MC68HC08AS32VFU [FREESCALE]

Microcontrollers;
MC68HC08AS32VFU
型号: MC68HC08AS32VFU
厂家: Freescale    Freescale
描述:

Microcontrollers

微控制器
文件: 总280页 (文件大小:3458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC08AS32  
Data Sheet  
M68HC08  
Microcontrollers  
Rev. 4.1  
MC68HC08AS32/D  
July 13, 2005  
freescale.com  
MC68HC08AS32  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the  
World Wide Web will be the most current. Your printed copy may be an earlier  
revision. To verify you have the latest information available, refer to:  
http://freescale.com  
The following revision history table summarizes changes contained in this  
document. For your convenience, the page number designators have been linked  
to the appropriate location.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
3
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Formatted to current publication standards  
Throughout  
Figure 2-2. Control, Status, and Data Register — Updated figure to include  
reset values, page references, and corrected reset states for DDRA  
29  
Figure 3-3. ADC Status and Control Register (ADSCR) — Expanded  
definition of COCO bit for clarity.  
50  
91  
Figure 5-2. CGM I/O Register Summary — Updated figure to include reset  
values and page references  
Figure 13-3. SIM I/O Register Summary — Updated figure to include reset  
values and page references  
185  
252  
129  
139  
Figure 16-2. Break I/O Register Summary — Updated figure to include reset  
values and page references  
Figure 8-3. IRQ I/O Register Summary — Updated figure to include reset  
values and page references  
Figure 11-1. I/O Port Register Summary —Updated figure to include reset  
values, page references, and corrected reset states for DDRA  
Figure 11-3. Data Direction Register A (DDRA) — Corrected reset states  
Figure 11-17. Port F Data Register (PTF) — Corrected figure title  
141  
152  
July, 2003  
4
Section 15. Timer Interface (TIM) — Timer discrepancies corrected throughout  
this section.  
227  
Figure 12-2. SCI I/O Register Summary — Updated figure to include reset  
values and page references  
157  
161  
205  
12.3.6 Idle Characters — Added note for clarity  
Figure 14-3. SPI I/O Register Summary — Updated figure to include reset  
values and page references  
Figure 4-3. BDLC I/O Register Summary — Updated figure to include reset  
values and page references  
57  
17.2 Functional Operating Range — Corrected operating temperature range  
value  
264  
17.4 5.0-Volt DC Electrical Characteristics — Added maximum rating for VDD  
+ VDDA/VDDREF supply current in stop mode at –40°C to 125°C  
265  
18.4 64-Pin Quad Flat Pack (Case 840B) — Corrected diagram for case 840B  
277  
July 2005  
4.1  
Updated to meet Freescale identity guidelines  
Throughout  
Data Sheet  
4
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Section 3. Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . .45  
Section 4. Byte Data Link Controller-Digital (BDLC-D) . . . . . . . . . . . .55  
Section 5. Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . .89  
Section 6. Computer Operating Properly (COP) . . . . . . . . . . . . . . . .109  
Section 7. Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . .113  
Section 8. External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Section 9. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Section 10. Mask Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Section 11. Input/Output (I/O) Ports . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Section 12. Serial Communications Interface (SCI). . . . . . . . . . . . . .155  
Section 13. System Integration Module (SIM) . . . . . . . . . . . . . . . . . .183  
Section 14. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . .201  
Section 15. Timer Interface (TIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Section 16. Development Support. . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
Section 17. Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .263  
Section 18. Ordering Information  
and Mechanical Specifications . . . . . . . . . . . . . . . . . . .275  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
5
Data Sheet  
6
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.4  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Analog Power Supply Pin (VDDA/VDDAREF) . . . . . . . . . . . . . . . . . . . 23  
ADC High Reference Pin (VREFH) . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Analog Ground Pin (VSSA/VREFL). . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . 23  
Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . . . . . . . 23  
Port B I/O Pins (PTB7/ATD7–PTB0/ATD0) . . . . . . . . . . . . . . . . . . . 23  
Port C I/O Pins (PTC4–PTC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Port D I/O Pins (PTD6/ATD14/TCLKA–PTD0/ATD8). . . . . . . . . . . . 24  
Port E I/O Pins (PTE7/SPSCK–PTE0/TxD) . . . . . . . . . . . . . . . . . . . 24  
Port F I/O Pins (PTF3/TCH5–PTF0/TCH2) . . . . . . . . . . . . . . . . . . . 24  
J1850 Transmit Pin Digital (BDTxD). . . . . . . . . . . . . . . . . . . . . . . . . 24  
J1850 Receive Pin Digital (BDRxD) . . . . . . . . . . . . . . . . . . . . . . . . . 24  
1.4.1  
1.4.2  
1.4.3  
1.4.4  
1.4.5  
1.4.6  
1.4.7  
1.4.8  
1.4.9  
1.4.10  
1.4.11  
1.4.12  
1.4.13  
1.4.14  
1.4.15  
1.4.16  
Section 2. Memory  
2.1  
2.2  
2.3  
2.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Read-Only Memory (ROM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.5  
2.5.1  
Electrically Erasable Programmable ROM (EEPROM) . . . . . . . . . . . . . 36  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
EEPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
EEPROM Erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
EEPROM Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EEPROM Redundant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
EEPROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
EEPROM Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
2.5.1.1  
2.5.1.2  
2.5.1.3  
2.5.1.4  
2.5.1.5  
2.5.1.6  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
7
2.5.1.7  
EEPROM Non-Volatile Register  
and EEPROM Array Configuration Register . . . . . . . . . . . . . . 42  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.5.2  
2.5.2.1  
2.5.2.2  
Section 3. Analog-to-Digital Converter (ADC)  
3.1  
3.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC Port I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Conversion Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Continuous Conversion Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.6  
3.6.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
ADC Analog Power Pin (VDDA/VDDAREF)/ADC  
Voltage Reference Pin (VREFH) . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
ADC Analog Ground Pin (VSSA)/ADC Voltage  
3.6.2  
Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.6.3  
3.7  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC Input Clock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.7.1  
3.7.2  
3.7.3  
Section 4. Byte Data Link Controller-Digital (BDLC-D)  
4.1  
4.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.3  
4.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
BDLC Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Power Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Reset Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
BDLC Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
BDLC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Digital Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Analog Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.3.1.1  
4.3.1.2  
4.3.1.3  
4.3.1.4  
4.3.1.5  
4.3.1.6  
4.3.1.7  
Data Sheet  
8
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
4.4  
BDLC MUX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Rx Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
J1850 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
J1850 VPW Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
J1850 VPW Valid/Invalid Bits and Symbols . . . . . . . . . . . . . . . . . . . 67  
Message Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4.4.1  
4.4.1.1  
4.4.1.2  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.5  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
4.5.5  
4.5.5.1  
4.5.5.2  
4.5.5.3  
4.5.5.4  
4.5.5.5  
BDLC Protocol Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Rx and Tx Shift Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Rx and Tx Shadow Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Digital Loopback Multiplexer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
4X Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Receiving a Message in Block Mode . . . . . . . . . . . . . . . . . . . . . . 74  
Transmitting a Message in Block Mode . . . . . . . . . . . . . . . . . . . . 74  
J1850 Bus Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.6  
BDLC CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
BDLC Analog and Roundtrip Delay Register . . . . . . . . . . . . . . . . . . 77  
BDLC Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
BDLC Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
BDLC State Vector Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
BDLC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
4.7  
4.7.1  
4.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Section 5. Clock Generator Module (CGM)  
5.1  
5.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.3  
5.3.1  
5.3.2  
5.3.2.1  
5.3.2.2  
5.3.2.3  
5.3.2.4  
5.3.2.5  
5.3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Phase-Locked Loop Circuit (PLL). . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Automatic and Manual PLL Bandwidth Modes . . . . . . . . . . . . . . . 93  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
5.3.4  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
9
5.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . 97  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . 98  
Analog Power Pin (VDDA/VDDAREF) . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . . 98  
Crystal Output Frequency Signal (CGMXCLK). . . . . . . . . . . . . . . . . 98  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . . . . . . . . 98  
CGM CPU Interrupt (CGMINT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.5  
CGM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
PLL Bandwidth Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
PLL Programming Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
5.5.1  
5.5.2  
5.5.3  
5.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
5.7  
5.7.1  
5.7.2  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.8  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . 105  
Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.9.1  
5.9.2  
5.9.3  
5.9.4  
Section 6. Computer Operating Properly (COP)  
6.1  
6.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Internal Reset Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
COPS (COP Short Timeout). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.4  
6.5  
6.6  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.8  
COP Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Data Sheet  
10  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Section 7. Central Processor Unit (CPU)  
7.1  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Section 8. External Interrupt (IRQ)  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Section 9. Low-Voltage Inhibit (LVI)  
9.1  
9.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Polled LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
False Reset Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.5  
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
9.6  
9.6.1  
9.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
11  
Section 10. Mask Options  
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
10.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
10.3 Mask Option Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Section 11. Input/Output (I/O) Ports  
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
11.2 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
11.2.1  
11.2.2  
Port A Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
11.3 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
11.3.1  
11.3.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
11.4 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.4.1  
11.4.2  
Port C Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
11.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
11.5.1  
11.5.2  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
11.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
11.6.1  
11.6.2  
Port E Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
11.7 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
11.7.1  
11.7.2  
Port F Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Section 12. Serial Communications Interface (SCI)  
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
12.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
12.3.5  
12.3.6  
12.3.7  
12.3.8  
12.3.9  
12.3.10  
12.3.11  
12.3.12  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Data Sheet  
12  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.3.13  
12.3.14  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
12.4 Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
12.4.1 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.5.1  
12.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.6 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
12.7.1  
12.7.2  
PTE0/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
12.8.1  
12.8.2  
12.8.3  
12.8.4  
12.8.5  
12.8.6  
12.8.7  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
SCI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Section 13. System Integration Module (SIM)  
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
13.2 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . 186  
13.2.1  
13.2.2  
13.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . 186  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . . . . . . 187  
13.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
13.3.1  
13.3.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . 188  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . 189  
Illegal Opcode Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . 190  
13.3.2.1  
13.3.2.2  
13.3.2.3  
13.3.2.4  
13.3.2.5  
13.4 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
13.4.1  
13.4.2  
13.4.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . 191  
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . . . . . . 191  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
13.5 Program Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
13.5.1  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
13.5.1.1  
13.5.1.2  
13.5.2  
13.5.3  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
13  
13.5.4  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . 195  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
13.6.1  
13.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
13.7 SIM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
13.7.1  
13.7.2  
13.7.3  
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Section 14. Serial Peripheral Interface (SPI)  
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
14.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
14.3 Pin Name and Register Name Conventions. . . . . . . . . . . . . . . . . . . . . 203  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
14.4.1  
14.4.2  
Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
14.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Transmission Format When CPHA = 0. . . . . . . . . . . . . . . . . . . . . . 207  
Transmission Format When CPHA = 1. . . . . . . . . . . . . . . . . . . . . . 209  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
14.6 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
14.6.1  
14.6.2  
Overflow Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Mode Fault Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
14.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
14.8 Queuing Transmission Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
14.9 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
14.10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
14.10.1  
14.10.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
14.11 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
14.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
14.12.1  
14.12.2  
14.12.3  
14.12.4  
14.12.5  
MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
14.13 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
14.13.1  
14.13.2  
14.13.3  
SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
SPI Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Data Sheet  
14  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Section 15. Timer Interface (TIM)  
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
15.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
15.3.1  
15.3.2  
15.3.3  
15.3.3.1  
15.3.3.2  
15.3.4  
15.3.4.1  
15.3.4.2  
15.3.4.3  
TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Buffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . 235  
Buffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . . . 236  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
15.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
15.5.1  
15.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
15.6 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
15.7.1  
15.7.2  
TIM Clock Pin (PTD6/ATD14/TCLK) . . . . . . . . . . . . . . . . . . . . . . . 239  
TIM Channel I/O Pins (PTF3/TCH5–PTF0/TCH2  
and PTE3/TCH1–PTE2/TCH0) . . . . . . . . . . . . . . . . . . . . . . . . . 240  
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
15.8.1  
15.8.2  
15.8.3  
15.8.4  
15.8.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
TIM Counter Modulo Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . 243  
TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
Section 16. Development Support  
16.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
16.2 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
16.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . 252  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
Break Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . 253  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
16.2.1.1  
16.2.1.2  
16.2.1.3  
16.2.1.4  
16.2.2  
16.2.2.1  
16.2.2.2  
16.2.3  
16.2.3.1  
16.2.3.2  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
15  
16.3 Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
16.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
16.3.1.1  
16.3.1.2  
16.3.1.3  
16.3.1.4  
16.3.1.5  
16.3.1.6  
Section 17. Electrical Specifications  
17.1 Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
17.2 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
17.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
17.4 5.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 265  
17.5 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
17.6 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
17.7 5.0-Vdc ± 10% Serial Peripheral Interface (SPI) Timing. . . . . . . . . . . . 267  
17.8 CGM Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
17.9 CGM Component Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
17.10 CGM Acquisition/Lock Time Information . . . . . . . . . . . . . . . . . . . . . . . 271  
17.11 Timer Module Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
17.12 RAM Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
17.13 EEPROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
17.14 BDLC Transmitter VPW Symbol Timings. . . . . . . . . . . . . . . . . . . . . . . 272  
17.15 BDLC Receiver VPW Symbol Timings . . . . . . . . . . . . . . . . . . . . . . . . . 273  
17.16 BDLC Transmitter DC Electrical Characteristics . . . . . . . . . . . . . . . . . 274  
17.17 BDLC Receiver DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 274  
Section 18. Ordering Information  
and Mechanical Specifications  
18.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
18.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
18.3 52-Pin Plastic Leaded Chip Carrier Package (Case 778). . . . . . . . . . . 276  
18.4 64-Pin Quad Flat Pack (Case 840B) . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Data Sheet  
16  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 1. General Description  
1.1 Introduction  
The MC68HC08AS32 is a member of the low-cost, high-performance M68HC08  
Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the  
customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family  
use the enhanced M68HC08 central processor unit (CPU08) and are available with  
a variety of modules, memory sizes and types, and package types.  
1.2 Features  
Features include:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and M68HC05  
Families  
8.4-MHz internal bus frequency  
32,256 bytes of read-only memory (ROM)  
ROM data security  
512 bytes of on-chip electrically erasable programmable read-only memory  
(EEPROM)  
1024 bytes of on-chip random-access memory (RAM)  
Serial peripheral interface module (SPI)  
Serial communications interface module (SCI)  
16-bit, 6-channel timer interface module (TIM)  
Clock generator module (CGM)  
8-bit, 15-channel analog-to-digital converter module (ADC)  
SAE J1850 byte data link controller digital module (BDLC-D)  
System protection features:  
Computer operating properly (COP) with optional reset  
Low-voltage detection with optional reset  
Illegal opcode detection with optional reset  
Illegal address detection with optional reset  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
17  
Low-power design (fully static with stop and wait modes)  
Master reset pin and power-on reset  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC08AS32.  
Data Sheet  
18  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 1-1. MCU Block Diagram for 52-Pin PLCC and 64-Pin QFP  
1.4 Pin Assignments  
Figure 1-2 shows the 52-pin plastic leaded chip carrier (PLCC) assignments and  
Figure 1-3 shows the 64-pin quad flat pack (QFP) assignments.  
PTC4  
IRQ  
PTD3/ATD11  
8
46  
PTD2/ATD10  
PTD1/ATD9  
PTD0/ATD8  
PTB7/ATD7  
PTB6/ATD6  
9
45  
44  
43  
42  
41  
40  
39  
38  
37  
RST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PTF0/TCH2  
PTF1/TCH3  
PTF2/TCH4  
PTF3/TCH5  
BDRxD  
PTB5/ATD5  
PTB4/ATD4  
BDTxD  
PTB3/ATD3  
PTB2/ATD2  
PTB1/ATD1  
PTB0/ATD0  
PTA7  
PTE0/TxD  
PTE1/RxD  
PTE2/TCH0  
PTE3/TCH1  
36  
35  
34  
20  
Figure 1-2. 52-Pin PLCC Assignments (Top View)  
Data Sheet  
20  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
PTC4  
IRQ  
NC  
1
48  
PTD3/ATD11  
PTD2/ATD10  
NC  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
RST  
3
PTF0/TCH2  
PTF1/TCH3  
PTF2/TCH4  
PTF3/TCH5  
NC  
4
NC  
5
PTD1/ATD9  
6
PTD0/ATD8  
PTB7/ATD7  
7
8
BDRxD  
PTB6/ATD6  
PTB5/ATD5  
PTB4/ATD4  
PTB3/ATD3  
PTB2/ATD2  
PTB1/ATD1  
PTB0/ATD0  
PTA7  
9
BDTxD  
10  
11  
12  
13  
14  
15  
NC  
NC  
PTE0/TxD  
PTE1/RxD  
PTE2/TCH0  
PTE3/TCH1  
16  
33  
Figure 1-3. 64-Pin QFP Assignments (Top View)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
21  
1.4.1 Power Supply Pins (VDD and VSS  
)
VDD and VSS are the power supply and ground pins. The MCU operates from a  
single power supply.  
Fast signal transitions on MCU pins place high, short-duration current demands on  
the power supply. To prevent noise problems, take special care to provide power  
supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor  
as close to the MCU as possible. Use a high-frequency-response ceramic  
capacitor for C1. C2 is an optional bulk current bypass capacitor for use in  
applications that require the port pins to source high current levels.  
VSS is also the ground for the port output buffers and the ground return for the serial  
clock in the serial peripheral interface module (SPI). (See Section 14. Serial  
Peripheral Interface (SPI).)  
NOTE:  
VSS must be grounded for proper MCU operation.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
NOTE: Component values shown represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.4.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit.  
(See Section 5. Clock Generator Module (CGM).)  
1.4.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST is  
bidirectional, allowing a reset of the entire system. It is driven low when any internal  
reset source is asserted. (See Section 13. System Integration Module (SIM) for  
more information.)  
Data Sheet  
22  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
1.4.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. (See Section 8. External Interrupt  
(IRQ).)  
1.4.5 Analog Power Supply Pin (VDDA/VDDAREF  
)
VDDA/VDDAREF is the power supply pin for the analog portion of the chip. These  
modules are the analog-to-digital converter (ADC) and the clock generator module  
(CGM). (See Section 5. Clock Generator Module (CGM) and Section 3.  
Analog-to-Digital Converter (ADC).)  
1.4.6 ADC High Reference Pin (VREFH  
)
VREFH is the high reference voltage for all analog-to-digital conversions. (See  
Section 3. Analog-to-Digital Converter (ADC).)  
1.4.7 Analog Ground Pin (VSSA/VREFL  
)
The VSSA/VREFL analog ground pin is used only for the ground connections for the  
analog sections of the circuit and should be decoupled as per the VSS digital  
ground pin. The analog sections consist of a clock generator module (CGM) and  
an analog-to-digital converter (ADC). VSSA/VREFL is also the lower reference  
supply for the ADC. (See Section 5. Clock Generator Module (CGM) and  
Section 3. Analog-to-Digital Converter (ADC).)  
1.4.8 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. (See Section 5.  
Clock Generator Module (CGM).)  
1.4.9 Port A Input/Output (I/O) Pins (PTA7–PTA0)  
PTA7–PTA0 are general-purpose bidirectional I/O port pins. (See Section 11.  
Input/Output (I/O) Ports.)  
1.4.10 Port B I/O Pins (PTB7/ATD7–PTB0/ATD0)  
Port B is an 8-bit special function port that shares all eight pins with the  
analog-to-digital converter (ADC). (See Section 3. Analog-to-Digital Converter  
(ADC) and Section 11. Input/Output (I/O) Ports.)  
1.4.11 Port C I/O Pins (PTC4–PTC0)  
PTC4PTC3 and PTC1PTC0 are general-purpose bidirectional I/O port pins.  
PTC2/MCLK is a special function port that shares its pin with the system clock.  
(See Section 11. Input/Output (I/O) Ports.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
23  
1.4.12 Port D I/O Pins (PTD6/ATD14/TCLKA–PTD0/ATD8)  
Port D is a 7-bit special function port that shares all of its pins with the  
analog-to-digital converter module (ADC) and one of its pins with the timer  
interface module (TIM). (See Section 15. Timer Interface (TIM), Section 3.  
Analog-to-Digital Converter (ADC), and Section 11. Input/Output (I/O) Ports.)  
1.4.13 Port E I/O Pins (PTE7/SPSCK–PTE0/TxD)  
Port E is an 8-bit special function port that shares two of its pins with the timer  
interface module (TIM), four of its pins with the serial peripheral interface module  
(SPI), and two of its pins with the serial communication interface module (SCI).  
(See Section 12. Serial Communications Interface (SCI), Section 14. Serial  
Peripheral Interface (SPI), Section 15. Timer Interface (TIM), and Section 11.  
Input/Output (I/O) Ports.)  
1.4.14 Port F I/O Pins (PTF3/TCH5–PTF0/TCH2)  
Port F is a 4-bit special function port that shares all of its pins with the timer  
interface module (TIM). (See Section 15. Timer Interface (TIM) and Section 11.  
Input/Output (I/O) Ports.)  
1.4.15 J1850 Transmit Pin Digital (BDTxD)  
BDTxD is a serial digital output data physical interface to the J1850. (See  
Section 4. Byte Data Link Controller-Digital (BDLC-D).)  
1.4.16 J1850 Receive Pin Digital (BDRxD)  
BDRxD is a serial digital input data physical interface from the J1850. (See  
Section 4. Byte Data Link Controller-Digital (BDLC-D).  
Table 1-1. External Pins Summary  
Pin Name  
Function  
Driver Type  
Hysteresis  
Reset State  
PTA7–PTA0  
General-purpose I/O  
Dual state  
No  
Input, Hi-Z  
General-purpose I/O  
ADC channel  
PTB7/ATD7–PTB0/ATD0  
PTC4–PTC3  
Dual state  
Dual state  
Dual state  
Dual state  
No  
No  
No  
No  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
General-purpose I/O  
General-purpose I/O,  
bus clock output  
PTC2/MCLK  
PTC1–PTC0  
General-purpose I/O  
General-purpose I/O  
ADC channel/timer external  
input clock  
PTD6/ATD14/TCLK  
Dual state  
Dual state  
No  
No  
Input, Hi-Z  
Input, Hi-Z  
General-purpose I/O  
ADC channel  
PTD5/ATD13–PTD0/ATD8  
Data Sheet  
24  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 1-1. External Pins Summary (Continued)  
Pin Name  
Function  
Driver Type  
Hysteresis  
Reset State  
General-purpose I/O  
SPI clock  
Dual state  
Open drain  
PTE7/SPSCK  
Yes  
Input, Hi-Z  
General-purpose I/O  
SPI data path  
Dual state  
Open drain  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
Input, Hi-Z  
General-purpose I/O  
SPI data path  
Dual state  
Open drain  
General-purpose I/O  
SPI slave select  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
General-purpose I/O  
Timer channel 1  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
General-purpose I/O  
Timer channel 0  
General-purpose I/O  
SCI receive data  
General-purpose I/O  
SCI transmit data  
General-purpose I/O  
Timer channel 5  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
General-purpose I/O  
Timer channel 4  
General-purpose I/O  
Timer channel 3  
General-purpose I/O  
Timer channel 2  
VDD  
VSS  
Chip power supply  
Chip ground  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Analog power supply  
(CGM and ADC)  
VDDA/VDDAREF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Analog ground  
A/D reference voltage  
VSSA/VREFL  
VREFH  
A/D reference voltage  
External clock in  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
No  
N/A  
OSC1  
OSC2  
CGMXFC  
IRQ  
Input, Hi-Z  
Output  
External clock out  
PLL loop filter cap  
External interrupt request  
Reset  
N/A  
N/A  
N/A  
N/A  
Input, Hi-Z  
Output low  
Input, Hi-Z  
Output low  
RST  
N/A  
BDRxD  
BDTxD  
BDLC-D serial input  
BDLC-D serial output  
N/A  
Output  
No  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
25  
Table 1-2. Clock Source Summary  
Module  
ADC  
BDLC  
COP  
CPU  
EEPROM  
SPI  
Clock Source  
CGMXCLK or bus clock  
CGMXCLK  
CGMXCLK  
Bus clock  
Internal RC oscillator or bus clock  
Bus clock/SPSCK  
CGMXCLK  
SCI  
TIM  
Bus clock or PTD6/ATD14/TCLK  
CGMOUT and CGMXCLK  
Bus clock  
SIM  
IRQ  
BRK  
LVI  
Bus clock  
Bus clock  
CGM  
OSC1 and OSC2  
Data Sheet  
26  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 2. Memory  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in  
Figure 2-1, includes:  
32,256 bytes of user ROM  
1024 bytes of RAM  
512 bytes of EEPROM  
36 bytes of user-defined vectors  
224 bytes of monitor ROM  
These definitions apply to the memory map representation of reserved and  
unimplemented locations.  
Reserved — Accessing a reserved location can have unpredictable effects  
on MCU operation.  
Unimplemented — Accessing an unimplemented location causes an illegal  
address reset if illegal address resets are enabled  
2.2 Input/Output (I/O) Section  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status,  
and data registers. Additional I/O registers have these addresses:  
$FE00, SIM break status register, SBSR  
$FE01, SIM reset status register, SRSR  
$FE03, SIM break flag control register, SBFCR  
$FE0C and $FE0D, break address registers, BRKH and BRKL  
$FE0E, break status and control register, BRKSCR  
$FE0F, LVI status register, LVISR  
$FE1C, EEPROM non-volatile register, EENVR  
$FE1D, EEPROM control register, EECR  
$FE1F, EEPROM array configuration register, EEACR  
$FFFF, COP control register, COPCTL  
Table 2-1 is a list of vector locations.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
27  
.
$0000  
$003F  
I/O REGISTERS — 58 BYTES  
($000A, $000B, $000E, $000F, $001B, AND $0021 ARE RESERVED)  
$0040  
UNIMPLEMENTED  
16 BYTES  
$004F  
$0050  
RAM  
1024 BYTES  
$044F  
$0450  
RESERVED  
2 BYTES  
$0451  
$0452  
UNIMPLEMENTED  
942BYTES  
$07FF  
$0800  
EEPROM  
512 BYTES  
$09FF  
$0A00  
RESERVED  
2 BYTES  
$0A01  
$0A02  
UNIMPLEMENTED  
30,206 BYTES  
$7FFF  
$8000  
ROM  
32,256 BYTES  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
SIM BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
$FE04  
RESERVED  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK ADDRESS REGISTER HIGH (BRKH)  
BREAK ADDRESS REGISTER LOW (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVI STATUS REGISTER (LVISR)  
$FE10  
RESERVED  
12 BYTES  
$FE1B  
$FE1C  
$FE1D  
$FE1E  
$FE1F  
EEPROM NON-VOLATILE REGISTER (EENVR)  
EEPROM CONTROL REGISTER (EECR)  
RESERVED  
EEPROM ARRAY CONFIGURATION REGISTER (EEACR)  
$FE20  
MONITOR ROM  
224 BYTES  
$FEFF  
$FF00  
UNIMPLEMENTED  
220 BYTES  
$FFDB  
$FFDC  
INTERRUPT AND RESET VECTORS  
36 BYTES  
$FFFF  
Figure 2-1. Memory Map  
Data Sheet  
28  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 140.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
(PTB) Write:  
See page 142.  
Reset:  
Read:  
0
0
0
Port C Data Register  
(PTC) Write:  
R
R
R
See page 144.  
Reset:  
Read:  
0
Port D Data Register  
PTD6  
PTD5  
(PTD) Write:  
R
See page 146.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 141.  
Reset:  
Read:  
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB7  
0
DDRB6  
DDRB5  
(DDRB) Write:  
See page 143.  
Reset:  
Read:  
0
0
0
0
Data Direction Register C  
MCLKEN  
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
(DDRC) Write:  
R
0
R
0
See page 145.  
Reset:  
Read:  
0
0
Data Direction Register D  
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDR2  
0
DDRD1  
0
DDRD0  
0
(DDRD) Write:  
R
0
See page 147.  
Reset:  
Read:  
Port E Data Register  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 149.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Port F Data Register  
PTF3  
R
PTF2  
R
PTF1  
R
PTF0  
R
(PTF) Write:  
R
R
R
See page 151.  
Reset:  
Unaffected by reset  
$000A  
$000B  
Reserved  
R
R
R
R
R
Read:  
Data Direction Register E  
DDRE7  
DDRE6  
DDRE5  
0
DDRE4  
DDRE3  
0
DDRE2  
0
DDRE1  
0
DDRE0  
0
$000C  
(DDRE) Write:  
See page 150.  
Reset:  
0
0
0
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Register (Sheet 1 of 6)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
29  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
0
3
DDRF3  
0
2
DDRF2  
0
1
DDRF1  
0
Bit 0  
DDRF0  
0
Read:  
0
R
0
Data Direction Register F  
$000D  
(DDRF) Write:  
R
0
R
0
R
0
See page 153.  
Reset:  
$000E  
$000F  
Reserved  
R
R
R
R
R
R
R
R
Read:  
SPI Control Register  
$0010  
SPRIE  
0
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
(SPCR) Write:  
See page 221.  
Reset:  
1
OVRF  
R
0
MODF  
R
1
SPTE  
R
Read: SPRF  
SPI Status and Control Register  
See page 223.  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
(SPSCR) Write:  
R
0
Reset:  
Read:  
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 225.  
Reset:  
Read:  
Unaffected by reset  
SCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 170.  
Reset:  
Read:  
0
TCIE  
0
0
SCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 172.  
Reset:  
Read:  
0
R8  
R
0
0
SCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 174.  
Reset:  
U
U
TC  
R
0
SCRF  
R
0
IDLE  
R
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
Read: SCTE  
SCI Status Register 1  
See page 175.  
(SCS1) Write:  
R
1
Reset:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2) Write:  
R
R
R
R
R
R
See page 178.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
See page 179.  
Reset:  
Read:  
Unaffected by reset  
0
R
0
0
SCI Baud Rate Register  
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 179.  
R
Reset:  
0
0
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Register (Sheet 2 of 6)  
Data Sheet  
30  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
$001A  
$001B  
Register Name  
Bit 7  
6
0
5
0
4
0
3
IRQF  
R
2
1
Bit 0  
Read:  
0
R
0
0
ACK1  
0
IRQ Status and Control Register  
IMASK  
MODE1  
(ISCR) Write:  
R
0
R
0
R
0
See page 132.  
Reset:  
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
PLLF  
1
R
1
1
R
1
1
R
1
1
R
1
PLL Control Register  
PLLIE  
0
PLLON  
1
BCS  
0
$001C  
$001D  
$001E  
$001F  
(PCTL) Write:  
R
0
See page 99.  
Reset:  
Read:  
LOCK  
R
0
0
0
0
PLL Bandwidth Control Register  
AUTO  
ACQ  
XLD  
(PBWC) Write:  
R
R
R
R
See page 100.  
Reset:  
Read:  
PLL Programming Register  
MUL7  
0
MUL6  
0
MUL5  
0
MUL4  
VRS7  
VRS6  
VRS5  
VRS4  
(PPG) Write:  
See page 102.  
Reset:  
0
0
0
COPS  
R
0
STOP  
R
0
COPD  
R
Read: LVISTOP ROMSEC LVIRST  
LVIPWR  
SSREC  
Mask Option Register  
(MOR)  
Write:  
Reset:  
Read:  
R
0
R
1
R
1
R
R
0
0
1
1
0
TOF  
0
0
TRST  
0
0
Timer Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
Register (TSC) Write:  
R
0
See page 241.  
Reset:  
0
0
1
0
0
0
Reserved  
Read:  
R
R
R
R
R
R
R
R
Bit 15  
14  
R
0
13  
R
0
12  
R
0
11  
R
0
10  
R
0
9
R
0
Bit 8  
R
Timer Counter Register High  
$0022  
$0023  
$0024  
$0025  
$0026  
(TCNTH) Write:  
R
0
See page 242.  
Reset:  
Read:  
0
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Timer Counter Register Low  
(TCNTL) Write:  
See page 242.  
R
0
R
0
R
0
R
0
R
0
R
0
Reset:  
Read:  
0
0
Timer Modulo Register High  
Bit 15  
1
14  
13  
12  
11  
10  
9
Bit 8  
(TMODH) Write:  
See page 243.  
Reset:  
Read:  
1
1
1
1
1
1
1
Timer Modulo Register Low  
Bit 7  
1
6
1
5
4
1
3
2
1
1
Bit 0  
(TMODL) Write:  
See page 243.  
Reset:  
1
MS0B  
0
1
ELS0B  
0
1
ELS0A  
0
1
CH0MAX  
0
Read: CH0F  
Timer Channel 0 Status and  
CH0IE  
MS0A  
TOV0  
0
Control Register (TSC0) Write:  
0
0
See page 244.  
Reset:  
0
0
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Register (Sheet 3 of 6)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
31  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer Channel 0 Register High  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0027  
(TCH0H) Write:  
See page 248.  
Reset:  
Read:  
Indeterminate after reset  
Timer Channel 0 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
(TCH0L) Write:  
See page 248.  
Reset:  
Read: CH1F  
Indeterminate after reset  
0
R
0
Timer Channel 1 Status and  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Control Register (TSC1) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 1 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH1H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 1 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH1L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: CH2F  
Timer Channel 2 Status and  
CH2IE  
MS2B  
0
MS2A  
0
ELS2B  
ELS2A  
TOV2  
CH2MAX  
Control Register (TSC2) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 2 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH2H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 2 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH2L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: CH3F  
0
R
0
Timer Channel 3 Status and  
CH3IE  
MS3A  
0
ELS3B  
ELS3A  
TOV3  
CH3MAX  
Control Register (TSC3) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 3 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH3H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 3 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH3L Write:  
See page 248.)  
Reset:  
Indeterminate after reset  
Read: CH4F  
Timer Channel 4 Status and  
CH4IE  
MS4B  
0
MS4A  
0
ELS4B  
ELS4A  
TOV4  
CH4MAX  
Control Register (TSC4) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 4 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH4H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
U = Unaffected  
R
= Reserved  
Figure 2-2. Control, Status, and Data Register (Sheet 4 of 6)  
Data Sheet  
32  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer Channel 4 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0034  
(TCH4L) Write:  
See page 248.  
Reset:  
Read: CH5F  
Indeterminate after reset  
0
R
0
Timer Channel 5 Status and  
CH5IE  
MS5A  
0
ELS5B  
ELS5A  
TOV5  
CH5MAX  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
$003F  
$FE00  
Control Register (TSC5) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 5 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH5H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 5 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH5L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: COCO  
Analog-to-Digital Status and  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Control Register (ADSCR) Write:  
R
0
See page 50.  
Reset:  
0
AD6  
R
0
AD5  
R
1
AD4  
R
1
AD3  
R
1
AD2  
R
1
AD1  
R
1
AD0  
R
Read:  
AD7  
R
Analog-to-Digital Data Register  
(ADR) Write:  
See page 52.  
Reset:  
Unaffected by reset  
Read:  
0
0
R
0
0
R
0
0
R
0
Analog-to-Digital Input Clock  
ADIV2  
0
ADIV1  
0
ADIV0  
ADICLK  
R
Register (ADICLK) Write:  
See page 52.  
Reset:  
0
0
0
0
0
Read:  
BDLC Analog and Roundtrip  
ATE  
1
RXPOL  
1
BO3  
BO2  
BO1  
BO0  
1
Delay Register (BARD) Write:  
R
0
R
0
See page 77.  
Reset:  
0
0
1
0
1
Read:  
BDLC Control Register 1  
IMSG  
1
CLKS  
1
R1  
1
R0  
0
IE  
0
WCM  
0
(BCR1) Write:  
R
0
R
0
See page 78.  
Reset:  
Read:  
BDLC Control Register 2  
ALOOP  
DLOOP  
RX4XE  
NBFS  
TEOD  
TSIFR  
TMIFR1  
TMIFR0  
(BCR2) Write:  
See page 80.  
Reset:  
1
0
1
0
0
I3  
R
0
0
I2  
R
0
0
I1  
R
0
0
I0  
R
0
0
0
0
0
Read:  
BDLC State Vector Register  
(BSVR) Write:  
R
0
R
0
R
0
R
0
See page 85.  
Reset:  
Read:  
BDLC Data Register  
BD7  
BD6  
BD5  
BD4  
BD3  
BD2  
BD1  
BD0  
(BDR) Write:  
See page 87.  
Reset:  
Unaffected by reset  
Read:  
SIM Break Status Register  
R
R
R
R
R
R
R
SBSW  
0
R
(SBSR) Write:  
See page 198.  
Reset:  
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Register (Sheet 5 of 6)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
33  
Addr.  
Register Name  
Bit 7  
POR  
R
6
PIN  
R
5
COP  
R
4
ILOP  
R
3
ILAD  
R
2
0
1
LVI  
R
Bit 0  
Read:  
0
R
0
SIM Reset Status Register  
$FE01  
(SRSR) Write:  
R
0
See page 199.  
Reset:  
Read:  
1
0
0
0
0
0
SIM Break Flag Control Register  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE07  
(SBFCR) Write:  
See page 200.  
Reset:  
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
Break Address Register High  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE1C  
(BRKH) Write:  
See page 254.  
Reset:  
Read:  
0
Break Address Register Low  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
(BRKL) Write:  
See page 254.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register (BRKSCR) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
See page 253.  
Reset:  
0
0
0
Read: LVIOUT  
0
0
0
0
0
0
LVI Status Register  
See page 135.  
(LVISR) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Reset:  
Read:  
EEPROM Non-Volatile Register  
EERA  
PV  
R
R
R
EEBP3  
EEBP2  
EEBP1  
PV  
EEBP0  
PV  
(EENVR) Write:  
See page 42.  
Reset:  
PV  
PV  
PV = Programmed value or 1 in the erased state  
Read:  
0
R
0
0
R
0
EEPROM Control Register  
EEBCLK  
EEOFF  
EERAS1 EERAS0  
EELAT  
EEPGM  
$FE1D  
$FE1E  
(EECR) Write:  
See page 40.  
Reset:  
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read: EERA  
R
R
R
R
R
R
EEBP3  
R
EEBP2  
R
EEBP1  
R
EEBP0  
R
EEPROM Array Control Register  
See page 42.  
$FE1F  
(EEACR) Write:  
R
Reset: EENVR  
EENVR  
EENVR  
EENVR  
EENVR  
Read:  
Low byte of reset vector  
Clear COP Counter  
Unaffected by reset  
COP Control Register  
(COPCTL) Write:  
$FFFF  
See page 111.  
Reset:  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Register (Sheet 6 of 6)  
Data Sheet  
34  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 2-1. Vector Addresses  
Address  
Vector  
BDLC Vector (High)  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
BDLC Vector (Low)  
ADC Vector (High)  
ADC Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM Overflow Vector (High)  
TIM Overflow Vector (Low)  
TIM Channel 5 Vector (High)  
TIM Channel 5 Vector (Low)  
TIM Channel 4 Vector (High)  
TIM Channel 4 Vector (Low)  
TIM Channel 3 Vector (High)  
TIM Channel 3 Vector (Low)  
TIM Channel 2 Vector (High)  
TIM Channel 2 Vector (Low)  
TIM Channel 1 Vector (High)  
TIM Channel 1 Vector (Low)  
TIM Channel 0 Vector (High)  
TIM Channel 0 Vector (Low)  
PLL Vector (High)  
PLL Vector (Low)  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Reset Vector (Low)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
35  
2.3 Random-Access Memory (RAM)  
Addresses $0050–$044F are RAM locations. The location of the stack RAM is  
programmable. The 16-bit stack pointer allows the stack to be anywhere in the  
1024-byte memory space.  
NOTE:  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 176 bytes of RAM. Because the location of the stack RAM is  
programmable, all page zero RAM locations can be used for input/output (I/O)  
control and user data or code. When the stack pointer is moved from its reset  
location at $00FF, direct addressing mode instructions can access all page zero  
RAM locations efficiently. Page zero RAM, therefore, provides ideal locations for  
frequently accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the  
contents of the CPU registers.  
NOTE:  
NOTE:  
For M68HC05, M6805, and M146805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return  
address. The stack pointer decrements during pushes and increments during pulls.  
Be careful when using nested subroutines. The CPU could overwrite data in the  
RAM during a subroutine or during the interrupt stacking operation.  
2.4 Read-Only Memory (ROM)  
The user ROM consists of 32,256 bytes of ROM from addresses $8000–$FDFF.  
The monitor ROM and vectors are located from $FE20–$FEFF. See Figure 2-1.  
Memory Map.  
Thirty-six of the user vectors, $FFDC–$FFFF, are dedicated to user-defined reset  
and interrupt vectors.  
Security has been incorporated into the MC68HC08AS32 to prevent external  
viewing of the ROM contents. This feature ensures that customer-developed  
software remains proprietary.  
2.5 Electrically Erasable Programmable ROM (EEPROM)  
This subsection describes the 512 bytes of electrically erasable programmable  
ROM (EEPROM). Features include:  
Byte, block, or bulk erasable  
Non-volatile redundant array option  
Non-volatile block protection option  
Non-volatile MCU configuration bits  
On-chip charge pump for programming/erasing  
Data Sheet  
36  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
2.5.1 Functional Description  
Addresses $0800–$09FF are EEPROM locations. The 512 bytes of EEPROM can  
be programmed or erased without an external voltage supply. The EEPROM has  
a lifetime of 10,000 write-erase cycles in the non-redundant mode. Reliability (data  
retention) is further extended if the redundancy option is selected. EEPROM cells  
are protected with a non-volatile, 128-byte, block protection option. These options  
are stored in the EEPROM non-volatile register (EENVR) and are loaded into the  
EEPROM array configuration register (EEACR) after reset or a read of EENVR.  
The EEPROM array also can be disabled to reduce current.  
2.5.1.1 EEPROM Programming  
The unprogrammed state is a logic 1. Programming changes the state to a logic 0.  
Only valid EEPROM bytes in the non-protected blocks and EENVR can be  
programmed. When the array is configured in the redundant mode, programming  
the first 256 bytes ($0800–$08FF) will also program the last 256 bytes  
($0900–$09FF) with the same data. Programming the EEPROM in the  
non-redundant mode is recommended. Program the data to both locations before  
entering the redundant mode.  
Follow this procedure to program a byte of EEPROM. Refer to 17.4 5.0-Volt DC  
Electrical Characteristics for timing values.  
1. Clear EERAS1 and EERAS0 and set EELAT in the EECR ($FE1D). Set  
value of tEEPGM. (See Notes a and b.)  
2. Write the desired data to any user EEPROM address.  
3. Set the EEPGM bit. (See Note c.)  
4. Wait for a time, tEEPGM, to program the byte.  
5. Clear the EEPGM bit.  
6. Wait for the programming voltage time to fall, tEEFPV  
.
7. Clear EELAT bits. (See Note d.)  
8. Repeat steps 1 through 7 for more EEPROM programming.  
NOTES:  
a. EERAS1 and EERAS0 must be cleared for programming. Otherwise,  
you will be in erase mode.  
b. Setting the EELAT bit configures the address and data buses to latch  
data for programming the array. Only data with a valid EEPROM  
address will be latched. If another consecutive valid EEPROM write  
occurs, this address and data will override the previous address and  
data. Any attempts to read other EEPROM data will read the latched  
data. If EELAT is set, other writes to the EECR will be allowed after a  
valid EEPROM write.  
c. The EEPGM bit cannot be set if the EELAT bit is cleared and a  
non-EEPROM write has occurred. This is to ensure proper  
programming sequence. When EEPGM is set, the on-board charge  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
37  
pump generates the program voltage and applies it to the user  
EEPROM array. When the EEPGM bit is cleared, the program voltage  
is removed from the array and the internal charge pump is turned off.  
d. Any attempt to clear both EEPGM and EELAT bits with a single  
instruction will clear only EEPGM to allow time for removal of high  
voltage from the EEPROM array.  
2.5.1.2 EEPROM Erasing  
The unprogrammed state is a logic 1. Only the valid EEPROM bytes in the  
non-protected blocks and EENVR can be erased. When the array is configured in  
the redundant mode, erasing the first 256 bytes ($0800–$08FF) also will erase the  
last 256 bytes ($0900–$09FF).  
Follow this procedure to erase EEPROM. Refer to for timing values.  
1. Clear/set EERAS1 and EERAS0 to select byte/block/bulk erase, and set  
EELAT in EECTL. Set value of tEEBYT EEBLOCK EEBULK. (See Note a.)  
/t  
/t  
2. Write any data to the desired address for byte erase, to any address in the  
desired block for block erase, or to any array address for bulk erase.  
3. Set the EEPGM bit. (See Note b.)  
4. Wait for a time, tEEPGM, to program the byte.  
5. Clear EEPGM bit.  
6. Wait for the erasing voltage time to fall, tEEFPV  
7. Clear EELAT bits. (See Note c.)  
.
8. Repeat steps 1 through 7 for more EEPROM byte/block erasing.  
EEBPx bit must be cleared to erase EEPROM data in the corresponding block. If  
any EEBPx is set, the corresponding block cannot be erased and bulk erase mode  
does not apply.  
NOTES:  
a. Setting the EELAT bit configures the address and data buses to latch  
data for erasing the array. Only valid EEPROM addresses with their  
data will be latched. If another consecutive valid EEPROM write  
occurs, this address and data will override the previous address and  
data. In block erase mode, any EEPROM address in the block can be  
used in step 2. All locations within this block will be erased. In bulk  
erase mode, any EEPROM address can be used to erase the whole  
EEPROM. EENVR is not affected with block or bulk erase. Any  
attempts to read other EEPROM data will read the latched data. If  
EELAT is set, other writes to the EECR will be allowed after a valid  
EEPROM write.  
b. To ensure the proper erasing sequence, the EEPGM bit cannot be set  
if the EELAT bit is cleared and a non-EEPROM write has occurred.  
Once EEPGM is set, the type of erase mode cannot be modified. If  
EEPGM is set, the on-board charge pump generates the erase voltage  
Data Sheet  
38  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
and applies it to the user EEPROM array. When the EEPGM bit is  
cleared, the erase voltage is removed from the array and the internal  
charge pump is turned off.  
c. Any attempt to clear both EEPGM and EELAT bits with a single  
instruction will clear only EEPGM to allow time for removal of high  
voltage from the EEPROM array.  
In general, all bits should be erased before being programmed. However, if  
program/erase cycling is of concern, the following procedure can be used to  
minimize bit cycling in each EEPROM byte. If any bit in a byte must be changed  
from a 0 to a 1, the byte needs to be erased before programming. Table 2-2  
summarizes the conditions for erasing before programming.  
Table 2-2. EEPROM Program/Erase Cycling Reduction  
EEPROM Data  
EEPROM Data  
Erase  
To Be Programmed  
Before Programming  
Before Programming?  
0
0
1
1
0
1
0
1
No  
No  
Yes  
No  
2.5.1.3 EEPROM Block Protection  
The 512 bytes of EEPROM are divided into four 128-byte blocks. Each of these  
blocks can be protected separately by the EEBPx bit. Any attempt to program or  
erase memory locations within the protected block will not allow the program/erase  
voltage to be applied to the array. Table 2-3 shows the address ranges within the  
blocks.  
Table 2-3. EEPROM Array Address Blocks  
Block Number (EEBPx)  
Address Range  
$0800–$087F  
$0880–$08FF  
$0900–$097F  
$0980–$09FF  
EEBP0  
EEBP1  
EEBP2  
EEBP3  
If the EEBPx bit is set, that corresponding address block is protected. These bits  
are effective after a reset or a read to the EENVR register. The block protect  
configuration can be modified by erasing/ programming the corresponding bits in  
the EENVR register and then reading the EENVR register.  
In redundant mode, EEBP3 and EEBP2 will have no meaning.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
39  
2.5.1.4 EEPROM Redundant Mode  
To extend the EEPROM data retention, the array can be placed in redundant  
mode. In this mode, the first 256 bytes of user EEPROM array are mapped to the  
last 256 bytes. Reading, programming and erasing of the first 256 EEPROM bytes  
($0800–$08FF) will physically affect two bytes of EEPROM. Addressing the last  
256 bytes will not be recognized. Block protection still applies but EEBP3 and  
EEBP2 are meaningless.  
NOTE:  
Before entering redundant mode, program the EEPROM in non-redundant mode.  
2.5.1.5 EEPROM Configuration  
The EEPROM non-volatile register (EENVR) contains configurations concerning  
block protection and redundancy. EENVR is physically located on the bottom of the  
EEPROM array. The contents are non-volatile and are not modified by reset. On  
reset, this special register loads the EEPROM configuration into a corresponding  
volatile EEPROM array configuration register (EEACR). Thereafter, all reads to the  
EENVR will reload EEACR.  
The EEPROM configuration can be changed by programming/erasing the EENVR  
like a normal EEPROM byte. The new array configuration will take effect with a  
system reset or a read of the EENVR.  
2.5.1.6 EEPROM Control Register  
This read/write register controls programming/erasing of the array.  
Address: $FE1D  
Bit 7  
6
5
EEOFF  
0
4
EERAS1  
0
3
EERAS0  
0
2
EELAT  
0
1
0
Bit 0  
EEPGM  
0
Read:  
Write:  
Reset:  
0
EEBCLK  
R
R
0
0
0
R
= Reserved  
Figure 2-3. EEPROM Control Register (EECR)  
EEBCLK — EEPROM Bus Clock Enable Bit  
This read/write bit determines which clock will be used to drive the internal  
charge pump for programming/erasing. Reset clears this bit.  
1 = Bus clock drives charge pump.  
0 = Internal RC oscillator drives charge pump.  
NOTE:  
Use the internal RC oscillator for applications in the 3- to 5-V range.  
Data Sheet  
40  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
EEOFF — EEPROM Power Down Bit  
This read/write bit disables the EEPROM module for lower power consumption.  
Any attempts to access the array will give unpredictable results. Reset clears  
this bit.  
1 = Disable EEPROM array  
0 = Enable EEPROM array  
NOTE:  
The EEPROM requires a recovery time, tEEOFF, to stabilize after clearing the  
EEOFF bit. Refer to for timing values.  
EERAS1–EERAS0 — EEPROM Erase Bits  
These read/write bits set the programming/erasing modes. Reset clears these  
bits.  
Table 2-4. EEPROM Program/Erase Mode Select  
EEBPx  
EERAS1  
EERA0  
Mode  
Byte program  
Byte erase  
0
0
0
1
1
X
0
1
0
1
X
0
0
Block erase  
Bulk erase  
0
1
No erase/program  
X = Don’t Care  
EELAT — EEPROM Latch Control Bit  
This read/write bit latches the address and data buses for programming the  
EEPROM array. EELAT cannot be cleared if EEPGM is still set. Reset clears  
this bit.  
1 = Buses configured for EEPROM programming  
0 = Buses configured for normal read operation  
EEPGM — EEPROM Program/Erase Enable Bit  
This read/write bit enables the internal charge pump and applies the  
programming/erasing voltage to the EEPROM array if the EELAT bit is set and  
a write to a valid EEPROM location has occurred. Reset clears the EEPGM bit.  
1 = EEPROM programming/erasing power switched on  
0 = EEPROM programming/erasing power switched off  
NOTE:  
Writing logic 0s to both the EELAT and EEPGM bits with a single instruction will  
clear only EEPGM. This is to allow time for the removal of high voltage.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
41  
2.5.1.7 EEPROM Non-Volatile Register and EEPROM Array Configuration Register  
These registers configure the EEPROM array blocks for programming purposes.  
EEACR loads its contents from the EENVR register at reset and upon any read of  
the EENVR register.  
Address:  
$FE1F  
Bit 7  
EERA  
R
6
5
4
3
2
1
Bit 0  
EEBP0  
R
Read:  
Write:  
R
R
R
R
R
R
R
EEBP3  
R
EEBP2  
R
EEBP1  
R
R
R
Reset: EENVR  
R
EENVR  
EENVR  
EENVR  
EENVR  
= Reserved  
Figure 2-4. EEPROM Array Control Register (EEACR)  
Address: $FE1C  
Bit 7  
6
5
R
R
4
R
R
3
2
1
Bit 0  
EEBP0  
PV  
Read:  
Write:  
Reset:  
EERA  
R
EEBP3  
PV  
EEBP2  
PV  
EEBP1  
PV  
PV  
R
R
= Reserved  
PV = Programmed value or 1 in the erased state  
Figure 2-5. EEPROM Non-volatile Register (EENVR)  
EERA — EEPROM Redundant Array Bit  
This programmable/erasable/readable bit in EENVR and read-only bit in  
EEACR configures the array in redundant mode. Reset loads EERA from  
EENVR to EEACR.  
1 = EEPROM array in redundant mode configuration  
0 = EEPROM array in normal mode configuration  
EEBP3–EEBP0 — EEPROM Block Protection Bits  
These programmable/erasable/readable bits in EENVR and read-only bits in  
EEACR select blocks of EEPROM array to keep them from being programmed  
or erased. Reset loads EEBP[3:0] from EENVR to EEACR. See 2.5.1.3  
EEPROM Block Protection.  
1 = EEPROM array block protected  
0 = EEPROM array block unprotected  
Data Sheet  
42  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
2.5.2 Low-Power Modes  
The following paragraphs describe the low-power modes.  
2.5.2.1 Wait Mode  
The WAIT instruction does not affect the EEPROM. It is possible to program the  
EEPROM while the MCU is in wait mode. However, if the EEPROM is inactive,  
power can be reduced by setting the EEOFF bit before executing the WAIT  
instruction.  
2.5.2.2 Stop Mode  
The STOP instruction reduces the EEPROM power consumption to a minimum.  
The STOP instruction should not be executed while the high voltage is turned on  
(EEPGM = 1).  
If stop mode is entered while program/erase is in progress, high voltage will be  
turned off automatically. However, the EEPGM bit will remain set. When stop mode  
is terminated and if EEPGM is still set, the high voltage will be turned back on  
automatically. Program/erase time will need to be extended if program/erase is  
interrupted by entering stop mode.  
The module requires a recovery time, tEESTOP, to stabilize after leaving stop mode  
(see 17.4 5.0-Volt DC Electrical Characteristics). Attempts to access the array  
during the recovery time will result in unpredictable behavior.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
43  
Data Sheet  
44  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 3. Analog-to-Digital Converter (ADC)  
3.1 Introduction  
This section describes the 8-bit analog-to-digital converter (ADC).  
Features of the ADC module include:  
3.2 Features  
15 channels (52-PLCC) with multiplexed input  
Linear successive approximation  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
3.3 Functional Description  
Fifteen ADC channels are available for sampling external sources at pins  
PTD6/ATD14/TCLKPTD0/ATD8 and PTB7/ATD7PTB0/ATD0. An analog  
multiplexer allows the single ADC converter to select one of the 15 ADC channels  
as ADC voltage input (ADCVIN). ADCVIN is converted by the successive  
approximation register-based counters. When the conversion is completed,  
ADC places the result in the ADC data register and sets a flag or generates an  
interrupt. (See Figure 3-2.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
45  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 3-1. Block Diagram Highlighting ADC Block and Pins  
INTERNAL  
DATA BUS  
READ DDRB/DDRB  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
PTBx/PTDx  
ADC CHANNEL x  
DISABLE  
ADC DATA REGISTER  
CONVERSION  
COMPLETE  
ADC VOLTAGE IN  
ADCVIN  
ADCH[4:0]  
INTERRUPT  
LOGIC  
CHANNEL  
SELECT  
ADC  
AIEN  
COCO  
ADC CLOCK  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 3-2. ADC Block Diagram  
3.3.1 ADC Port I/O Pins  
PTD6/ATD14/TCLKPTD0/ATD8 and PTB7/ATD7–PTB0/ATD0 are general-  
purpose I/O pins that are shared with the ADC channels.  
The channel select bits (ADC status control register, $0038), define which ADC  
channel/port pin will be used as the input signal. The ADC overrides the port I/O  
logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins  
are controlled by the port I/O logic and can be used as general-purpose I/O. Writes  
to the port register or DDR will not have any affect on the port pin that is selected  
by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the  
corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port  
data latch is read.  
NOTE:  
Do not use ADC channel ATD14 when using the PTD6/ATD14/TCLK pin as the  
clock input for the TIM.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
47  
3.3.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH (see 17.6 ADC Characteristics),  
the ADC converts the signal to $FF (full scale). If the input voltage equals  
V
V
SSA/VREFL the ADC converts it to $00. Input voltages between VREFH and  
SSA/VREFL are a straight-line linear conversion. All other input voltages will result  
in $FF if greater than VREFH and $00 if less than VSSA/VREFL  
.
NOTE:  
Input voltage should not exceed the analog supply voltages.  
3.3.3 Conversion Time  
Sixteen ADC internal clocks are required to perform one conversion. The ADC  
starts a conversion on the first rising edge of the ADC internal clock immediately  
following a write to the ADSCR. If the ADC internal clock is selected to run at  
1 MHz, then one conversion will take 16 µs to complete. But since the ADC can run  
almost completely asynchronously to the bus clock, (for example, the ADC is  
configured to derive its internal clock from CGMXCLK and the bus clock is being  
derived from the PLL within the CGM [CGMOUT]), this 16-µs conversion can take  
up to 17 µs to complete. This worst-case could occur if the write to the ADSCR  
happened directly after the rising edge of the ADC internal clock causing the  
conversion to wait until the next rising edge of the ADC internal clock. With a 1-MHz  
ADC internal clock, the maximum sample rate is 59 kHz to 62 kHz. Refer to 17.6  
ADC Characteristics  
16 to 17 ADC Clock Cycles  
Conversion Time =   
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time x Bus Frequency  
3.3.4 Continuous Conversion Mode  
In the continuous conversion mode, the ADC continuously converts the selected  
channel, filling the ADC data register with new data after each conversion. Data  
from the previous conversion will be overwritten whether that data has been read  
or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADC  
status control register, $0038) is set after each conversion and can be cleared by  
writing the ADC status and control register or reading of the ADC data register.  
3.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes. See 17.6 ADC  
Characteristics for accuracy information.  
3.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt  
after each ADC conversion. A CPU interrupt is generated if the COCO bit is at  
Data Sheet  
48  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
logic 0. The COCO bit is not used as a conversion complete flag when interrupts  
are enabled.  
3.5 Low-Power Modes  
The following paragraphs describe the low-power modes.  
3.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt  
request from the ADC can bring the MCU out of wait mode. If the ADC is not  
required to bring the MCU out of wait mode, power down the ADC by setting the  
ADCH[4:0] bits in the ADC status and control register to logic 1s before executing  
the WAIT instruction.  
3.5.2 Stop Mode  
3.6 I/O Signals  
The ADC module is inactive after the execution of a STOP instruction. Any pending  
conversion is aborted. ADC conversions resume when the MCU exits stop mode.  
Allow one conversion cycle to stabilize the analog circuitry before attempting a new  
ADC conversion after exiting stop mode.  
The ADC module has 15 channels that are shared with I/O ports B and D and one  
channel with an input-only port bit on port D. Refer to 17.6 ADC Characteristics  
for voltages referenced in the next three subsections.  
3.6.1 ADC Analog Power Pin (VDDA/VDDAREF)/ADC Voltage Reference Pin (VREFH  
)
The ADC analog portion uses VDDA/VDDAREF as its power pin. Connect the  
VDDA/VDDAREF pin to the same voltage potential as VDD. External filtering may be  
necessary to ensure clean VDDA/VDDAREF for good results.  
VREFH is the high reference voltage for all analog-to-digital conversions.  
NOTE:  
Route VDDA/VDDAREF carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
3.6.2 ADC Analog Ground Pin (VSSA)/ADC Voltage Reference Low Pin (VREFL  
)
The ADC analog portion uses VSSA as its ground pin. Connect the VSSA pin to the  
same voltage potential as VSS. VREFL is the lower reference supply for the ADC.  
3.6.3 ADC Voltage In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 15 ADC channels to the ADC  
module.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
49  
3.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC input clock register (ADICLK)  
3.7.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and control  
register.  
Address:  
$0038  
Bit 7  
COCO  
R
6
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
AIEN  
0
0
R
= Reserved  
Figure 3-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end  
of each conversion. COCO will stay set until cleared by a read of the ADC data  
register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end  
of a conversion. It always reads as a logic 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled  
(AIEN = 1)  
NOTE:  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion.  
The interrupt signal is cleared when the data register is read or the status/control  
register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
Data Sheet  
50  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR  
register at the end of each conversion. Only one conversion is allowed when this  
bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field which is used  
to select one of the ADC channels. The five channel select bits are detailed in  
Table 3-1. Care should be taken when using a port pin as both an analog and  
a digital input simultaneously to prevent switching noise from corrupting the  
analog signal. (See Table 3-1.)  
The ADC subsystem is turned off when the channel select bits are all set to one.  
This feature allows for reduced power consumption for the MCU when the ADC  
is not used. Reset sets all of these bits to a logic 1.  
NOTE:  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Table 3-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD6  
PTB7/ATD7  
PTD0/ATD8  
PTD1/ATD9  
PTD2/ATD10  
PTD3/ATD11  
PTD4/ATD12  
PTD5/ATD13  
PTD6/ATD14/TCLK  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Unused(1)  
Reserved  
Range 01111 ($0F) to 11010 ($1A)  
1
1
1
1
0
1
1
0
1
0
Unused(1)  
(2)  
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
VREFH  
(2)  
VSSA/VREFL  
ADC Power Off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify  
the operation of the ADC converter both in production test and for user applications.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
51  
3.7.2 ADC Data Register  
One 8-bit data register is provided. This register is updated each time an ADC  
conversion completes.  
Address:  
$0039  
Bit 7  
AD7  
R
6
AD6  
R
5
AD5  
R
4
AD4  
R
3
AD3  
R
2
AD2  
R
1
AD1  
R
Bit 0  
AD0  
R
Read:  
Write:  
Reset:  
Unaffected by reset  
R
= Reserved  
Figure 3-4. ADC Data Register (ADR)  
3.7.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address:  
$003A  
Bit 7  
6
5
ADIV0  
0
4
ADICLK  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
ADIV1  
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 3-5. ADC Input Clock Register (ADICLK)  
ADIV2:ADIV0 — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used  
by the ADC to generate the internal ADC clock. Table 3-2 shows the available  
clock configurations. The ADC clock should be set to approximately 1 MHz.  
Table 3-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = Don’t care  
Data Sheet  
52  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
ADICLK — ADC Input Clock Register Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock source to  
generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock  
source.  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz, CGMXCLK  
can be used as the clock source for the ADC. If CGMXCLK is less than 1 MHz,  
use the PLL-generated bus clock as the clock source. As long as the internal  
ADC clock is at approximately 1 MHz, correct operation can be guaranteed.  
(See 17.6 ADC Characteristics.)  
1 = Internal bus clock  
0 = External clock (CGMXCLK)  
f
XCLK or Bus Frequency  
1 MHz =   
ADIV[2:0]  
NOTE:  
During the conversion process, changing the ADC clock will result in an incorrect  
conversion.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
53  
Data Sheet  
54  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 4. Byte Data Link Controller-Digital (BDLC-D)  
4.1 Introduction  
4.2 Features  
The byte data link controller (BDLC) provides access to an external serial  
communication multiplex bus, operating according to the Society of Automotive  
Engineers (SAE) J1850 protocol.  
Features include:  
SAE J1850 class B data communications network interface compatible and  
ISO compatible for low speed (<125 kbps) serial data communications in  
automotive applications  
10.4 kbps variable pulse width (VPW) bit format  
Digital noise filter  
Collision detection  
Hardware cyclical redundancy check (CRC) generation and checking  
Two power-saving modes with automatic wakeup on network activity  
Polling and CPU interrupts available  
Block mode receive and transmit supported  
Supports 4X receive mode, 41.6 kbps  
Digital loopback mode  
Analog loopback mode  
In-frame response (IFR) types 0, 1, 2, and 3 supported  
4.3 Functional Description  
Figure 4-2 shows the organization of the BDLC module. The CPU interface  
contains the software addressable registers and provides the link between the  
CPU and the buffers. The buffers provide storage for data received and data to be  
transmitted onto the J1850 bus. The protocol handler is responsible for the  
encoding and decoding of data bits and special message symbols during  
transmission and reception. The MUX interface provides the link between the  
BDLC digital section and the analog physical interface. The wave shaping, driving,  
and digitizing of data is performed by the physical interface.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
55  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 4-1. Block Diagram Highlighting BLDC Block and Pins  
Use of the BDLC module in message networking fully implements the SAE  
Standard J1850 Class B Data Communication Network Interface specification.  
NOTE:  
It is recommended that the reader be familiar with the SAE J1850 document and  
ISO Serial Communication document prior to proceeding with this section of the  
MC68HC08AS32 specification.  
TO CPU  
CPU INTERFACE  
PROTOCOL HANDLER  
MUX INTERFACE  
PHYSICAL INTERFACE  
BDLC  
TO J1850 BUS  
Figure 4-2. BDLC Block Diagram  
Addr.  
Register Name  
Bit 7  
ATE  
1
6
RXPOL  
1
5
0
4
0
3
2
1
Bit 0  
BO0  
1
Read:  
BDLC Analog and Roundtrip  
BO3  
BO2  
BO1  
$003B  
Delay Register (BARD) Write:  
R
0
R
0
See page 77.  
Reset:  
0
0
1
0
1
Read:  
IMSG  
1
CLKS  
1
R1  
1
R0  
0
IE  
0
WCM  
0
BDLC Control Register 1 (BCR1)  
$003C  
$003D  
$003E  
$003F  
Write:  
Reset:  
Read:  
R
0
R
0
See page 78.  
BDLC Control Register 2  
ALOOP  
DLOOP  
RX4XE  
NBFS  
TEOD  
TSIFR  
TMIFR1  
TMIFR0  
(BCR2) Write:  
See page 80.  
Reset:  
Read:  
1
0
1
0
0
I3  
R
0
0
I2  
R
0
0
I1  
R
0
0
I0  
R
0
0
0
0
0
BDLC State Vector Register  
(BSVR) Write:  
R
0
R
0
R
0
R
0
See page 85.  
Reset:  
Read:  
BDLC Data Register  
BD7  
BD6  
BD5  
BD4  
BD3  
BD2  
BD1  
BD0  
(BDR) Write:  
See page 87.  
Reset:  
Unaffected by reset  
R
= Reserved  
Figure 4-3. BDLC I/O Register Summary  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
57  
4.3.1 BDLC Operating Modes  
The BDLC has five main modes of operation which interact with the power  
supplies, pins, and the remainder of the MCU as shown in Figure 4-4.  
POWER OFF  
VDD > VDD (MINIMUM) AND  
ANY MCU RESET SOURCE ASSERTED  
V
DD VDD (MINIMUM)  
RESET  
ANY MCU RESET SOURCE ASSERTED  
(FROM ANY MODE)  
COP, ILLADDR, PU, RESET, LVR, POR  
NO MCU RESET SOURCE ASSERTED  
NETWORK ACTIVITY OR  
OTHER MCU WAKEUP  
NETWORK ACTIVITY OR  
OTHER MCU WAKEUP  
RUN  
BDLC STOP  
BDLC WAIT  
STOP INSTRUCTION OR  
WAIT INSTRUCTION AND WCM = 1  
WAIT INSTRUCTION AND WCM = 0  
Figure 4-4. BDLC Operating Modes State Diagram  
4.3.1.1 Power Off Mode  
This mode is entered from reset mode whenever the BDLC supply voltage, VDD,  
drops below its minimum specified value for the BDLC to guarantee operation.  
The BDLC will be placed in reset mode by low-voltage reset (LVR) before being  
powered down. In this mode, the pin input and output specifications are not  
guaranteed.  
4.3.1.2 Reset Mode  
This mode is entered from the power off mode whenever the BDLC supply voltage,  
VDD, rises above its minimum specified value (VDD –10%) and some MCU reset  
source is asserted. The internal MCU reset must be asserted while powering up  
the BDLC or an unknown state will be entered and correct operation cannot be  
guaranteed. Reset mode is also entered from any other mode as soon as one of  
Data Sheet  
58  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
the MCU’s possible reset sources (such as LVR, POR, COP watchdog, and reset  
pin, etc.) is asserted.  
In reset mode, the internal BDLC voltage references are operative; VDD is supplied  
to the internal circuits which are held in their reset state; and the internal BDLC  
system clock is running. Registers will assume their reset condition. Outputs are  
held in their programmed reset state. Therefore, inputs and network activity are  
ignored.  
4.3.1.3 Run Mode  
This mode is entered from the reset mode after all MCU reset sources are no  
longer asserted. Run mode is entered from the BDLC wait mode whenever activity  
is sensed on the J1850 bus.  
Run mode is entered from the BDLC stop mode whenever network activity is  
sensed, although messages will not be received properly until the clocks have  
stabilized and the CPU is in run mode also.  
In this mode, normal network operation takes place. The user should ensure that  
all BDLC transmissions have ceased before exiting this mode.  
4.3.1.4 BDLC Wait Mode  
This power-conserving mode is entered automatically from run mode whenever the  
CPU executes a WAIT instruction and if the WCM bit in the BCR1 register is  
cleared previously.  
In this mode, the BDLC internal clocks continue to run. The first passive-to-active  
transition of the bus generates a CPU interrupt request from the BDLC which  
wakes up the BDLC and the CPU. In addition, if the BDLC receives a valid EOF  
symbol while operating in wait mode, then the BDLC also will generate a CPU  
interrupt request which wakes up the BDLC and the CPU. See 4.7.1 Wait Mode.  
4.3.1.5 BDLC Stop Mode  
This power-conserving mode is entered automatically from run mode whenever the  
CPU executes a STOP instruction or if the CPU executes a WAIT instruction and  
the WCM bit in the BCR1 register is set previously.  
In this mode, the BDLC internal clocks are stopped but the physical interface  
circuitry is placed in a low-power mode and awaits network activity. If network  
activity is sensed, then a CPU interrupt request will be generated, restarting the  
BDLC internal clocks. See 4.7.2 Stop Mode.  
4.3.1.6 Digital Loopback Mode  
When a bus fault has been detected, the digital loopback mode is used to  
determine if the fault condition is caused by failure in the node’s internal circuits or  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
59  
elsewhere in the network, including the node’s analog physical interface. In this  
mode, the transmit digital output pin (BDTxD) and the receive digital input pin  
(BDRxD) of the digital interface are disconnected from the analog physical  
interface and tied together to allow the digital portion of the BDLC to transmit and  
receive its own messages without driving the J1850 bus.  
4.3.1.7 Analog Loopback Mode  
Analog loopback is used to determine if a bus fault has been caused by a failure in  
the node’s off-chip analog transceiver or elsewhere in the network. The BCLD  
analog loopback mode does not modify the digital transmit or receive functions of  
the BDLC. It does, however, ensure that once analog loopback mode is exited, the  
BDLC will wait for an idle bus condition before participation in network  
communication resumes. If the off-chip analog transceiver has a loopback mode,  
it usually causes the input to the output drive stage to be looped back into the  
receiver, allowing the node to receive messages it has transmitted without driving  
the J1850 bus. In this mode, the output to the J1850 bus is typically high  
impedance. This allows the communication path through the analog transceiver to  
be tested without interfering with network activity. Using the BDLC analog loopback  
mode in conjunction with the analog transceiver’s loopback mode ensures that,  
once the off-chip analog transceiver has exited loopback mode, the BCLD will not  
begin communicating before a known condition exists on the J1850 bus.  
4.4 BDLC MUX Interface  
The MUX interface is responsible for bit encoding/decoding and digital noise  
filtering between the protocol handler and the physical interface.  
TO CPU  
CPU INTERFACE  
PROTOCOL HANDLER  
MUX INTERFACE  
PHYSICAL INTERFACE  
BDLC  
TO J1850 BUS  
Figure 4-5. BDLC Block Diagram  
Data Sheet  
60  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
4.4.1 Rx Digital Filter  
The receiver section of the BDLC includes a digital low-pass filter to remove narrow  
noise pulses from the incoming message. An outline of the digital filter is shown in  
Figure 4-6.  
INPUT  
SYNC  
DATA  
LATCH  
4-BIT UP/DOWN COUTER  
UP/DOWN  
FILTERED  
RX DATA OUT  
RX DATA  
FROM  
D
Q
OUT  
D
Q
PHYSICAL  
INTERFACE  
(BDRXD)  
MUX INTERFACE  
CLOCK  
Figure 4-6. BDLC Rx Digital Filter Block Diagram  
4.4.1.1 Operation  
The clock for the digital filter is provided by the MUX interface clock (see fBDLC  
parameter in Table 4-3). At each positive edge of the clock signal, the current state  
of the receiver physical interface (BDRxD) signal is sampled. The BDRxD signal  
state is used to determine whether the counter should increment or decrement at  
the next negative edge of the clock signal.  
The counter will increment if the input data sample is high but decrement if the input  
sample is low. Therefore, the counter will thus progress either up toward 15 if, on  
average, the BDRxD signal remains high or progress down toward 0 if, on average,  
the BDRxD signal remains low.  
When the counter eventually reaches the value 15, the digital filter decides that the  
condition of the BDRxD signal is at a stable logic level 1 and the data latch is set,  
causing the filtered Rx data signal to become a logic level 1. Furthermore, the  
counter is prevented from overflowing and can only be decremented from this  
state.  
Alternatively, should the counter eventually reach the value 0, the digital filter  
decides that the condition of the BDRxD signal is at a stable logic level 0 and the  
data latch is reset, causing the filtered Rx data signal to become a logic level 0.  
Furthermore, the counter is prevented from underflowing and can only be  
incremented from this state.  
The data latch will retain its value until the counter next reaches the opposite end  
point, signifying a definite transition of the signal.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
61  
4.4.1.2 Performance  
The performance of the digital filter is best described in the time domain rather than  
the frequency domain.  
If the signal on the BDRxD signal transitions, then there will be a delay before that  
transition appears at the filtered Rx data output signal. This delay will be between  
15 and 16 clock periods, depending on where the transition occurs with respect to  
the sampling points. This filter delay must be taken into account when performing  
message arbitration.  
For example, if the frequency of the MUX interface clock (fBDLC) is 1.0486 MHz,  
then the period (tBDLC) is 954 ns and the maximum filter delay in the absence of  
noise will be 15.259 µs.  
The effect of random noise on the BDRxD signal depends on the characteristics of  
the noise itself. Narrow noise pulses on the BDRxD signal will be ignored  
completely if they are shorter than the filter delay. This provides a degree of low  
pass filtering.  
If noise occurs during a symbol transition, the detection of that transition can be  
delayed by an amount equal to the length of the noise burst. This is just a reflection  
of the uncertainty of where the transition is truly occurring within the noise.  
Noise pulses that are wider than the filter delay, but narrower than the shortest  
allowable symbol length, will be detected by the next stage of the BDLC’s receiver  
as an invalid symbol.  
Noise pulses that are longer than the shortest allowable symbol length will be  
detected normally as an invalid symbol or as invalid data when the frame’s CRC is  
checked.  
4.4.2 J1850 Frame Format  
All messages transmitted on the J1850 bus are structured using the format shown  
in Figure 4-7.  
J1850 states that each message has a maximum length of 101 PWM bit times or  
12 VPW bytes, excluding SOF, EOD, NB, and EOF, with each byte transmitted  
MSB first.  
All VPW symbol lengths in the following descriptions are typical values at a  
10.4 kbps bit rate.  
DATA  
OPTIONAL  
IFR  
E
O
D
I
F
S
N
B
PRIORITY  
(DATA0)  
MESSAGE ID  
(DATA1)  
DATAN  
IDLE  
SOF  
CRC  
EOF  
IDLE  
Figure 4-7. J1850 Bus Message Format (VPW)  
Data Sheet  
62  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
SOF — Start-of-Frame Symbol  
All messages transmitted onto the J1850 bus must begin with a long-active  
200-µs period SOF symbol. This indicates the start of a new message  
transmission. The SOF symbol is not used in the CRC calculation.  
Data — In-Message Data Bytes  
The data bytes contained in the message include the message priority/type,  
message ID byte (typically the physical address of the responder), and any  
actual data being transmitted to the receiving node. The message format used  
by the BDLC is similar to the 3-byte consolidated header message format  
outlined by the SAE J1850 document. See SAE J1850 — Class B Data  
Communications Network Interface for more information about 1- and 3-byte  
headers.  
Messages transmitted by the BDLC onto the J1850 bus must contain at least  
one data byte and, therefore, can be as short as one data byte and one CRC  
byte. Each data byte in the message is eight bits in length and is transmitted  
MSB to LSB.  
CRC — Cyclical Redundancy Check Byte  
This byte is used by the receiver(s) of each message to determine if any errors  
have occurred during the transmission of the message. The BDLC calculates  
the CRC byte and appends it onto any messages transmitted onto the J1850  
bus. It also performs CRC detection on any messages it receives from the  
J1850 bus.  
CRC generation uses the divisor polynomial X8 + X4 + X3 + X2 + 1. The  
remainder polynomial initially is set to all ones. Each byte in the message after  
the start of frame (SOF) symbol is processed serially through the CRC  
generation circuitry. The one’s complement of the remainder then becomes the  
8-bit CRC byte, which is appended to the message after the data bytes in  
MSB-to-LSB order.  
When receiving a message, the BDLC uses the same divisor polynomial. All  
data bytes, excluding the SOF and end of data symbols (EOD) but including the  
CRC byte, are used to check the CRC. If the message is error free, the  
remainder polynomial will equal X7 + X6 + X2 = $C4, regardless of the data  
contained in the message. If the calculated CRC does not equal $C4, the BDLC  
will recognize this as a CRC error and set the CRC error flag in the BSVR.  
EOD — End-of-Data Symbol  
The EOD symbol is a long 200-µs passive period on the J1850 bus used to  
signify to any recipients of a message that the transmission by the originator has  
completed. No flag is set upon reception of the EOD symbol.  
IFR — In-Frame Response Bytes  
The IFR section of the J1850 message format is optional. Users desiring further  
definition of in-frame response should review the SAE J1850 — Class B Data  
Communications Network Interface specification.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
63  
EOF — End-of-Frame Symbol  
This symbol is a long 280-µs passive period on the J1850 bus and is longer than  
an end-of-data (EOD) symbol, which signifies the end of a message. Since an  
EOF symbol is longer than a 200-µs EOD symbol, if no response is transmitted  
after an EOD symbol, it becomes an EOF, and the message is assumed to be  
completed. The EOF flag is set upon receiving the EOF symbol.  
IFS — Inter-Frame Separation Symbol  
The IFS symbol is a 20-µs passive period on the J1850 bus which allows proper  
synchronization between nodes during continuous message transmission. The  
IFS symbol is transmitted by a node after the completion of the end-of-frame  
(EOF) period and, therefore, is seen as a 300-µs passive period.  
When the last byte of a message has been transmitted onto the J1850 bus and  
the EOF symbol time has expired, all nodes then must wait for the IFS symbol  
time to expire before transmitting a start-of-frame (SOF) symbol, marking the  
beginning of another message.  
However, if the BDLC is waiting for the IFS period to expire before beginning a  
transmission and a rising edge is detected before the IFS time has expired, it  
will synchronize internally to that edge. If a write to the BDR register (for  
instance, to initiate transmission) occurred on or before 104 • tBDLC from the  
received rising edge, then the BDLC will transmit and arbitrate for the bus. If a  
CPU write to the BDR register occurred after 104 • tBDLC from the detection of  
the rising edge, then the BDLC will not transmit, but will wait for the next IFS  
period to expire before attempting to transmit the byte.  
A rising edge may occur during the IFS period because of varying clock  
tolerances and loading of the J1850 bus, causing different nodes to observe the  
completion of the IFS period at different times. To allow for individual clock  
tolerances, receivers must synchronize to any SOF occurring during an IFS  
period.  
BREAK — Break  
The BDLC cannot transmit a BREAK symbol.  
If the BDLC is transmitting at the time a BREAK is detected, it treats the BREAK  
as if a transmission error had occurred and halts transmission.  
If the BDLC detects a BREAK symbol while receiving a message, it treats the  
BREAK as a reception error and sets the invalid symbol flag in the BSVR, also  
ignoring the frame it was receiving. If while receiving a message in 4X mode,  
the BDLC detects a BREAK symbol, it treats the BREAK as a reception error,  
sets the invalid symbol flag, and exits 4X mode (for example, the RX4XE bit in  
BCR2 is cleared automatically). If bus control is required after the BREAK  
symbol is received and the IFS time has elapsed, the programmer must resend  
the transmission byte using highest priority.  
NOTE:  
The J1850 protocol BREAK symbol is not related to the HC08 break module (See  
Section 16. Development Support.)  
Data Sheet  
64  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
IDLE — Idle Bus  
An idle condition exists on the bus during any passive period after expiration of  
the IFS period (for instance, 300 µs). Any node sensing an idle bus condition  
can begin transmission immediately.  
4.4.3 J1850 VPW Symbols  
Huntsinger’s variable pulse width modulation (VPW) is an encoding technique in  
which each bit is defined by the time between successive transitions and by the  
level of the bus between transitions (for instance, active or passive). Active and  
passive bits are used alternately. This encoding technique is used to reduce the  
number of bus transitions for a given bit rate.  
Each logic 1 or logic 0 contains a single transition and can be at either the active  
or passive level and one of two lengths, either 64 µs or 128 µs (tNOM at 10.4 kbps  
baud rate), depending upon the encoding of the previous bit. The start-of-frame  
(SOF), end-of-data (EOD), end-of-frame (EOF), and inter-frame separation (IFS)  
symbols always will be encoded at an assigned level and length. See Figure 4-8.  
ACTIVE  
128 µs  
64 µs  
OR  
PASSIVE  
(A) LOGIC 0  
ACTIVE  
128 µs  
64 µs  
OR  
PASSIVE  
(B) LOGIC 1  
ACTIVE  
240 µs  
200 µs  
200 µs  
PASSIVE  
(C) BREAK  
(D) START OF FRAME  
(E) END OF DATA  
300 µs  
20 µs  
ACTIVE  
280 µs  
IDLE > 300 µs  
PASSIVE  
(F) END OF FRAME  
(G) INTER-FRAME  
SEPARATION  
(H) IDLE  
Figure 4-8. J1850 VPW Symbols with Nominal Symbol Times  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
65  
Each message will begin with an SOF symbol an active symbol and, therefore,  
each data byte (including the CRC byte) will begin with a passive bit, regardless of  
whether it is a logic 1 or a logic 0.  
All VPW bit lengths stated in the following descriptions are typical values at a  
10.4 kbps bit rate.  
Logic 0  
A logic 0 is defined as either:  
An active-to-passive transition followed by a passive period 64 µs in  
length, or  
A passive-to-active transition followed by an active period 128 µs in  
length  
See Figure 4-8(a).  
Logic 1  
A logic 1 is defined as either:  
An active-to-passive transition followed by a passive period 128 µs in  
length, or  
A passive-to-active transition followed by an active period 64 µs in  
length  
See Figure 4-8(b).  
Normalization Bit (NB)  
The NB symbol has the same property as a logic 1 or a logic 0. It is only used  
in IFR message responses.  
Break Signal (BREAK)  
The BREAK signal is defined as a passive-to-active transition followed by an  
active period of at least 240 µs (see Figure 4-8(c)).  
Start-of-Frame Symbol (SOF)  
The SOF symbol is defined as passive-to-active transition followed by an active  
period 200 µs in length (see Figure 4-8(d)). This allows the data bytes which  
follow the SOF symbol to begin with a passive bit, regardless of whether it is a  
logic 1 or a logic 0.  
End-of-Data Symbol (EOD)  
The EOD symbol is defined as an active-to-passive transition followed by a  
passive period 200 µs in length (see Figure 4-8(e)).  
End-of-Frame Symbol (EOF)  
The EOF symbol is defined as an active-to-passive transition followed by a  
passive period 280 µs in length (see Figure 4-8(f)). If no IFR byte is transmitted  
after an EOD symbol is transmitted, after another 80 µs the EOD becomes an  
EOF, indicating completion of the message.  
Data Sheet  
66  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Inter-Frame Separation Symbol (IFS)  
The IFS symbol is defined as a passive period 300 µs in length. The 20-µs IFS  
symbol contains no transition, since when used it always appends to an EOF  
symbol (see Figure 4-8(g)).  
Idle  
An idle is defined as a passive period greater than 300 µs in length.  
4.4.4 J1850 VPW Valid/Invalid Bits and Symbols  
The timing tolerances for receiving data bits and symbols from the J1850 bus have  
been defined to allow for variations in oscillator frequencies. In many cases the  
maximum time allowed to define a data bit or symbol is equal to the minimum time  
allowed to define another data bit or symbol.  
Since the minimum resolution of the BDLC for determining what symbol is being  
received is equal to a single period of the MUX interface clock (tBDLC), an apparent  
separation in these maximum time/minimum time concurrences equal to one cycle  
of tBDLC occurs.  
This one clock resolution allows the BDLC to differentiate properly between the  
different bits and symbols. This is done without reducing the valid window for  
receiving bits and symbols from transmitters onto the J1850 bus which have  
varying oscillator frequencies.  
200 µs  
128 µs  
64 µs  
ACTIVE  
(1) INVALID PASSIVE BIT  
PASSIVE  
a
ACTIVE  
(2) VALID PASSIVE LOGIC 0  
PASSIVE  
a
b
b
ACTIVE  
PASSIVE  
ACTIVE  
PASSIVE  
(3) VALID PASSIVE LOGIC 1  
(4) VALID EOD SYMBOL  
c
c
d
Figure 4-9. J1850 VPW Received Passive Symbol Times  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
67  
In Huntsinger’s’ variable pulse width (VPW) modulation bit encoding, the  
tolerances for both the passive and active data bits received and the symbols  
received are defined with no gaps between definitions. For example, the maximum  
length of a passive logic 0 is equal to the minimum length of a passive logic 1, and  
the maximum length of an active logic 0 is equal to the minimum length of a valid  
SOF symbol.  
Invalid Passive Bit  
See Figure 4-9(1). If the passive-to-active received transition beginning the  
next data bit or symbol occurs between the active-to-passive transition  
beginning the current data bit (or symbol) and a, the current bit would be invalid.  
Valid Passive Logic 0  
See Figure 4-9(2). If the passive-to-active received transition beginning the  
next data bit (or symbol) occurs between a and b, the current bit would be  
considered a logic 0.  
Valid Passive Logic 1  
See Figure 4-9(3). If the passive-to-active received transition beginning the  
next data bit (or symbol) occurs between b and c, the current bit would be  
considered a logic 1.  
Valid EOD Symbol  
See Figure 4-9(4). If the passive-to-active received transition beginning the  
next data bit (or symbol) occurs between c and d, the current symbol would be  
considered a valid end-of-data symbol (EOD).  
300 µs  
280 µs  
ACTIVE  
(1) VALID EOF SYMBOL  
PASSIVE  
a
b
ACTIVE  
(2) VALID EOF+  
IFS SYMBOL  
PASSIVE  
c
d
Figure 4-10. J1850 VPW Received Passive  
EOF and IFS Symbol Times  
Valid EOF and IFS Symbol  
In Figure 4-10(1), if the passive-to-active received transition beginning the SOF  
symbol of the next message occurs between a and b, the current symbol will be  
considered a valid end-of-frame (EOF) symbol.  
Data Sheet  
68  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
See Figure 4-10(2). If the passive-to-active received transition beginning the  
SOF symbol of the next message occurs between c and d, the current symbol  
will be considered a valid EOF symbol followed by a valid inter-frame separation  
symbol (IFS). All nodes must wait until a valid IFS symbol time has expired  
before beginning transmission. However, due to variations in clock frequencies  
and bus loading, some nodes may recognize a valid IFS symbol before others  
and immediately begin transmitting. Therefore, any time a node waiting to  
transmit detects a passive-to-active transition once a valid EOF has been  
detected, it should immediately begin transmission, initiating the arbitration  
process.  
Idle Bus  
In Figure 4-10(2), if the passive-to-active received transition beginning the  
start-of-frame (SOF) symbol of the next message does not occur before d, the  
bus is considered to be idle, and any node wishing to transmit a message may  
do so immediately.  
200 µs  
128 µs  
64 µs  
ACTIVE  
(1) INVALID ACTIVE BIT  
PASSIVE  
a
ACTIVE  
(2) VALID ACTIVE LOGIC 1  
PASSIVE  
a
b
b
ACTIVE  
PASSIVE  
ACTIVE  
(3) VALID ACTIVE LOGIC 0  
(4) VALID SOF SYMBOL  
c
c
PASSIVE  
d
Figure 4-11. J1850 VPW Received Active Symbol Times  
Invalid Active Bit  
In Figure 4-11(1), if the active-to-passive received transition beginning the next  
data bit (or symbol) occurs between the passive-to-active transition beginning  
the current data bit (or symbol) and a, the current bit would be invalid.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
69  
Valid Active Logic 1  
In Figure 4-11(2), if the active-to-passive received transition beginning the next  
data bit (or symbol) occurs between a and b, the current bit would be considered  
a logic 1.  
Valid Active Logic 0  
In Figure 4-11(3), if the active-to-passive received transition beginning the next  
data bit (or symbol) occurs between b and c, the current bit would be considered  
a logic 0.  
Valid SOF Symbol  
In Figure 4-11(4), if the active-to-passive received transition beginning the next  
data bit (or symbol) occurs between c and d, the current symbol would be  
considered a valid SOF symbol.  
Valid BREAK Symbol  
In Figure 4-12, if the next active-to-passive received transition does not occur  
until after e, the current symbol will be considered a valid BREAK symbol. A  
BREAK symbol should be followed by a start-of-frame (SOF) symbol beginning  
the next message to be transmitted onto the J1850 bus. See 4.4.2 J1850 Frame  
Format for BDLC response to BREAK symbols.  
240 µs  
ACTIVE  
(2) VALID BREAK SYMBOL  
PASSIVE  
e
Figure 4-12. J1850 VPW Received BREAK Symbol Times  
4.4.5 Message Arbitration  
Message arbitration on the J1850 bus is accomplished in a non-destructive  
manner, allowing the message with the highest priority to be transmitted, while any  
transmitters which lose arbitration simply stop transmitting and wait for an idle bus  
to begin transmitting again.  
If the BDLC wants to transmit onto the J1850 bus, but detects that another  
message is in progress, it waits until the bus is idle. However, if multiple nodes  
begin to transmit in the same synchronization window, message arbitration will  
occur beginning with the first bit after the SOF symbol and will continue with each  
bit thereafter.  
Data Sheet  
70  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
TRANSMITTER A DETECTS  
AN ACTIVE STATE ON  
THE BUS AND STOPS  
TRANSMITTING  
0
0
0
1
1
1
1
1
1
1
ACTIVE  
TRANSMITTER A  
PASSIVE  
0
0
0
0
ACTIVE  
TRANSMITTER B  
PASSIVE  
TRANSMITTER B WINS  
ARBITRATION AND  
CONTINUES  
TRANSMITTING  
ACTIVE  
J1850 BUS  
PASSIVE  
DATA  
BIT 2  
DATA  
BIT 3  
DATA  
BIT 4  
DATA  
BIT 5  
DATA  
BIT 1  
SOF  
Figure 4-13. J1850 VPW Bitwise Arbitrations  
The variable pulse width modulation (VPW) symbols and J1850 bus electrical  
characteristics are chosen carefully so that a logic 0 (active or passive type) will  
always dominate over a logic 1 (active or passive type) that is simultaneously  
transmitted. Hence, logic 0s are said to be dominant and logic 1s are said to be  
recessive.  
Whenever a node detects a dominant bit on BDRxD when it transmitted a  
recessive bit, the node loses arbitration and immediately stops transmitting. This is  
known as bitwise arbitration.  
Since a logic 0 dominates a logic 1, the message with the lowest value will have  
the highest priority and will always win arbitration. For instance, a message with  
priority 000 will win arbitration over a message with priority 011.  
This method of arbitration will work no matter how many bits of priority encoding  
are contained in the message.  
During arbitration, or even throughout the transmitting message, when an opposite  
bit is detected, transmission is stopped immediately unless it occurs on the 8th bit  
of a byte. In this case, the BDLC automatically will append up to two extra logic 1  
bits and then stop transmitting. These two extra bits will be arbitrated normally and  
thus will not interfere with another message. The second logic 1 bit will not be sent  
if the first loses arbitration. If the BDLC has lost arbitration to another valid  
message, then the two extra logic 1s will not corrupt the current message.  
However, if the BDLC has lost arbitration due to noise on the bus, then the two  
extra logic 1s will ensure that the current message will be detected and ignored as  
a noise-corrupted message.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
71  
4.5 BDLC Protocol Handler  
The protocol handler is responsible for framing, arbitration, CRC  
generation/checking, and error detection. The protocol handler conforms to SAE  
J1850 — Class B Data Communications Network Interface.  
NOTE:  
Freescale assumes that the reader is familiar with the J1850 specification before  
this protocol handler description is read.  
TO CPU  
CPU INTERFACE  
PROTOCOL HANDLER  
MUX INTERFACE  
PHYSICAL INTERFACE  
BDLC  
TO J1850 BUS  
Figure 4-14. BDLC Block Diagram  
4.5.1 Protocol Architecture  
The protocol handler contains the state machine, Rx shadow register, Tx shadow  
register, Rx shift register, Tx shift register, and loopback multiplexer as shown in  
Figure 4-15.  
4.5.2 Rx and Tx Shift Registers  
The Rx shift register gathers received serial data bits from the J1850 bus and  
makes them available in parallel form to the Rx shadow register. The Tx shift  
register takes data, in parallel form, from the Tx shadow register and presents it  
serially to the state machine so that it can be transmitted onto the J1850 bus.  
Data Sheet  
72  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
TO PHYSICAL INTERFACE  
BDRxD  
BDTxD  
DLOOP FROM BCR2  
LOOPBACK  
LOOPBACK CONTROL  
MULTIPLEXER  
STATE MACHINE  
Rx SHIFT REGISTER  
Tx SHIFT REGISTER  
Tx SHADOW REGISTER  
8
Rx SHADOW REGISTER  
8
TO CPU INTERFACE AND Rx/Tx BUFFERS  
Figure 4-15. BDLC Protocol Handler Outline  
4.5.3 Rx and Tx Shadow Registers  
Immediately after the Rx shift register has completed shifting in a byte of data, this  
data is transferred to the Rx shadow register and RDRF or RXIFR is set (see 4.6.4  
BDLC State Vector Register) and an interrupt is generated if the interrupt enable  
bit (IE) in BCR1 is set. After the transfer takes place, this new data byte in the Rx  
shadow register is available to the CPU interface, and the Rx shift register is ready  
to shift in the next byte of data. Data in the Rx shadow register must be retrieved  
by the CPU before it is overwritten by new data from the Rx shift register.  
Once the Tx shift register has completed its shifting operation for the current byte,  
the data byte in the Tx shadow register is loaded into the Tx shift register. After this  
transfer takes place, the Tx shadow register is ready to accept new data from the  
CPU when TDRE flag in BSVR is set.  
4.5.4 Digital Loopback Multiplexer  
The digital loopback multiplexer connects RxD to either BDTxD or BDRxD,  
depending on the state of the DLOOP bit in the BCR2 register (See 4.6.3 BDLC  
Control Register 2).  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
73  
4.5.5 State Machine  
All of the functions associated with performing the protocol are executed or  
controlled by the state machine. The state machine is responsible for framing,  
collision detection, arbitration, CRC generation/checking, and error detection. The  
following sections describe the BDLC’s actions in a variety of situations.  
4.5.5.1 4X Mode  
The BDLC can exist on the same J1850 bus as modules which use a special 4X  
(41.6 kbps) mode of J1850 variable pulse width modulation (VPW) operation. The  
BDLC cannot transmit in 4X mode, but can receive messages in 4X mode, if the  
RX4X bit is set in BCR2 register. If the RX4X bit is not set in the BCR2 register, any  
4X message on the J1850 bus is treated as noise by the BDLC and is ignored.  
4.5.5.2 Receiving a Message in Block Mode  
Although not a part of the SAE J1850 protocol, the BDLC does allow for a special  
block mode of operation of the receiver. As far as the BDLC is concerned, a block  
mode message is simply a long J1850 frame that contains an indefinite number of  
data bytes. All of the other features of the frame remain the same, including the  
SOF, CRC, and EOD symbols.  
Another node wishing to send a block mode transmission must first inform all other  
nodes on the network that this is about to happen. This is usually accomplished by  
sending a special predefined message.  
4.5.5.3 Transmitting a Message in Block Mode  
A block mode message is transmitted inherently by simply loading the bytes one  
by one into the BDR register until the message is complete. The programmer  
should wait until the TDRE flag (see 4.6.4 BDLC State Vector Register) is set  
prior to writing a new byte of data into the BDR register. The BDLC does not contain  
any predefined maximum J1850 message length requirement.  
4.5.5.4 J1850 Bus Errors  
The BDLC detects several types of transmit and receive errors which can occur  
during the transmission of a message onto the J1850 bus.  
Transmission Error  
If the message transmitted by the BDLC contains invalid bits or framing symbols  
on non-byte boundaries, this constitutes a transmission error. When a  
transmission error is detected, the BDLC immediately will cease transmitting.  
The error condition ($1C) is reflected in the BSVR register (see Table 4-5). If  
the interrupt enable bit (IE in BCR1) is set, a CPU interrupt request from the  
BDLC is generated.  
Data Sheet  
74  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
CRC Error  
A cyclical redundancy check (CRC) error is detected when the data bytes and  
CRC byte of a received message are processed and the CRC calculation result  
is not equal to $C4. The CRC code will detect any single and 2-bit errors, as well  
as all 8-bit burst errors and almost all other types of errors. The CRC error flag  
($18 in BSVR) is set when a CRC error is detected. (See 4.6.4 BDLC State  
Vector Register.)  
Symbol Error  
A symbol error is detected when an abnormal (invalid) symbol is detected in a  
message being received from the J1850 bus. However, if the BDLC is  
transmitting when this happens, it will be treated as a loss of arbitration ($14 in  
BSVR) rather than a transmitter error. The ($1C) symbol invalid or the  
out-of-range flag is set when a symbol error is detected. Therefore, ($1C)  
symbol invalid flag is stacked behind the ($14) LOA flag during a transmission  
error process. (See 4.6.4 BDLC State Vector Register.)  
Framing Error  
A framing error is detected if an EOD or EOF symbol is detected on a non-byte  
boundary from the J1850 bus. A framing error also is detected if the BDLC is  
transmitting the EOD and instead receives an active symbol. The ($1C) symbol  
invalid or the out-of-range flag is set when a framing error is detected. (See 4.6.4  
BDLC State Vector Register.)  
Bus Fault  
If a bus fault occurs, the response of the BDLC will depend upon the type of bus  
fault.  
If the bus is shorted to battery, the BDLC will wait for the bus to fall to a passive  
state before it will attempt to transmit a message. As long as the short remains,  
the BDLC will never attempt to transmit a message onto the J1850 bus.  
If the bus is shorted to ground, the BDLC will see an idle bus, begin to transmit  
the message, and then detect a transmission error ($1C in BSVR), since the  
short to ground would not allow the bus to be driven to the active (dominant)  
SOF state. The BDLC will abort that transmission and wait for the next CPU  
command to transmit.  
In any case, if the bus fault is temporary, as soon as the fault is cleared, the  
BDLC will resume normal operation. If the bus fault is permanent, it may result  
in permanent loss of communication on the J1850 bus. (See 4.6.4 BDLC State  
Vector Register.)  
BREAK — Break  
If a BREAK symbol is received while the BDLC is transmitting or receiving, an  
invalid symbol ($1C in BSVR) interrupt will be generated. Reading the BSVR  
register (see 4.6.4 BDLC State Vector Register) will clear this interrupt  
condition. The BDLC will wait for the bus to idle, then wait for a start-of-frame  
(SOF) symbol.  
The BDLC cannot transmit a BREAK symbol. It can only receive a BREAK  
symbol from the J1850 bus.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
75  
4.5.5.5 Summary  
Table 4-1. BDLC J1850 Bus Error Summary  
Error Condition  
BDLC Function  
For invalid bits or framing symbols on non-byte boundaries, invalid symbol  
interrupt will be generated. BDLC stops transmission.  
Transmission error  
Cyclical redundancy check (CRC) error  
CRC error interrupt will be generated. The BDLC will wait for SOF.  
Invalid symbol: BDLC receives invalid  
bits (noise)  
The BDLC will abort transmission immediately. Invalid symbol interrupt will  
be generated.  
Invalid symbol interrupt will be generated. The BDLC will wait for  
start-of-frame (SOF).  
Framing error  
Bus short to VDD  
The BDLC will not transmit until the bus is idle.  
Thermal overload will shut down physical interface. Fault condition is  
reflected in BSVR as an invalid symbol.  
Bus short to GND  
The BDLC will wait for the next valid SOF. Invalid symbol interrupt will be  
generated.  
BDLC receives BREAK symbol.  
4.6 BDLC CPU Interface  
The CPU interface provides the interface between the CPU and the BDLC and  
consists of five user registers.  
BDLC analog and roundtrip delay register (BARD)  
BDLC control register 1 (BCR1)  
BDLC control register 2 (BCR2)  
BDLC state vector register (BSVR)  
BDLC data register (BDR)  
TO CPU  
CPU INTERFACE  
PROTOCOL HANDLER  
MUX INTERFACE  
PHYSICAL INTERFACE  
BDLC  
TO J1850 BUS  
Figure 4-16. BDLC Block Diagram  
Data Sheet  
76  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
4.6.1 BDLC Analog and Roundtrip Delay Register  
This register programs the BDLC to compensate for various delays of different  
external transceivers. The default delay value is16 µs. Timing adjustments from  
9 µs to 24 µs in steps of 1 µs are available. The BARD register can be written only  
once after each reset, after which they become read-only bits. The register may be  
read at any time.  
Address:  
$003B  
Bit 7  
6
5
0
4
0
3
BO3  
0
2
BO2  
1
1
BO1  
1
Bit 0  
BO0  
1
Read:  
Write:  
Reset:  
ATE  
RXPOL  
R
0
R
0
1
1
R
= Reserved  
Figure 4-17. BDLC Analog and Roundtrip Delay Register (BARD)  
ATE — Analog Transceiver Enable Bit  
The analog transceiver enable (ATE) bit is used to select either the on-board or  
an off-chip analog transceiver.  
1 = Select on-board analog transceiver  
0 = Select off-chip analog transceiver  
NOTE:  
This device does not contain an on-board transceiver. This bit should be  
programmed to a logic 0 for proper operation.  
RXPOL — Receive Pin Polarity Bit  
The receive pin polarity (RXPOL) bit is used to select the polarity of an incoming  
signal on the receive pin. Some external analog transceivers invert the receive  
signal from the J1850 bus before feeding it back to the digital receive pin.  
1 = Select normal/true polarity; true non-inverted signal from the J1850 bus;  
for example, the external transceiver does not invert the receive signal  
0 = Select inverted polarity, where an external transceiver inverts the receive  
signal from the J1850 bus  
B03–B00 — BARD Offset Bits  
Table 4-2 shows the expected transceiver delay with respect to BARD offset  
values.  
Table 4-2. BDLC Transceiver Delay  
Corresponding Expected  
BARD Offset Bits B0[3:0]  
Transceiver’s Delays (µs)  
0000  
0001  
0010  
0011  
0100  
9
10  
11  
12  
13  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
77  
Table 4-2. BDLC Transceiver Delay (Continued)  
Corresponding Expected  
BARD Offset Bits B0[3:0]  
Transceiver’s Delays (µs)  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4.6.2 BDLC Control Register 1  
This register is used to configure and control the BDLC.  
Address:  
$003C  
Bit 7  
6
5
R1  
1
4
R0  
0
3
0
2
0
1
IE  
0
Bit 0  
WCM  
0
Read:  
Write:  
Reset:  
IMSG  
CLKS  
R
0
R
0
1
1
R
= Reserved  
Figure 4-18. BDLC Control Register 1 (BCR1)  
IMSG — Ignore Message Bit  
This bit is used to disable the receiver until a new start-of-frame (SOF) is  
detected.  
1 = Disable receiver. When set, all BDLC interrupt requests will be masked  
and the status bits will be held in their reset state. If this bit is set while  
the BDLC is receiving a message, the rest of the incoming message will  
be ignored.  
0 = Enable receiver. This bit is cleared automatically by the reception of an  
SOF symbol or a BREAK symbol. It will then generate interrupt requests  
and will allow changes of the status register to occur. However, these  
interrupts may still be masked by the interrupt enable (IE) bit.  
Data Sheet  
78  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
CLKS — Clock Bit  
The nominal BDLC operating frequency (fBDLC) must always be 1.048576 MHz  
or 1 MHz for J1850 bus communications to take place. The CLKS register bit  
allows the user to select the frequency (1.048576 MHz or 1 MHz) used to adjust  
symbol timing automatically.  
1 = Binary frequency (1.048576 MHz) selected for fBDLC  
0 = Integer frequency (1 MHz) selected for fBDLC  
R1 and R0 — Rate Select Bits  
These bits determine the amount by which the frequency of the MCU  
CGMXCLK signal is divided to form the MUX interface clock (fBDLC) which  
defines the basic timing resolution of the MUX interface. They may be written  
only once after reset, after which they become read-only bits.  
The nominal frequency of fBDLC must always be 1.048576 MHz or 1.0 MHz  
for J1850 bus communications to take place. Hence, the value programmed  
into these bits is dependent on the chosen MCU system clock frequency per  
Table 4-3.  
Table 4-3. BDLC Rate Selection  
fXCLK Frequency  
fBDLC  
R1  
0
R0  
0
Division  
1.049 MHz  
2.097 MHz  
4.194 MHz  
8.389 MHz  
1.000 MHz  
2.000 MHz  
4.000 MHz  
8.000 MHz  
1
2
4
8
1
2
4
8
1.049 MHz  
1.049 MHz  
1.049 MHz  
1.049 MHz  
1.00 MHz  
1.00 MHz  
1.00 MHz  
1.00 MHz  
0
1
1
0
1
1
0
0
0
1
1
0
1
1
IE— Interrupt Enable Bit  
This bit determines whether the BDLC will generate CPU interrupt requests in  
run mode. It does not affect CPU interrupt requests when exiting the BDLC stop  
or BDLC wait modes. Interrupt requests will be maintained until all of the  
interrupt request sources are cleared by performing the specified actions upon  
the BDLC’s registers. Interrupts that were pending at the time that this bit is  
cleared may be lost.  
1 = Enable interrupt requests from BDLC  
0 = Disable interrupt requests from BDLC  
If the programmer does not wish to use the interrupt capability of the BDLC, the  
BDLC state vector register (BSVR) can be polled periodically by the  
programmer to determine BDLC states. See 4.6.4 BDLC State Vector  
Register for a description of the BSVR.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
79  
WCM — Wait Clock Mode Bit  
This bit determines the operation of the BDLC during CPU wait mode. See 4.7.2  
Stop Mode and 4.7.1 Wait Mode for more details on its use.  
1 = Stop BDLC internal clocks during CPU wait mode  
0 = Run BDLC internal clocks during CPU wait mode  
4.6.3 BDLC Control Register 2  
This register controls transmitter operations of the BDLC. It is recommended that  
BSET and BCLR instructions be used to manipulate data in this register to ensure  
that the register’s content does not change inadvertently.  
Address:  
$003D  
Bit 7  
6
DLOOP  
1
5
RX4XE  
0
4
NBFS  
0
3
TEOD  
0
2
TSIFR  
0
1
TMIFR1  
0
Bit 0  
TMIFR0  
0
Read:  
Write:  
Reset:  
ALOOP  
1
Figure 4-19. BDLC Control Register 2 (BCR2)  
ALOOP — Analog Loopback Mode Bit  
This bit determines whether the J1850 bus will be driven by the analog physical  
interface’s final drive stage. The programmer can use this bit to reset the BDLC  
state machine to a known state after the off-chip analog transceiver is placed in  
loopback mode. When the user clears ALOOP, to indicate that the off-chip  
analog transceiver is no longer in loopback mode, the BDLC waits for an EOF  
symbol before attempting to transmit.  
1 = Input to the analog physical interface’s final drive stage is looped back to  
the BDLC receiver. The J1850 bus is not driven.  
0 = The J1850 bus will be driven by the BDLC. After the bit is cleared, the  
BDLC requires the bus to be idle for a minimum of end-of-frame symbol  
time (tTRV4) before message reception or a minimum of inter-frame  
symbol time (tTRV6) before message transmission. (See 17.15 BDLC  
Receiver VPW Symbol Timings.)  
DLOOP — Digital Loopback Mode Bit  
This bit determines the source to which the digital receive input (BDRxD) is  
connected and can be used to isolate bus fault conditions (see Figure 4-15).  
If a fault condition has been detected on the bus, this control bit allows the  
programmer to connect the digital transmit output to the digital receive input. In  
this configuration, data sent from the transmit buffer will be reflected back into  
the receive buffer. If no faults exist in the BDLC, the fault is in the physical  
interface block or elsewhere on the J1850 bus.  
1 = When set, BDRxD is connected to BDTxD. The BDLC is now in digital  
loopback mode.  
0 = When cleared, BDTxD is not connected to BDRxD. The BDLC is taken  
out of digital loopback mode and can now drive the J1850 bus normally.  
Data Sheet  
80  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
RX4XE — Receive 4X Enable Bit  
This bit determines if the BDLC operates at normal transmit and receive speed  
(10.4 kbps) or receive only at 41.6 kbps. This feature is useful for fast download  
of data into a J1850 node for diagnostic or factory programming of the node.  
1 = When set, the BDLC is put in 4X receive-only operation.  
0 = When cleared, the BDLC transmits and receives at 10.4 kbps.  
NBFS — Normalization Bit Format Select Bit  
This bit controls the format of the normalization bit (NB). (See Figure 4-20.) SAE  
J1850 strongly encourages using an active long (logic 0) for in-frame responses  
containing cyclical redundancy check (CRC) and an active short (logic 1) for  
in-frame responses without CRC.  
1 = NB that is received or transmitted is a 0 when the response part of an  
in-frame response (IFR) ends with a CRC byte. NB that is received or  
transmitted is a 1 when the response part of an in-frame response (IFR)  
does not end with a CRC byte.  
0 = NB that is received or transmitted is a 1 when the response part of an  
in-frame response (IFR) ends with a CRC byte. NB that is received or  
transmitted is a 0 when the response part of an in-frame response (IFR)  
does not end with a CRC byte.  
TEOD — Transmit End of Data Bit  
This bit is set by the programmer to indicate the end of a message is being sent  
by the BDLC. It will append an 8-bit CRC after completing transmission of the  
current byte. This bit also is used to end an in-frame response (IFR). If the  
transmit shadow register is full when TEOD is set, the CRC byte will be  
transmitted after the current byte in the Tx shift register and the byte in the Tx  
shadow register have been transmitted. (See 4.5.3 Rx and Tx Shadow  
Registers for a description of the transmit shadow register.) Once TEOD is set,  
the transmit data register empty flag (TDRE) in the BDLC state vector register  
(BSVR) is cleared to allow lower priority interrupts to occur. (See 4.6.4 BDLC  
State Vector Register.)  
1 = Transmit end-of-data (EOD) symbol  
0 = The TEOD bit will be cleared automatically at the rising edge of the first  
CRC bit that is sent or if an error is detected. When TEOD is used to end  
an IFR transmission, TEOD is cleared when the BDLC receives back a  
valid EOD symbol or an error condition occurs.  
TSIFR, TMIFR1, and TMIFR0 — Transmit In-Frame Response Control Bits  
These three bits control the type of in-frame response being sent. The  
programmer should not set more than one of these control bits to a 1 at any  
given time. However, if more than one of these three control bits are set to 1,  
the priority encoding logic will force these register bits to a known value as  
shown in Table 4-4. For example, if 011 is written to TSIFR, TMIFR1, and  
TMIFR0, then internally they will be encoded as 010. However, when these bits  
are read back, they will read 011.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
81  
Table 4-4. BDLC Transmit In-Frame Response  
Control Bit Priority Encoding  
Write/Read  
TSIFR  
Write/Read  
TMIFR1  
Write/Read  
TMIFR0  
Actual  
TSIFR  
Actual  
TMIFR1  
Actual  
TMIFR0  
0
1
0
0
0
X
1
0
0
X
X
1
0
1
0
0
0
0
1
0
0
0
0
1
The BDLC supports the in-frame response (IFR) feature of J1850 by setting  
these bits correctly. The four types of J1850 IFR are shown below. The purpose  
of the in-frame response modes is to allow multiple nodes to acknowledge  
receipt of the data by responding with their personal ID or physical address in a  
concatenated manner after they have seen the EOD symbol. If transmission  
arbitration is lost by a node while sending its response, it continues to transmit  
its ID/address until observing its unique byte in the response stream. For VPW  
modulation, because the first bit of the IFR is always passive, a normalization  
bit (active) must be generated by the responder and sent prior to its ID/address  
byte. When there are multiple responders on the J1850 bus, only one  
normalization bit is sent which assists all other transmitting nodes to sync up  
their response.  
HEADER  
DATA FIELD  
CRC  
TYPE 0 — NO IFR  
NB  
ID  
HEADER  
DATA FIELD  
CRC  
TYPE 1 — SINGLE BYTE TRANSMITTED FROM A SINGLE RESPONDER  
NB  
TYPE 2 — SINGLE BYTE TRANSMITTED FROM MULTIPLE RESPONDERS  
CRC  
HEADER  
DATA FIELD  
ID1  
ID N  
CRC  
HEADER  
NB  
IFR DATA FIELD  
DATA FIELD  
CRC  
(OPTIONAL)  
TYPE 3 — MULTIPLE BYTES TRANSMITTED FROM A SINGLE RESPONDER  
NB = Normalization Bit  
ID = Identifier (usually the physical address of the responder(s))  
Figure 4-20. Types of In-Frame Response (IFR)  
Data Sheet  
82  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
TSIFR — Transmit Single Byte IFR with No CRC (Type 1 or 2) Bit  
The TSIFR bit is used to request the BDLC to transmit the byte in the BDLC data  
register (BDR, $003F) as a single byte IFR with no CRC. Typically, the byte  
transmitted is a unique identifier or address of the transmitting (responding)  
node. See Figure 4-20.  
1 = If this bit is set prior to a valid EOD being received with no CRC error,  
once the EOD symbol has been received the BDLC will attempt to  
transmit the appropriate normalization bit followed by the byte in the  
BDR.  
0 = The TSIFR bit will be cleared automatically, once the BDLC has  
successfully transmitted the byte in the BDR onto the bus, or TEOD is  
set, or an error is detected on the bus.  
If the programmer attempts to set the TSIFR bit immediately after the EOD  
symbol has been received from the bus, the TSIFR bit will remain in the reset  
state and no attempt will be made to transmit the IFR byte.  
If a loss of arbitration occurs when the BDLC attempts to transmit and after the  
IFR byte winning arbitration completes transmission, the BDLC will again  
attempt to transmit the BDR (with no normalization bit). The BDLC will continue  
transmission attempts until an error is detected on the bus, or TEOD is set, or  
the BDLC transmission is successful.  
If loss or arbitration occurs in the last two bits of the IFR byte, two additional  
1 bits will not be sent out because the BDLC will attempt to retransmit the byte  
in the transmit shift register after the IRF byte winning arbitration completes  
transmission.  
TMIFR1 — Transmit Multiple Byte IFR with CRC (Type 3) Bit  
The TMIFR1 bit requests the BDLC to transmit the byte in the BDLC data  
register (BDR) as the first byte of a multiple byte IFR with CRC or as a single  
byte IFR with CRC. Response IFR bytes are still subject to J1850 message  
length maximums (see 4.4.2 J1850 Frame Format and Figure 4-20).  
If this bit is set prior to a valid EOD being received with no CRC error, once the  
EOD symbol has been received the BDLC will attempt to transmit the  
appropriate normalization bit followed by IFR bytes. The programmer should set  
TEOD after the last IFR byte has been written into the BDR register. After TEOD  
has been set and the last IFR byte has been transmitted, the CRC byte is  
transmitted.  
0 = The TMIFR1 bit will be cleared automatically – once the BDLC has  
successfully transmitted the CRC byte and EOD symbol – by the  
detection of an error on the multiplex bus or by a transmitter underrun  
caused when the programmer does not write another byte to the BDR  
after the TDRE interrupt.  
If the TMIFR1 bit is set, the BDLC will attempt to transmit the normalization  
symbol followed by the byte in the BDR. After the byte in the BDR has been  
loaded into the transmit shift register, a TDRE interrupt (see 4.6.4 BDLC State  
Vector Register) will occur similar to the main message transmit sequence.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
83  
The programmer should then load the next byte of the IFR into the BDR for  
transmission. When the last byte of the IFR has been loaded into the BDR, the  
programmer should set the TEOD bit in the BDLC control register 2 (BCR2).  
This will instruct the BDLC to transmit a CRC byte once the byte in the BDR is  
transmitted and then transmit an EOD symbol, indicating the end of the IFR  
portion of the message frame.  
However, if the programmer wishes to transmit a single byte followed by a CRC  
byte, the programmer should load the byte into the BDR before the EOD symbol  
has been received, and then set the TMIFR1 bit. Once the TDRE interrupt  
occurs, the programmer should then set the TEOD bit in the BCR2. This will  
result in the byte in the BDR being the only byte transmitted before the IFR CRC  
byte, and no TDRE interrupt will be generated.  
If the programmer attempts to set the TMIFR1 bit immediately after the EOD  
symbol has been received from the bus, the TMIFR1 bit will remain in the reset  
state, and no attempt will be made to transmit an IFR byte.  
