHILD

FIN24A

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24AC

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24ACGFX

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24ACMLX

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24AC_07

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24AGFX

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24AMLX

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24C

uSerDes Low Voltage 24-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24CGFX

uSerDes Low Voltage 24-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24CMLX

uSerDes Low Voltage 24-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD