FR9855 [FITIPOWER]

18V, 5.5A Synchronous Step-Downn DC/DC Converter;
FR9855
型号: FR9855
厂家: Fitipower    Fitipower
描述:

18V, 5.5A Synchronous Step-Downn DC/DC Converter

文件: 总16页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FR9855  
18V, 5.5A Synchronous Step-Down  
DC/DC Converter  
Description  
Features  
The FR9855 is a synchronous step-down DC/DC  
converter with fast constant on time (FCOT) mode  
control. The device provides 4.5V to 18V input  
voltage range and 5.5A continuous load current  
capability. Operation frequency depends on Input  
and output voltage condition. At light load condition,  
the FR9855 can operate at power saving mode to  
support high efficiency and reduce power loss.  
Low RDS(ON) Integrated Power MOSFET  
(70/38)  
Wide Input Voltage Range: 4.5V to 18V  
Output Voltage Range: 0.765V to 8V  
5.5A Output Current  
FCOT Mode Enables Fast Transient Response  
Pseudo 630kHz Frequency  
Power Good Function (for SOP8-EP Only)  
Input Under Voltage Lockout  
The FR9855 fault protection includes cycle-by-cycle  
current limit, short circuit protection, UVLO and  
thermal shutdown. The soft-start function prevents  
inrush current at turn-on. The FR9855 use fast  
constant on time control that provides fast transient  
response, the noise immunity and all kinds of very  
low ESR output capacitor for ensuring performance  
stabilization.  
Adjustable Soft Start Function  
Cycle-by-Cycle Current Limit  
Hiccup Short Circuit Protection  
Over Temperature Protection with Auto Recovery  
SOP-8 Exposed Pad and TDFN-10(3mmx3mm)  
Packages  
Applications  
STB (Set-Top-Box)  
LCD Display, TV  
Distributed Power System  
Networking, XDSL Modem  
The FR9855 is offered in SOP-8 (Exposed Pad) and  
TDFN-10 (3mm x 3mm) packages, which provides  
good thermal conductance.  
Pin Assignments  
SP Package (SOP-8 Exposed Pad)  
Ordering Information  
FR9855  
Package Type  
SP: SOP-8 (Exposed Pad)  
DA: TDFN-10(3mm x 3mm)  
1
2
3
4
8
7
SHDN  
FB  
VIN  
BST  
LX  
9
GND  
PG  
6
5
GND  
SS  
DA Package (TDFN-10)(3mm x 3mm)  
VIN  
VIN  
BST  
LX  
1
2
3
4
5
10  
9
SHDN  
FB  
11  
GND  
REG  
SS  
8
7
GND  
6
LX  
Figure 1. Pin Assignments of FR9855  
FR9855-Preliminary 0.3-JAN-2016  
1
FR9855  
Typical Application Circuit  
C5  
0.1μF  
Power Good  
SHDN: >3.5V, Power Saving Mode  
VOUT  
SHDN: 1.5V~2.5V, PWM  
R5  
100kΩ  
SHDN: 0V, Shutdown  
L1  
1.5μH  
PG  
VIN  
BST  
VIN  
LX  
VOUT  
1.2V  
4.5V to 18V  
R3  
100kΩ  
C6  
(optional)  
C7  
R1  
12k1%  
FR9855  
22μF/6.3V  
CERAMIC x 2  
FB  
SHDN  
C1  
C2  
C3  
10μF/25V  
CERAMIC  
10μF/25V  
CERAMIC  
0.1μF/50V  
CERAMIC  
R4  
NC  
GND  
SS  
R2  
21k1%  
C4  
100nF  
Figure 2. Application Circuit for SOP-8 Exposed Pad Package  
VIN=12V, the recommended BOM list is as below.  
VOUT  
1.05  
1.2  
1.8  
3.3  
5
C1  
R1  
R2  
C2  
C6  
L1  
C7  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
7.87kΩ  
12kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
5pF~33pF  
5pF~33pF  
5pF~33pF  
5pF~33pF  
5pF~33pF  
1.5μH  
1.5μH  
1.5μH  
2.2μH  
3.3μH  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
28kΩ  
69.8kΩ  
118kΩ  
Table 1. Recommended Component Values  
FR9855-Preliminary 0.3-JAN-2016  
2
FR9855  
Typical Application Circuit (Continued)  
C6  
0.1μF  
VREG  
SHDN: >3.5V, Power Saving Mode  
SHDN: 1.5V~2.5V, PWM  
SHDN: 0V, Shutdown  
C4  
1uF  
L1  
1.5μH  
REG  
VIN  
BST  
VIN  
LX  
VOUT  
1.2V  
4.5V to 18V  
R3  
100kΩ  
C7  
(optional)  
C8  
22μF/6.3V  
R1  
12k1%  
FR9855  
CERAMIC x 2  
FB  
SHDN  
C1  
C2  
C3  
0.1μF/50V  
CERAMIC  
10μF/25V  
CERAMIC  
10μF/25V  
CERAMIC  
R4  
NC  
GND  
SS  
R2  
21k1%  
C5  
100nF  
Figure 3. Application Circuit for TDFN-10 Package  
VIN=12V, the recommended BOM list is as below.  
VOUT  
1.05  
1.2  
1.8  
3.3  
5
C1  
R1  
R2  
C2  
C7  
L1  
C8  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
7.87kΩ  
12kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
10μF MLCC  
5pF~33pF  
5pF~33pF  
5pF~33pF  
5pF~33pF  
5pF~33pF  
1.5μH  
1.5μH  
1.5μH  
2.2μH  
3.3μH  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
28kΩ  
69.8kΩ  
118kΩ  
Table 2. Recommended Component Values  
FR9855-Preliminary 0.3-JAN-2016  
3
FR9855  
Functional Pin Description  
Pin  
Name  
Pin No.  
(SOP-8EP) (TDFN3x3-10)  
Pin No.  
Pin Function  
This pin includes enable the converter on/off, and select operation mode (The mode setting,  
please refer to the following page 11). Connect VIN with a 100kΩ resistor for self-startup and  
operate in power saving mode.  
1
1
 ꢀꢁꢂ  
Voltage feedback input pin. Connect FB and VOUT with a resistive voltage divider. This IC  
senses feedback voltage via FB and regulates it at 0.765V.  
FB  
PG  
2
3
4
5
6
7
8
9
x
2
x
Open drain power good output.  
Soft-start pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to  
set the soft-start period.  
SS  
4
GND  
LX  
5
Ground pin.  
6,7  
8
Power switching node. Connect an external inductor to this switching node.  
High side gate drive boost pin. A capacitor rating between 10nF~100nF must be connected  
from this pin to LX. It can boost the gate drive to fully turn on the internal high side NMOS.  
BST  
VIN  
Power supply input pin. Placed input capacitors as close as possible from VIN to GND to  
avoid noise influence.  
9,10  
11  
3
Exposed  
Pad  
Ground pin. The exposed pad must be soldered to a large PCB area and connected to GND  
for maximum power dissipation.  
Internal regulator output. Connect a 1uF capacitor to GND to stabilize the internal regulator  
voltage.  
REG  
Block Diagram  
VIN  
UVLO  
&
POR  
OTP  
VCC  
SHDN  
Internal  
Regulator  
VCC  
0.5M  
Off Time  
Generator  
BST  
REG  
(TDFN-10 only)  
High-Side  
MOSFET  
6µA  
FB  
On Time  
Generator  
SS  
Driver  
Logic  
Logic  
Control  
LX  
OTP  
Vref  
UVLO  
Low-Side  
MOSFET  
PG  
FB  
Cycle by Cycle  
Current Limit  
(SOP-8 EP only)  
0.9 x Vref.  
Comparator  
LX  
OCP  
GND  
Figure 4. Block Diagram of FR9855  
FR9855-Preliminary 0.3-JAN-2016  
4
FR9855  
(Note 1)  
Absolute Maximum Ratings  
Supply Voltage VIN ------------------------------------------------------------------------------------------- -0.3V to +20V  
Enable Voltage ꢁHꢂN -------------------------------------------------------------------------------------  
-0.3V to +20V  
LX Voltage VLX ------------------------------------------------------------------------------------------------ -0.3 to VIN+0.3V  
Dynamic LX Voltage in 15ns Duration-------------------------------------------------------------------  
-5V to VIN+5V  
BST Pin Voltage VBST --------------------------------------------------------------------------------------- -0.3V to VLX+6.5V  
All Other Pins Voltage -------------------------------------------------------------------------------------- -0.3V to +6V  
Maximum Junction Temperature (TJ) ------------------------------------------------------------------- +150°C  
Storage Temperature (TS) --------------------------------------------------------------------------------- -65°C to +150°C  
+260°C  
Lead Temperature (Soldering, 10sec.) -----------------------------------------------------------------  
● Package Thermal Resistance, (θJA) (Note 2)  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- +60°C/W  
TDFN-10 (3mmx3mm) ------------------------------------------------------------------------- +65°C/W  
● Package Thermal Resistance, (θJC) (Note 2)  
SOP-8(Exposed Pad) --------------------------------------------------------------------------- +15°C/W  
TDFN-10(3mmx3mm) -------------------------------------------------------------------------- +30°C/W  
Note 1Stresses beyond this listed under “Absolute Maximum Ratings" may cause permanent damage to the device.  
Note 2θJA is measured at 25°C ambient with the component mounted on a high effective thermal conductivity 4-layer  
board of JEDEC-51-7. θJC is measured at the exposed pad. The thermal resistance greatly varies with layout, copper  
thickness, number of layers and PCB size.  
Recommended Operating Conditions  
Supply Voltage VIN ------------------------------------------------------------------------------------------ +4.5V to +18V  
Operation Temperature Range --------------------------------------------------------------------------- -40°C to +85°C  
FR9855-Preliminary 0.3-JAN-2016  
5
FR9855  
Electrical Characteristics  
(VIN=12V, TA=25°C, unless otherwise specified.)  
Parameter  
VIN Quiescent Current  
Symbol  
IDDQ  
ISD  
Conditions  
ꢁHꢂN=5V, VFB=1V  
ꢁHꢂN=0V  
Min  
Typ  
0.6  
1
Max  
1
Unit  
mA  
μA  
V
VIN Shutdown Supply Current  
Feedback Voltage  
10  
4.5VVIN18V  
VFB=1V  
VFB  
0.75  
0.765  
0.01  
70  
0.78  
0.1  
Feedback Input Current  
High-Side MOSFET RDS(ON)  
Low-Side MOSFET RDS(ON)  
Current Limit (Note 3)  
IFB  
μA  
mΩ  
mΩ  
A
RDS(ON)  
RDS(ON)  
ILIMIT  
38  
6.8  
155  
250  
4.3  
0.35  
6
On Time (Note 3)  
TON  
VIN=12V, VOUT=1.05V  
VFB=0.6V  
ns  
ns  
V
Minimum Off Time  
TOFF(MIN)  
Input Supply Voltage UVLO Threshold  
UVLO Threshold Hysteresis  
Soft Start Charge Current  
VUVLO(Vth) VIN Rising  
VUVLO(HYS)  
V
ISS  
VSS=0V  
μA  
ꢁHꢂN(Lꢃ  
0.5  
V
V
ꢁHꢂN Input Low Voltage  
ꢁHꢂN Input High Voltage  
REG Output Voltage  
ꢁHꢂN(Hꢃ  
1.5  
VREG  
IREG  
4.1  
10  
90  
85  
4
V
6VVIN18V, TDFN-10  
REG Output Current  
mA  
VREG=4.1V, TDFN-10  
VFB Rising, SOP8-EP  
VFB Falling, SOP8-EP  
VPG=0.5V, SOP8-EP  
Power Good Threshold (Note 3)  
VPG  
%
Power Good Sink Current  
IPG  
TSD  
mA  
°C  
Thermal Shutdown Threshold (Note 3)  
160  
30  
Thermal Shutdown Hysteresis (Note 3)  
THYS  
°C  
Note 3Not production tested.  
FR9855-Preliminary 0.3-JAN-2016  
6
FR9855  
Typical Performance Curves  
VIN=12V, VOUT=1.2V, C1=10μFx2, C7=22μFx2, L1=1.5μH, TA=+25°C, unless otherwise noted. This is measured by using  
FR9855SP.  
VOUT=1.05V  
VOUT=1.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5V  
VIN=5V  
VIN=12V  
VIN=18V  
VIN=12V  
VIN=18V  
0.01  
0.1  
Load Current (A)  
1
10  
0.01  
0.1  
Load Current (A)  
1
10  
Figure 5. Efficiency vs. Load Current  
Figure 6. Efficiency vs. Load Current  
VOUT=3.3V  
VOUT=5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=12V  
VIN=18V  
VIN=5V  
VIN=12V  
VIN=18V  
0.01  
0.1  
Load Current (A)  
1
10  
0.01  
0.1  
Load Current (A)  
1
10  
Figure 7. Efficiency vs. Load Current  
Figure 8. Efficiency vs. Load Current  
780  
775  
770  
765  
760  
755  
750  
780  
775  
770  
765  
760  
755  
750  
5
7
9
11  
13  
15  
17  
19  
-45 -35 -25 -15 -5  
5 15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
Input Voltage (V)  
Figure 9. Feedback Voltage vs. Ambient Temperature  
Figure 10. Feedback Voltage vs. Input Voltage  
FR9855-Preliminary 0.3-JAN-2016  
7
FR9855  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=1.2V, C1=10μFx2, C7=22μFx2, L1=1.5μH, TA=+25°C, unless otherwise noted. This is measured by using  
FR9855SP.  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
5
7
9
11  
13  
15  
17  
19  
-45 -35 -25 -15 -5  
5 15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
Input Voltage (V)  
Figure 11. Quiescent Current vs. Ambient Temperature  
Figure 12. Quiescent Current vs. Input Voltage  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
5
7
9
11  
13  
15  
17  
19  
-45 -35 -25 -15 -5  
5 15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
Input Voltage (V)  
Figure 13. Shutdown Current vs. Ambient Temperature  
VIN=12V, V ꢀꢁꢂ=2V VOUT=1V, L=1.5μH  
Figure 14. Shutdown Current vs. Input Voltage  
VIN=12V, V ꢀꢁꢂ=2V VOUT=5V, L=3.3μH  
700  
800  
750  
700  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
350  
300  
1
1.5  
2
2.5  
Load Current (A)  
Figure 16. Switch Frequency vs. Load Current  
3
3.5  
4
4.5  
5
5.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Load Current (A)  
Figure 15. Switch Frequency vs. Load Current  
FR9855-Preliminary 0.3-JAN-2016  
8
FR9855  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=1.2V, C1=10μFx2, C7=22μFx2, L1=1.5μH, TA=+25°C, unless otherwise noted. This is measured by using  
FR9855SP.  
IOUT=5.5A  
IOUT=0A  
VOUT 50mV/div.  
VOUT 50mV/div.  
VLX 5V/div.  
VLX 5V/div.  
IL 5A/div.  
IL  
0.5A/div.  
10ms/div.  
Figure 17. DC Ripple Waveform  
2μs/div.  
Figure 18. DC Ripple Waveform  
IOUT=5.5A  
IOUT=0A  
VIN 5V/div.  
VIN 5V/div.  
VOUT 0.5V/div.  
VOUT 0.5V/div.  
IL  
1A/div.  
IL  
2A/div.  
VLX 5V/div.  
VLX 5V/div.  
20ms/div.  
20ms/div.  
Figure 19. Startup Through Power Supply Waveform  
Figure 20. Startup Through Power Supply Waveform  
IOUT=0A  
IOUT=5.5A  
VIN 5V/div.  
VIN 5V/div.  
VOUT  
1V/div.  
VOUT 1V/div.  
IL 5A/div.  
IL 5A/div.  
VLX 5V/div.  
40ms/div.  
VLX 5V/div.  
40ms/div.  
Figure 22. Shutdown Through Power Supply Waveform  
Figure 21. Shutdown Through Power Supply Waveform  
FR9855-Preliminary 0.3-JAN-2016  
9
FR9855  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=1.2V, C1=10μFx2, C7=22μFx2, L1=1.5μH, TA=+25°C, unless otherwise noted. This is measured by using  
FR9855SP.  
IOUT=0A  
IOUT=5.5A  
5V/div.  
5V/div.  
1V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 1V/div.  
IL 1A/div.  
VOUT  
IL 5A/div.  
VLX 5V/div.  
VLX 5V/div.  
20ms/div.  
20ms/div.  
Figure 23. Startup Through ꢁHꢂN Waveform  
IOUT=0A  
Figure 24. Startup Through ꢁHꢂN Waveform  
IOUT=5.5A  
5V/div.  
5V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 1V/div.  
VOUT 1V/div.  
IL  
5A/div.  
IL  
5A/div.  
VLX 5V/div.  
VLX 5V/div.  
4ms/div.  
4ms/div.  
Figure 26. Shutdown Through ꢁHꢂN Waveform  
Figure 25. Shutdown Through ꢁHꢂN Waveform  
IOUT=0.1A~5.5A  
VOUT  
50mV/div.  
IL 2A/div.  
200μs /div.  
Figure 27. Load Transient Waveform  
FR9855-Preliminary 0.3-JAN-2016  
10  
FR9855  
Function Description  
The FR9855 is a synchronous step-down DC/DC  
converter with fast constant on time (FCOT) mode  
control. It has integrated high-side (70mΩ, typꢃ and  
low-side (38mΩ, typ) power switches, and provides  
5.5A continuous load current. It regulates input  
voltage from 4.5V to 18V, and down to an output  
voltage as low as 0.765V. Using FCOT control  
scheme provides fast transient response, which can  
minimize the component size without additional  
external compensation network.  
Input Under Voltage Lockout  
When the FR9855 is power on, the internal circuits  
are held inactive until VIN voltage exceeds the input  
UVLO threshold voltage. And the regulator will be  
disabled when VIN is below the input UVLO  
threshold voltage. The hysteretic of the UVLO  
comparator is 350mV (typ).  
Over Current Protection  
The FR9855 over current protection function is  
implemented using cycle-by-cycle current limit  
architecture. The inductor current is monitored by  
Low-side MOSFET. When the load current  
increases, the inductor current also increases.  
When the valley inductor current reaches the current  
limit threshold, the output voltage starts to drop.  
When the over current condition is removed, the  
output voltage returns to the regulated value.  
Enable/Mode  
The FR9855 ꢁHꢂN pin includes enable and mode  
function. Enable function provides digital control to  
turn on/off the converter. When the voltage of ꢁHꢂN  
exceeds the threshold voltage, the converter starts  
the soft start function. If the ꢁHꢂN pin voltage is  
below than the shutdown threshold voltage, the  
converter will turn into the shutdown mode and the  
shutdown current will be smaller than 1μA. The  
mode function can be selected in PWM or power  
saving mode. The mode setting can refer to  
following table.  
Short Circuit Protection  
The FR9855 provides short circuit protection  
function to prevent the device damage from short  
condition. When the short condition occurs and the  
feedback voltage drops lower than 0.33V, the  
oscillator frequency will be reduced naturally and  
hiccup mode will be triggered to prevent the inductor  
current increasing beyond the current limit. Once the  
short condition is removed, the frequency will return  
to normal.  
 ꢀꢁꢂ  
>3.5V  
Mode  
Power Saving Mode  
PWM  
1.5V~2.5V  
0V  
Shutdown  
For auto start-up operation, connect ꢁHꢂN to VIN  
through a 100kΩ resistor, and the converter can  
automatically enter power saving mode.  
Over Temperature Protection  
The FR9855 incorporates an over temperature  
protection circuit to protect itself from overheating.  
When the junction temperature exceeds the thermal  
shutdown threshold temperature, the regulator will  
be shutdown. And the hysteretic of the over  
temperature protection is 30°C (typ).  
Soft Start  
The FR9855 employs adjustable soft start function  
to reduce input inrush current during start up.  
When the device turns on, a 6μA current begins  
charging the capacitor which is connected from SS  
pin to GND. The equation for the soft start time is  
shown as below:  
Power Good Signal Output (PG)  
PG pin is an open-drain output and requires a pull  
up resistor. PG is actively held low in soft-start,  
standby and shutdown. It is released when the  
output voltage rises above 90% of nominal  
regulation point.  
Cꢁꢁ nF ꢅꢀFꢆ  
Tꢁꢁ ms ꢄ  
ꢁꢁ μA  
The VFB voltage is 0.765V and the ISS current is 6μA.  
If a 100nF capacitor is connected from SS pin to  
GND, the soft-start time will be 12.75ms.  
FR9855-Preliminary 0.3-JAN-2016  
11  
FR9855  
Application Information  
Output Voltage Setting  
A low ESR capacitor is required to keep the noise  
minimum. Ceramic capacitors are better, but  
tantalum or low ESR electrolytic capacitors may also  
suffice. When using tantalum or electrolytic  
capacitors, a 0.1μF ceramic capacitor should be  
placed as close to the IC as possible.  
The output voltage VOUT is set using a resistive  
divider from the output to FB. The FB pin regulated  
voltage is 0.765V. Thus the output voltage equation  
is:  
R1  
OꢈTꢄ0.ꢉ6ꢊꢀꢅ 1ꢋ  
Output Capacitor Selection  
R2  
The output capacitor is used to keep the DC output  
voltage and supply the load transient current.  
When operating in constant current mode, the  
output ripple is determined by four components:  
Table 3 lists recommended values of R1 and R2 for  
most used output voltage.  
Table 3 Recommended Resistance Values  
VOUT  
5V  
R1  
R2  
ꢀ ꢁ ꢀ ꢁ  
RꢇPPLꢍ t ꢄꢀRꢇPPLꢍ C t ꢋꢀRꢇPPLꢍ ꢍꢁR t  
ꢀ ꢁ  
118kΩ  
69.8kΩ  
28kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
21kΩ  
ꢀ ꢁ  
ꢋꢀRꢇPPLꢍ(ꢍꢁLꢃ t ꢋꢀNOꢇꢁꢍ  
ꢀ ꢁ  
t
3.3V  
1.8V  
1.2V  
1.05V  
The following figures show the form of the ripple  
contributions.  
12kΩ  
VRIPPLE(ESR)(t)  
7.87kΩ  
Place resistors R1 and R2 close to FB pin to prevent  
stray pickup.  
Input Capacitor Selection  
(t)  
+
The use of the input capacitor is filtering the input  
voltage ripple and the MOSFETS switching spike  
voltage. Because the input current to the step-down  
converter is discontinuous, the input capacitor is  
required to supply the current to the converter to  
keep the DC input voltage. The capacitor voltage  
rating should be 1.25 to 1.5 times greater than the  
maximum input voltage. The input capacitor ripple  
current RMS value is calculated as:  
VRIPPLE(ESL) (t)  
(t)  
(t)  
+
VRIPPLE(C) (t)  
CꢇN(RMꢁꢃꢄꢇOꢈTꢂꢅ 1ꢌꢂ  
OꢈT  
ꢂꢄ  
+
VNOISE (t)  
ꢇN  
Where D is the duty cycle of the power MOSFET.  
This function reaches the maximum value at D=0.5  
and the equivalent RMS current is equal to IOUT/2.  
=
The  
following  
diagram  
is  
the  
graphical  
VRIPPLE(t)  
representation of above equation.  
3
5.5A  
3A  
2.5  
2
1.5  
1
(t)  
1A  
0.5  
0
10 20 30 40 50 60 70 80 90  
D (%)  
FR9855-Preliminary 0.3-JAN-2016  
12  
FR9855  
Application Information (Continued)  
OꢈT  
That will lower ripple current and result in lower  
output ripple voltage. The ΔꢇL is inductor  
peak-to-peak ripple current:  
RꢇPPLꢍ(ꢍꢁRꢃ  
ꢅ ꢂ1OꢈTꢃ ꢅꢍꢁR  
FOꢁCL  
ꢇN  
ꢍꢁL  
RꢇPPLꢍ(ꢍꢁLꢃ  
ꢇN  
OꢈT  
ꢅ ꢂ1OꢈTꢃ  
ꢇN  
LꢋꢍꢁL  
OꢈT  
FOꢁC2LCOꢈT  
ꢏꢇLꢄ  
FOꢁCL  
ꢅ ꢂ1OꢈTꢃ  
ꢇN  
RꢇPPLꢍ(Cꢃ  
A good compromise value between size and  
efficiency is to set the peak-to-peak inductor ripple  
current ΔꢇL equal to 30% of the maximum load  
current. But setting the peak-to-peak inductor ripple  
current ΔꢇL between 20%~50% of the maximum load  
current is also acceptable. Then the inductance can  
be calculated with the following equation:  
Where FOSC is the switching frequency, L is the  
inductance value, VIN is the input voltage, ESR is the  
equivalent series resistance value of the output  
capacitor, ESL is the equivalent series inductance  
value of the output capacitor and the COUT is the  
output capacitor.  
ꢏꢇLꢄ0.3ꢅꢇOꢈT(MAꢐꢃ  
Low ESR capacitors are preferred to use.  
Ceramic, tantalum or low ESR electrolytic capacitors  
can be used depending on the output ripple  
requirement. When using the ceramic capacitors,  
the ESL component is usually negligible.  
ꢇNOꢈT OꢈT  
Lꢄ  
ꢇNFOꢁCꢏꢇL  
External Diode Selection  
For 5V input applications, it is recommended to add  
an external boost diode. This helps improving the  
efficiency. The boost diode can be a low cost one  
such as 1N4148.  
It is important to use the proper method to eliminate  
high frequency noise when measuring the output  
ripple. The figure shows how to locate the probe  
across the capacitor when measuring output ripple.  
Removing the scope probe plastic jacket in order to  
expose the ground at the tip of the probe. It gives a  
very short connection from the probe ground to the  
capacitor and eliminating noise.  
D1  
1N4148  
VIN  
VIN  
5V  
BST  
LX  
FR9855  
C3  
Probe Ground  