If a loss of arbitration occurs when the BDLC is transmitting any byte of a  
multiple byte IFR, the BDLC will go to the loss of arbitration state, set the  
appropriate flag, and cease transmission.  
If the BDLC loses arbitration during the IFR, the TMIFR1 bit will be cleared and  
no attempt will be made to retransmit the byte in the BDR. If loss of arbitration  
occurs in the last two bits of the IFR byte, two additional 1 bits will be sent out.  
NOTE:  
The extra logic 1s are an enhancement to the J1850 protocol which forces a byte  
boundary condition fault. This is helpful in preventing noise from going onto the  
J1850 bus from a corrupted message.  
TMIFR0 — Transmit Multiple Byte IFR without CRC (Type 3) Bit  
The TMIFR0 bit is used to request the BDLC to transmit the byte in the BDLC  
data register (BDR) as the first byte of a multiple byte IFR without CRC.  
Response IFR bytes are still subject to J1850 message length maximums  
(see 4.4.2 J1850 Frame Format and Figure 4-20).  
1 = If this bit is set prior to a valid EOD being received with no CRC error,  
once the EOD symbol has been received the BDLC will attempt to  
transmit the appropriate normalization bit followed by IFR bytes. The  
programmer should set TEOD after the last IFR byte has been written  
into the BDR register. After TEOD has been set, the last IFR byte to be  
transmitted will be the last byte which was written into the BDR register.  
0 = The TMIFR0 bit will be cleared automatically; once the BDLC has  
successfully transmitted the EOD symbol; by the detection of an error on  
the multiplex bus; or by a transmitter underrun caused when the  
programmer does not write another byte to the BDR after the TDRE  
interrupt.  
If the TMIFR0 bit is set, the BDLC will attempt to transmit the normalization  
symbol followed by the byte in the BDR. After the byte in the BDR has been  
loaded into the transmit shift register, a TDRE interrupt (see 4.6.4 BDLC State  
Vector Register) will occur similar to the main message transmit sequence.  
Data Sheet  
84  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
The programmer should then load the next byte of the IFR into the BDR for  
transmission. When the last byte of the IFR has been loaded into the BDR, the  
programmer should set the TEOD bit in the BCR2. This will instruct the BDLC  
to transmit an EOD symbol once the byte in the BDR is transmitted, indicating  
the end of the IFR portion of the message frame. The BDLC will not append a  
CRC when the TMIFR0 is set.  
If the programmer attempts to set the TMIFR0 bit after the EOD symbol has  
been received from the bus, the TMIFR0 bit will remain in the reset state, and  
no attempt will be made to transmit an IFR byte.  
If a loss of arbitration occurs when the BDLC is transmitting, the TMIFR0 bit will  
be cleared and no attempt will be made to retransmit the byte in the BDR. If loss  
of arbitration occurs in the last two bits of the IFR byte, two additional 1 bits  
(active short bits) will be sent out.  
NOTE:  
The extra logic 1s are an enhancement to the J1850 protocol which forces a byte  
boundary condition fault. This is helpful in preventing noise from going onto the  
J1850 bus from a corrupted message.  
4.6.4 BDLC State Vector Register  
This register is provided to substantially decrease the CPU overhead associated  
with servicing interrupts while under operation of a multiplex protocol. It provides  
an index offset that is directly related to the BDLC’s current state, which can be  
used with a user-supplied jump table to rapidly enter an interrupt service routine.  
This eliminates the need for the user to maintain a duplicate state machine in  
software.  
Address:  
$003E  
Bit 7  
0
6
5
I3  
R
0
4
I2  
R
0
3
I1  
R
0
2
I0  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
0
0
R
= Reserved  
Figure 4-21. BDLC State Vector Register (BSVR)  
I0, I1, I2, and I3 — Interrupt Source Bits  
These bits indicate the source of the interrupt request that currently is pending.  
The encoding of these bits are listed in Table 4-5.  
Bits I0, I1, I2, and I3 are cleared by a read of the BSVR except when the BDLC  
data register needs servicing (RDRF, RXIFR, or TDRE conditions). RXIFR and  
RDRF can be cleared only by a read of the BSVR followed by a read of the  
BDLC data register (BDR). TDRE can either be cleared by a read of the BSVR  
followed by a write to the BDLC BDR or by setting the TEOD bit in BCR2.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
85  
Table 4-5. BDLC Interrupt Sources  
BSVR  
$00  
$04  
$08  
$0C  
$10  
$14  
$18  
$1C  
$20  
I3 I2 I1 I0  
Interrupt Source  
No interrupts pending  
Priority  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0 (Lowest)  
Received EOF  
1
Received IFR byte (RXIFR)  
BDLC Rx data register full (RDRF)  
BDLC Tx data register empty (TDRE)  
Loss of arbitration  
2
3
4
5
Cyclical redundancy check (CRC) error  
Symbol invalid or out of range  
Wakeup  
6
7
8 (Highest)  
Upon receiving a BDLC interrupt, the user can read the value within the BSVR,  
transferring it to the CPU’s index register. The value can then be used to index  
into a jump table, with entries four bytes apart, to quickly enter the appropriate  
service routine. For example:  
Service  
LDX  
JMP  
BSVR  
Fetch State Vector Number  
Enter service routine,  
(must end in RTI)  
JMPTAB,X  
*
*
JMPTAB  
JMP  
NOP  
JMP  
NOP  
JMP  
NOP  
SERVE0  
SERVE1  
SERVE2  
Service condition #0  
Service condition #1  
Service condition #2  
*
JMP  
END  
SERVE8  
Service condition #8  
NOTE:  
The NOPs are used only to align the JMPs onto 4-byte boundaries so that the value  
in the BSVR can be used intact. Each of the service routines must end with an RTI  
instruction to guarantee correct continued operation of the device. Note also that  
the first entry can be omitted since it corresponds to no interrupt occurring.  
The service routines should clear all of the sources that are causing the pending  
interrupts. Note that the clearing of a high priority interrupt may still leave a lower  
priority interrupt pending, in which case bits I0, I1, and I2 of the BSVR will then  
reflect the source of the remaining interrupt request.  
If fewer states are used or if a different software approach is taken, the jump table  
can be made smaller or omitted altogether.  
Data Sheet  
86  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
4.6.5 BDLC Data Register  
Address:  
$003F  
Bit 7  
6
5
4
3
2
1
Bit 0  
D0  
Read:  
Write:  
Reset:  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Unaffected by Reset  
Figure 4-22. BDLC Data Register (BDR)  
This register is used to pass the data to be transmitted to the J1850 bus from the  
CPU to the BDLC. It is also used to pass data received from the J1850 bus to the  
CPU. Each data byte (after the first one) should be written only after a Tx data  
register empty (TDRE) state is indicated in the BSVR.  
Data read from this register will be the last data byte received from the J1850 bus.  
This received data should only be read after an Rx data register full (RDRF)  
interrupt has occurred. (See 4.6.4 BDLC State Vector Register.)  
The BDR is double buffered via a transmit shadow register and a receive shadow  
register. After the byte in the transmit shift register has been transmitted, the byte  
currently stored in the transmit shadow register is loaded into the transmit shift  
register. Once the transmit shift register has shifted the first bit out, the TDRE flag  
is set, and the shadow register is ready to accept the next data byte. The receive  
shadow register works similarly. Once a complete byte has been received, the  
receive shift register stores the newly received byte into the receive shadow  
register. The RDRF flag is set to indicate that a new byte of data has been received.  
The programmer has one BDLC byte reception time to read the shadow register  
and clear the RDRF flag before the shadow register is overwritten by the newly  
received byte.  
To abort an in-progress transmission, the programmer should stop loading data  
into the BDR. This will cause a transmitter underrun error and the BDLC  
automatically will disable the transmitter on the next non-byte boundary. This  
means that the earliest a transmission can be halted is after at least one byte plus  
two extra logic 1s have been transmitted. The receiver will pick this up as an error  
and relay it in the state vector register as an invalid symbol error.  
NOTE:  
The extra logic 1s are an enhancement to the J1850 protocol which forces a byte  
boundary condition fault. This is helpful in preventing noise from going onto the  
J1850 bus from a corrupted message.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
87  
4.7 Low-Power Modes  
The following information concerns wait mode and stop mode.  
4.7.1 Wait Mode  
This power-conserving mode is entered automatically from run mode whenever the  
CPU executes a WAIT instruction and the WCM bit in BDLC control register 1  
(BCR1) is previously clear. In BDLC wait mode, the BDLC cannot drive any data.  
A subsequent successfully received message, including one that is in progress at  
the time that this mode is entered, will cause the BDLC to wake up and generate a  
CPU interrupt request if the interrupt enable (IE) bit in the BDLC control register 1  
(BCR1) is previously set. (See 4.6.2 BDLC Control Register 1 for a better  
understanding of IE.) This results in less of a power saving, but the BDLC is  
guaranteed to receive correctly the message which woke it up, since the BDLC  
internal operating clocks are kept running.  
NOTE:  
Ensuring that all transmissions are complete or aborted before putting the BDLC  
into wait mode is important.  
4.7.2 Stop Mode  
This power-conserving mode is entered automatically from run mode whenever the  
CPU executes a STOP instruction or if the CPU executes a WAIT instruction and  
the WCM bit in the BDLC control register 1 (BCR1) is previously set. This is the  
lowest power mode that the BDLC can enter.  
A subsequent passive-to-active transition on the J1850 bus will cause the BDLC to  
wake up and generate a non-maskable CPU interrupt request. When a STOP  
instruction is used to put the BDLC in stop mode, the BDLC is not guaranteed to  
correctly receive the message which woke it up, since it may take some time for  
the BDLC internal operating clocks to restart and stabilize. If a WAIT instruction is  
used to put the BDLC in stop mode, the BDLC is guaranteed to correctly receive  
the byte which woke it up, if and only if an end-of-frame (EOF) has been detected  
prior to issuing the WAIT instruction by the CPU. Otherwise, the BDLC will not  
correctly receive the byte that woke it up.  
If this mode is entered while the BDLC is receiving a message, the first subsequent  
received edge will cause the BDLC to wake up immediately, generate a CPU  
interrupt request, and wait for the BDLC internal operating clocks to restart and  
stabilize before normal communications can resume. Therefore, the BDLC is not  
guaranteed to receive that message correctly.  
NOTE:  
It is important to ensure all transmissions are complete or aborted prior to putting  
the BDLC into stop mode.  
Data Sheet  
88  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 5. Clock Generator Module (CGM)  
5.1 Introduction  
This section describes the clock generator module (CGM). The CGM generates the  
crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The  
CGM also generates the base clock signal, CGMOUT, from which the system  
integration module (SIM) derives the system clocks. CGMOUT is based on either  
the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK,  
divided by two. The PLL is a frequency generator designed for use with 1-MHz to  
16-MHz crystals or ceramic resonators. The PLL can generate an 8-MHz bus  
frequency without using a 32-MHz crystal.  
5.2 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of the crystal  
reference  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter  
operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
5.3 Functional Description  
The CGM consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates the  
constant crystal frequency clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the programmable VCO  
frequency clock, CGMVCLK.  
Base clock selector circuit — This software-controlled circuit selects either  
CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as  
the base clock, CGMOUT. The SIM derives the system clocks from  
CGMOUT.  
Figure 5-1 shows the structure of the CGM.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
89  
CRYSTAL OSCILLATOR  
OSC2  
CGMXCLK  
CGMOUT  
TO SIM, SCI, ADC, BDLC  
TO SIM  
CLOCK  
SELECT  
CIRCUIT  
OSC1  
A
B
÷2  
S*  
*When S = 1, CGMOUT = B  
SIMOSCEN  
CGMRDV  
CGMRCLK  
BCS  
USER MODE  
PTC3  
VDDA  
VSS  
CGMXFC  
VRS[7:4]  
MONITOR MODE  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
LOOP  
DETECTOR  
FILTER  
PLL ANALOG  
CGMINT  
LOCK  
BANDWIDTH  
CONTROL  
INTERRUPT  
CONTROL  
DETECTOR  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[7:4]  
CGMVDV  
CGMVCLK  
FREQUENCY  
DIVIDER  
Figure 5-1. CGM Block Diagram  
Data Sheet  
90  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
PLLF  
R
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
Read:  
1
R
1
PLL Control Register  
(PCTL) Write:  
$001C  
R
1
R
1
R
1
See page 99.  
Reset:  
Read:  
0
LOCK  
R
0
0
0
0
PLL Bandwidth Control Register  
$001D  
$001E  
AUTO  
0
ACQ  
0
XLD  
0
(PBWC) Write:  
R
0
R
0
R
0
R
0
See page 100.  
Reset:  
Read:  
0
PLL Programming Register  
MUL7  
MUL6  
MUL5  
1
MUL4  
0
VRS7  
0
VRS6  
1
VRS5  
1
VRS4  
0
(PPG) Write:  
See page 102.  
Reset:  
0
1
R
= Reserved  
NOTES:  
1. When AUTO = 0, PLLIE is forced to logic 0 and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as logic 0.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS[7:4] = $0, BCS is forced to logic 0 and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 5-2. CGM I/O Register Summary  
5.3.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an external  
crystal. The OSC1 pin is the input and the OSC2 pin is the output to the amplifier.  
The SIMOSCEN signal from the system integration module (SIM) enables the  
crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate  
equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK,  
the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing for  
operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends  
on external factors, including the crystal and related external components.  
An externally generated clock also can feed the OSC1 pin of the crystal oscillator  
circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.  
5.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or  
tracking mode, depending on the accuracy of the output frequency. The PLL can  
change between acquisition and tracking modes either automatically or manually.  
While reading this section, refer to 17.8 CGM Operating Conditions for operating  
frequencies.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
91  
5.3.2.1 Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies  
and for maximum immunity to external noise, including supply and CGMXFC noise.  
(For maximum immunity guidelines on electromagnetic compatibility, refer to  
document numbers AN1050/D and AN1263/D available from your Freescale sales  
office.) The VCO frequency is bound to a range from roughly one-half to twice the  
center-of-range frequency, fVRS. Modulating the voltage on the CGMXFC pin  
changes the frequency within this range. By design, fVRS is equal to the nominal  
center-of-range frequency, fNOM, 4.9152 MHz times a linear factor (L) or fNOM  
.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a crystal frequency, fRCLK, and is fed to the PLL through a buffer.  
The buffer output is the final reference clock, CGMRDV, running at a frequency  
equal to fRCLK  
.
The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is fed back  
through a programmable modulo divider. The modulo divider reduces the VCO  
clock by a factor, N (see 5.3.2.4 Programming the PLL). The divider’s output is  
the VCO feedback clock, CGMVDV, running at a frequency equal to fVCLK/N. See  
17.8 CGM Operating Conditions for more information.  
The phase detector then compares the VCO feedback clock (CGMVDV) with the  
final reference clock (CGMRDV). A correction pulse is generated based on the  
phase difference between the two signals. The loop filter then slightly alters the dc  
voltage on the external capacitor connected to CGMXFC, based on the width and  
direction of the correction pulse. The filter can make fast or slow corrections,  
depending on its mode, described in 5.3.2.2 Acquisition and Tracking Modes.  
The value of the external capacitor and the reference frequency determines the  
speed of the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV,  
and the final reference clock, CGMRDV. Therefore, the speed of the lock detector  
is directly proportional to the final reference frequency, fRD. The circuit determines  
the mode of the PLL and the lock condition based on this comparison.  
Data Sheet  
92  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
5.3.2.2 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating  
modes:  
Acquisition mode — In acquisition mode, the filter can make large (see  
17.10 CGM Acquisition/Lock Time Information) frequency corrections to  
the VCO. This mode is used at PLL startup or when the PLL has suffered a  
severe noise hit and the VCO frequency is far off the desired frequency.  
When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control  
register. (See 5.5.2 PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small (see 17.10  
CGM Acquisition/Lock Time Information) corrections to the frequency of  
the VCO. PLL jitter is much lower in tracking mode, but the response to  
noise is also slower. The PLL enters tracking mode when the VCO  
frequency is nearly correct, such as when the PLL is selected as the base  
clock source. (See 5.3.3 Base Clock Selector Circuit.) The PLL is  
automatically in tracking mode when not in acquisition mode or when the  
ACQ bit is set.  
5.3.2.3 Automatic and Manual PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually  
or automatically.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically  
switches between acquisition and tracking modes. Automatic bandwidth control  
mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as  
the source for the base clock, CGMOUT. (See 5.5.2 PLL Bandwidth Control  
Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt  
request and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In  
either case, when the LOCK bit is set, the VCO clock is safe to use as the source  
for the base clock. (See 5.3.3 Base Clock Selector Circuit.) If the VCO is selected  
as the source for the base clock and the LOCK bit is clear, the PLL has suffered a  
severe noise hit and the software must take appropriate action, depending on the  
application. (See 5.6 Interrupts for information and precautions on using  
interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth control  
mode:  
The ACQ bit (see 5.5.2 PLL Bandwidth Control Register) is a read-only  
indicator of the mode of the filter. (See 5.3.2.2 Acquisition and Tracking  
Modes.)  
The ACQ bit is set when the VCO frequency is within a certain tolerance,  
TRK, and is cleared when the VCO frequency is out of a certain tolerance,  
UNT. (See 5.9 Acquisition/Lock Time Specifications for more  
information.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
93  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain tolerance,  
LOCK, and is cleared when the VCO frequency is out of a certain tolerance,  
UNL. (See 5.9 Acquisition/Lock Time Specifications for more  
information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock  
condition changes, toggling the LOCK bit. (See 5.5.1 PLL Control  
Register.)  
The PLL also can operate in manual mode (AUTO = 0). Manual mode is used by  
systems that do not require an indicator of the lock condition for proper operation.  
Such systems typically operate well below fBUSMAX and require fast startup.  
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before  
turning on the PLL in manual mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time,  
tACQ (see 5.9 Acquisition/Lock Time Specifications), after turning on the  
PLL by setting PLLON in the PLL control register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode before  
selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
5.3.2.4 Programming the PLL  
Use this procedure to program the PLL:  
1. Choose the desired bus frequency, fBUSDES  
.
Example: fBUSDES = 8 MHz  
2. Calculate the desired VCO frequency, fVCLKDES  
.
fVCLKDES = 4 × fBUSDES  
Example: fVCLKDES = 4 × 8 MHz = 32 MHz  
3. Using a reference frequency, fRCLK, equal to the crystal frequency, calculate  
the VCO frequency multiplier, N.  
NOTE:  
The round function means that the result is rounded to the nearest integer.  
fVCLKDES  
----------------------  
fRCLK  
N = round  
32 MHz  
Example: N = -------------------- = 8  
4 MHz  
Data Sheet  
94  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
4. Calculate the VCO frequency, fVCLK  
.
fVCLK = N × fRCLK  
Example: fVCLK = 8 × 4 MHz = 32 MHz  
5. Calculate the bus frequency, fBUS, and compare fBUS with fBUSDES. If the  
calculated fBUS is not within the tolerance limits of your application, select  
another fBUSDES or another fRCLK  
.
f
VCLK  
f
= -------------  
4
BUS  
BUS  
32 MHz  
Example:  
f
= -------------------- = 8 MHz  
4
6. Using the value 4.9152 MHz for fNOM, calculate the VCO linear range  
multiplier, L. The linear range multiplier controls the frequency range of the  
PLL.  
f
VCLK  
-------------  
L = round  
fNOM  
32 MHz  
4.9152 MHz  
-------------------------------  
Example: L =  
= 7  
7. Calculate the VCO center-of-range frequency, fVRS. The center-of-range  
frequency is the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
fVRS = L × fNOM  
Example: fVRS = 7 × 4.9152 MHz = 34.4 MHz  
NOTE:  
Exceeding the recommended maximum bus frequency or VCO frequency can  
crash the MCU.  