REG Capacitor Selection  
Connect a 1uF ceramic capacitor between the REG  
and GND, This helps stabilize the internal regulator  
voltage.  
VOUT  
GND  
Ceramic Capacitor  
Inductor Selection  
The output inductor is used for storing energy and  
filtering output ripple current. But the trade-off  
condition often happens between maximum energy  
storage and the physical size of the inductor. The  
first consideration for selecting the output inductor is  
to make sure that the inductance is large enough to  
keep the converter in the continuous current mode.  
FR9855-Preliminary 0.3-JAN-2016  
13  
FR9855  
Application Information (Continued)  
PCB Layout Recommendation  
L1  
VIN  
LX  
VOUT  
The device’s performance and stability is  
dramatically affected by PCB layout. It is  
recommended to follow these general guidelines  
shown as below:  
C5  
6
5
8
1
7
C3  
C7  
C1 C2  
GND  
Exposed  
Pad  
1. Place the input capacitors and output capacitors  
as close to the device as possible. Trace to these  
capacitors should be as short and wide as  
possible to minimize parasitic inductance and  
resistance.  
GND  
4
2
3
C4  
R5  
R3  
R2  
2. Place feedback resistors close to the FB pin.  
R1  
C6  
3. Keep the sensitive signal (FB) away from the  
switching signal (LX).  
Figure 28. Recommended PCB Layout Diagram for  
SP Package  
4. The exposed pad of the package should be  
soldered to an equivalent area of metal on the  
PCB. This area should connect to the GND  
plane and have multiple via connections to the  
back of the PCB as well as connections to  
intermediate PCB layers. The GND plane area  
connecting to the exposed pad should be  
maximized to improve thermal performance.  
L1  
VIN  
LX  
VOUT  
C3  
C2  
C1  
C8  
9
7
6
5
10  
1
8
Exposed  
Pad  
GND  
GND  
5. Multi-layer PCB design is recommended.  
2
3
4
C5  
C4  
R3  
R2  
R1  
C7  
Figure 29. Recommended PCB Layout Diagram for  
DA Package  
FR9855-Preliminary 0.3-JAN-2016  
14  
FR9855  
Outline Information  
SOP-8 (Exposed Pad) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.25  
0.00  
1.25  
0.31  
4.80  
3.04  
3.80  
2.15  
1.20  
5.80  
0.40  
MAX  
1.70  
0.15  
1.55  
0.51  
5.00  
3.50  
4.00  
2.41  
1.34  
6.20  
1.27  
A
A1  
A2  
B
D
D1  
E
E1  
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier Dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9855-Preliminary 0.3-JAN-2016  
15  
FR9855  
Outline Information (Continued)  
TDFN-10 3mm x 3mm (pitch 0.5 mm) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
0.70  
0.00  
0.18  
2.95  
2.95  
0.30  
0.18  
0.45  
2.20  
1.40  
MAX  
0.80  
0.05  
0.25  
3.05  
3.05  
0.50  
0.30  
0.55  
2.70  
1.75  
A
A1  
A2  
D
E
a
b
e
D1  
E1  
NoteFollowed From JEDEC MO-229F.  
Carrier Dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9855-Preliminary 0.3-JAN-2016  
16  

相关型号:

FR9855DA

18V, 5.5A Synchronous Step-Downn DC/DC Converter
FITIPOWER

FR9855SP

18V, 5.5A Synchronous Step-Downn DC/DC Converter
FITIPOWER

FR9886C

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886CSOCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886CSPCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886D

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSOCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSPCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888C

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSECTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSPCTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FRA

Circular Commercial Aircraft Military Aircraft
ITT