For proper operation,  
f
NOM  
------------  
f
f  
VCLK  
VRS  
2
8. Program the PLL registers accordingly:  
a. In the upper four bits of the PLL programming register (PPG), program  
the binary equivalent of N.  
b. In the lower four bits of the PLL programming register (PPG), program  
the binary equivalent of L.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
95  
5.3.2.5 Special Programming Exceptions  
The programming method described in 5.3.2.4 Programming the PLL does not  
account for two possible exceptions. A value of zero for N or L is meaningless when  
used in the equations given. To account for these exceptions:  
A zero value for N is interpreted exactly the same as a value of one.  
A zero value for L disables the PLL and prevents its selection as the source  
for the base clock. (See 5.3.3 Base Clock Selector Circuit.)  
5.3.3 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock (CGMXCLK) or the VCO clock  
(CGMVCLK) as the source of the base clock (CGMOUT). The two input clocks go  
through a transition control circuit that waits up to three CGMXCLK cycles and  
three CGMVCLK cycles to change from one clock source to the other. During this  
time, CGMOUT is held in stasis. The output of the transition control circuit is then  
divided by two to correct the duty cycle. Therefore, the bus clock frequency, which  
is one-half of the base clock frequency, is one-fourth the frequency of the selected  
clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL  
is not turned on. The PLL cannot be turned off if the VCO clock is selected. The  
PLL cannot be turned on or off simultaneously with the selection or deselection of  
the VCO clock. The VCO clock also cannot be selected as the base clock source  
if the factor L is programmed to a zero. This value would set up a condition  
inconsistent with the operation of the PLL, so that the PLL would be disabled and  
the crystal clock would be forced as the source of the base clock.  
5.3.4 CGM External Connections  
In its typical configuration, the CGM requires seven external components. Five of  
these are for the crystal oscillator and two are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator configuration, as  
shown in Figure 5-3. Figure 5-3 shows only the logical representation of the  
internal components and may not represent actual circuitry. The oscillator  
configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2, can also be a fixed capacitor  
Feedback resistor, RB  
Series resistor, RS, optional  
Data Sheet  
96  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator  
guidelines and may not be required for all ranges of operation, especially with  
high-frequency crystals. Refer to the crystal manufacturer’s data for more  
information.  
Figure 5-3 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter capacitor, CF  
Routing should be done with great care to minimize signal cross talk and noise.  
(See 5.9 Acquisition/Lock Time Specifications for routing information and more  
information on the filter capacitor’s value and its effects on PLL performance.)  
SIMOSCEN  
CGMXCLK  
OSC1  
OSC2  
VSS  
CGMXFC  
CF  
VDDA/VDDAREF  
VDD  
*
RS  
CBYP  
RB  
X1  
C1  
C2  
*RS can be 0 (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data.  
Figure 5-3. CGM External Connections  
5.4 I/O Signals  
The following paragraphs describe the CGM input/output (I/O) signals.  
5.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
5.4.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
97  
5.4.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. A  
small external capacitor is connected to this pin.  
NOTE:  
To prevent noise problems, CF should be placed as close to the CGMXFC pin as  
possible, with minimum routing distances and no routing of other signals across the  
CF connection.  
5.4.4 Analog Power Pin (VDDA/VDDAREF  
)
VDDA/VDDAREF is a power pin used by the analog portions of the PLL. Connect the  
VDDA/VDDAREF pin to the same voltage potential as the VDD pin.  
NOTE:  
Route VDDA/VDDAREF carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
5.4.5 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and  
enables the oscillator and PLL.  
5.4.6 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the  
crystal, fXCLK, and comes directly from the crystal oscillator circuit. Figure 5-3  
shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not  
represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude  
of CGMXCLK can be unstable at startup.  
5.4.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which  
generates the MCU clocks. CGMOUT is a 50% duty cycle clock running at twice  
the bus frequency. CGMOUT is software programmable to be either the oscillator  
output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two.  
5.4.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
Data Sheet  
98  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
5.5 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL) (See 5.5.1 PLL Control Register.)  
PLL bandwidth control register (PBWC) (See 5.5.2 PLL Bandwidth  
Control Register.)  
PLL programming register (PPG) (See 5.5.3 PLL Programming Register.)  
Figure 5-2 is a summary of the CGM registers.  
5.5.1 PLL Control Register  
The PLL control register contains the interrupt enable and flag bits, the on/off  
switch, and the base clock selector bit.  
Address:  
$001C  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
R
R
1
R
1
R
1
R
0
0
1
R
= Reserved  
Figure 5-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request when the  
LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL  
bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads  
as logic 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an  
interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when  
the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the  
PLLF bit by reading the PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE:  
Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on  
the PLL control register clears the PLLF bit.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
99  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK.  
PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT  
(BCS = 1). (See 5.3.3 Base Clock Selector Circuit.) Reset sets this bit so that  
the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT  
frequency is one-half the frequency of the selected clock. BCS cannot be set  
while the PLLON bit is clear. After toggling BCS, it may take up to three  
CGMXCLK cycles and three CGMVCLK cycles to complete the transition from  
one source clock to the other. During the transition, CGMOUT is held in stasis.  
(See 5.3.3 Base Clock Selector Circuit.) Reset and the STOP instruction clear  
the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE:  
PLLON and BCS have built-in protection that prevents the base clock selector  
circuit from selecting the VCO clock as the source of the base clock if the PLL is  
off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set  
when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires  
two writes to the PLL control register. (See 5.3.3 Base Clock Selector Circuit.)  
PCTL[3:0] — Unimplemented bits  
These bits provide no function and always read as logic 1s.  
5.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register:  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
Address:  
$001D  
Bit 7  
6
5
ACQ  
0
4
XLD  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
LOCK  
AUTO  
R
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 5-5. PLL Bandwidth Control Register (PBWC)  
Data Sheet  
100  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When  
initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before  
turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the  
VCO clock, CGMVCLK, is locked (running at the programmed frequency).  
When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. Reset  
clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL  
is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a  
read/write bit that controls whether the PLL is in acquisition mode or tracking  
mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from  
manual operation is stored in a temporary location and is recovered when  
manual operation resumes. Reset clears this bit, enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
XLD — Crystal Loss Detect Bit  
When the VCO output (CGMVCLK) is driving CGMOUT, this read/write bit can  
indicate whether the crystal reference frequency is active or not. To check the  
status of the crystal reference, follow these steps:  
1. Write a logic 1 to XLD.  
2. Wait N × 4 cycles. (N is the VCO frequency multiplier.)  
3. Read XLD.  
1 = Crystal reference not active  
0 = Crystal reference active  
The crystal loss detect function works only when the BCS bit is set, selecting  
CGMVCLK to drive CGMOUT. When BCS is clear, XLD always reads as logic 0.  
PBWC[3:0] — Reserved for Test  
These bits enable test functions not available in user mode. To ensure software  
portability from development systems to user applications, software should write  
0s to PBWC[3:0] whenever writing to PBWC.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
101  
5.5.3 PLL Programming Register  
The PLL programming register contains the programming information for the  
modulo feedback divider and the programming information for the hardware  
configuration of the VCO.  
Address:  
$001E  
Bit 7  
6
MUL6  
1
5
MUL5  
1
4
MUL4  
0
3
VRS7  
0
2
VRS6  
1
1
VRS5  
1
Bit 0  
VRS4  
0
Read:  
Write:  
Reset:  
MUL7  
0
Figure 5-6. PLL Programming Register (PPG)  
MUL[7:4] — Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects the VCO  
frequency multiplier, N. (See 5.3.2 Phase-Locked Loop Circuit (PLL).) A value  
of $0 in the multiplier select bits configures the modulo feedback divider the  
same as a value of $1. Reset initializes these bits to $6 to give a default multiply  
value of 6.  
Table 5-1. VCO Frequency Multiplier (N) Selection  
MUL7:MUL6:MUL5:MUL4  
VCO Frequency Multiplier (N)  
0000  
0001  
0010  
0011  
1
1
2
3
1101  
1110  
1111  
13  
14  
15  
NOTE:  
The multiplier select bits have built-in protection that prevents them from being  
written when the PLL is on (PLLON = 1).  
VRS[7:4] — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier, L,  
which controls the hardware center-of-range frequency, fVRS, (see 5.3.2  
Phase-Locked Loop Circuit (PLL)). VRS[7:4] cannot be written when the  
PLLON bit in the PLL control register (PCTL) is set. (See 5.3.2.5 Special  
Programming Exceptions.) A value of $0 in the VCO range selects bits,  
disables the PLL, and clears the BCS bit in the PCTL. (See 5.3.3 Base Clock  
Data Sheet  
102  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Selector Circuit and 5.3.2.5 Special Programming Exceptions for more  
information.) Reset initializes the bits to $6 to give a default range multiply value  
of 6.  
NOTE:  
The VCO range select bits have built-in protection that prevents them from being  
written when the PLL is on (PLLON = 1) and prevents selection of the VCO clock  
as the source of the base clock (BCS = 1) if the VCO range select bits are all clear.  
The VCO range select bits must be programmed correctly. Incorrect programming  
can result in failure of the PLL to achieve lock.  
5.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL  
can generate a CPU interrupt request every time the LOCK bit changes state. The  
PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL.  
PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled  
or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and  
PLLF reads as logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see if the  
request was due to an entry into lock or an exit from lock. When the PLL enters  
lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT  
source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock  
frequency is corrupt, and appropriate precautions should be taken. If the  
application is not frequency sensitive, interrupts should be disabled to prevent PLL  
interrupt service routines from impeding software performance or from exceeding  
stack limitations.  
NOTE:  
Software can select the CGMVCLK divided by two as the CGMOUT source even  
if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL  
is locked before setting the BCS bit.  
5.7 Special Modes  
5.7.1 Wait Mode  
The WAIT and STOP instructions put the MCU in low-power standby modes.  
The WAIT instruction does not affect the CGM. Before entering wait mode,  
software can disengage and turn off the PLL by clearing the BCS and PLLON bits  
in the PLL control register (PCTL). Less power-sensitive applications can  
disengage the PLL without turning it off. Applications that require the PLL to wake  
the MCU from wait mode also can deselect the PLL output without turning off the  
PLL.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
103  
5.7.2 Stop Mode  
When the STOP instruction executes, the SIM drives the SIMOSCEN signal low,  
disabling the CGM and holding low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the STOP instruction is executed with the VCO clock (CGMVCLK) divided by two  
driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control  
register (PCTL), thereby selecting the crystal clock (CGMXCLK) divided by two as  
the source of CGMOUT. When the MCU recovers from STOP, the crystal clock  
divided by two drives CGMOUT and BCS remains clear.  
5.8 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear status bits during the break state. (See  
13.7.3 SIM Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write the PLL control  
register during the break state without affecting the  
PLLF bit.  
5.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most  
critical PLL design parameters. Proper design and use of the PLL ensure the  
highest stability and lowest acquisition/lock times.  
5.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction  
time, within specified tolerances, of the system to a step input. In a PLL, the step  
input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance  
usually is specified as a percent of the step input or when the output settles to the  
desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input.  
For example, consider a system with a 5% acquisition time tolerance. If a  
command instructs the system to change from 0 Hz to 1 MHz, the acquisition time  
is the time taken for the frequency to reach 1 MHz ±50 kHz. 50 kHz = 5% of the  
1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise  
hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz ±5 kHz.  
5 kHz = 5% of the 100-kHz step input.  
Data Sheet  
104  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Other systems refer to acquisition and lock times as the time the system takes to  
reduce the error between the actual output and the desired output to within  
specified tolerances. Therefore, the acquisition time or lock time vary according to  
the original error in the output. Minor errors may not even be registered. Typical  
PLL applications prefer to use this definition because the system requires the  
output frequency to be within a certain tolerance of the desired frequency  
regardless of the size of the initial error.  
The discrepancy in these definitions makes it difficult to specify an acquisition or  
lock time for a typical PLL. Therefore, the definitions for acquisition and lock times  
for this module are:  
Acquisition time, t  
, is the time the PLL takes to reduce the error between  
ACQ  
the actual output frequency and the desired output frequency to less than  
the tracking mode entry tolerance, . Acquisition time is based on an  
TRK  
ORIG DES  
initial frequency error, [(f  
– f  
)/f  
], of not more than ±100%. In  
DES  
automatic bandwidth control mode (see 5.3.2.3 Automatic and Manual  
PLL Bandwidth Modes), acquisition time expires when the ACQ bit  
becomes set in the PLL bandwidth control register (PBWC).  
Lock time, t ock, is the time the PLL takes to reduce the error between the  
L
actual output frequency and the desired output frequency to less than the  
lock mode entry tolerance, ock. Lock time is based on an initial frequency  
L
error, [(f  
– f  
)/f  
], of not more than ±100%. In automatic  
DES  
ORIG DES  
bandwidth control mode, lock time expires when the LOCK bit becomes set  
in the PLL bandwidth control register (PBWC). (See 5.3.2.3 Automatic and  
Manual PLL Bandwidth Modes.)  
Obviously, the acquisition and lock times can vary according to how large the  
frequency error is and may be shorter or longer in many cases.  
5.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still  
providing the highest possible stability. These reaction times are not constant,  
however. Many factors directly and indirectly affect the acquisition time.  
The most critical parameter which affects the PLL reaction times is the reference  
frequency, f  
. This frequency is the input to the phase detector and controls how  
RDV  
often the PLL makes corrections. For stability, the corrections must be small  
compared to the desired frequency, so several corrections are required to reduce  
the frequency error. Therefore, the slower the reference the longer it takes to make  
these corrections. This parameter is also under user control via the choice of an  
external crystal frequency, f  
.
XCLK  
Another critical parameter is the external filter capacitor. The PLL modifies the  
voltage on the VCO by adding or subtracting charge from this capacitor. Therefore,  
the rate at which the voltage changes for a given frequency error (thus change in  
charge) is proportional to the capacitor size. The size of the capacitor also is related  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
105  
to the stability of the PLL. If the capacitor is too small, the PLL cannot make small  
enough adjustments to the voltage and the system cannot lock. If the capacitor is  
too large, the PLL may not be able to adjust the voltage in a reasonable time. (See  
5.9.3 Choosing a Filter Capacitor.)  
Also important is the operating voltage potential applied to the PLL analog portion  
potential (V  
/VDDAREF). Typically, V  
/VDDAREF is at the same potential as  
DDA  
DDA  
V
. The power supply potential alters the characteristics of the PLL. A fixed value  
DD  
is best. Variable supplies, such as batteries, are acceptable if they vary within a  
known range at very slow speeds. Noise on the power supply is not acceptable,  
because it causes small frequency errors which continually change the acquisition  
time of the PLL.  
Temperature and processing also can affect acquisition time because the electrical  
characteristics of the PLL change. The part operates as specified as long as these  
influences stay within the specified limits. External factors, however, can cause  
drastic changes in the operation of the PLL. These factors include noise injected  
into the PLL through the filter capacitor, filter capacitor leakage, stray impedances  
on the circuit board, and even humidity or circuit board contamination.  
5.9.3 Choosing a Filter Capacitor  
As described in 5.9.2 Parametric Influences on Reaction Time, the external filter  
capacitor, CF, is critical to the stability and reaction time of the PLL. The PLL is also  
dependent on reference frequency, fRDV, and supply voltage, VDD. The value of the  
capacitor, therefore, must be chosen with supply potential and reference frequency  
in mind. For proper operation, the external filter capacitor must be chosen  
according to the following equation. Refer to 5.3.2 Phase-Locked Loop Circuit  
(PLL) for the value of fRDV and 17.9 CGM Component Information for the value  
of CFACT  
.
V
DDA  
-------------  
CF = C  
FACT  
fRDV  
For the value of VDDA, choose the voltage potential at which the MCU is operating.  
If the power supply is variable, choose a value near the middle of the range of  
possible supply values.  
This equation does not always yield a commonly available capacitor size, so round  
to the nearest available size. If the value is between two different sizes, choose the  
higher value for better stability. Choosing the lower size may seem attractive for  
acquisition time improvement, but the PLL can become unstable. Also, always  
choose a capacitor with a tight tolerance (±20% or better) and low dissipation.  
Data Sheet  
106  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
5.9.4 Reaction Time Calculation  
The actual acquisition and lock times can be calculated using the equations in this  
subsection. These equations yield nominal values under the following conditions:  
Correct selection of filter capacitor, CF (See 5.9.3 Choosing a Filter  
Capacitor.)  
Room temperature operation  
Negligible external leakage on CGMXFC  
Negligible noise  
The K factor in the equations is derived from internal PLL parameters. KACQ is the  
K factor when the PLL is configured in acquisition mode, and KTRK is the K factor  
when the PLL is configured in tracking mode. (See 5.3.2.2 Acquisition and  
Tracking Modes.)  
V
8
DDA   
------------- -------------  
=
tACQ  
    
fRDV KACQ  
V
4
DDA   
------------- ------------  
=
tAL  
    
fRDV KTRK  
tLock = tACQ + tAL  
NOTE:  
There is an inverse proportionality between the lock time and the reference  
frequency.  
In automatic bandwidth control mode, the acquisition and lock times are quantized  
into units based on the reference frequency. (See 5.3.2.3 Automatic and Manual  
PLL Bandwidth Modes.) A certain number of clock cycles, n  
ascertain that the PLL is within the tracking mode entry tolerance, ∆  
, is required to  
ACQ  
, before  
TRK  
exiting acquisition mode. Additionally, a certain number of clock cycles, nTRK, is  
required to ascertain that the PLL is within the lock mode entry tolerance, ∆  
.
ock  
L
Therefore, the acquisition time, t  
acquisition to lock time, tAL, is an integer multiple of n  
Phase-Locked Loop Circuit (PLL) for the value of f  
, is an integer multiple of n  
/f  
, and the  
ACQ  
ACQ RDV  
/f  
. Refer to 5.3.2  
TRK RDV  
. Also, since the average  
RDV  
frequency over the entire measurement period must be within the specified  
tolerance, the total time usually is longer than t ock as calculated above.  
L
In manual mode, it is usually necessary to wait considerably longer than t  
ock  
L
before selecting the PLL clock (see 5.3.3 Base Clock Selector Circuit), because  
the factors described in 5.9.2 Parametric Influences on Reaction Time can slow  
the lock time considerably.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
107  
Data Sheet  
108  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 6. Computer Operating Properly (COP)  
6.1 Introduction  
This section describes the computer operating properly (COP) module, a  
free-running counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by periodically  
clearing the COP counter.  
6.2 Functional Description  
Figure 6-1 shows the structure of the COP module.  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system  
integration module (SIM) counter. COP timeouts are determined strictly by the  
CGM crystal oscillator clock signal (CGMXCLK), not the CGMOUT signal (see  
Figure 5-1. CGM Block Diagram).  
If not cleared by software, the COP counter overflows and generates an  
asynchronous reset after (213 – 24) or (218 – 24) CGMXCLK cycles, depending  
upon COPS bit in the MOR register ($001F) (See Section 10. Mask Options.)  
With a 4.9152-MHz crystal and the COPS bit in the MOR register ($001F) set to a  
logic 1, the COP timeout period is approximately 53.3 ms. Writing any value to  
location $FFFF before overflow occurs clears the COP counter, clears bits 12  
through 4 of the SIM counter, and prevents reset. A CPU interrupt routine can be  
used to clear the COP.  
NOTE:  
The COP should be serviced as soon as possible out of reset and before entering  
or after exiting stop mode to guarantee the maximum selected amount of time  
before the first timeout.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit  
in the SIM reset status register (SRSR) (see 13.7.2 SIM Reset Status Register).  
While the microcontroller is in monitor mode, the COP module is disabled if the  
RST pin or the IRQ pin is held at VDD + VHI (see 17.4 5.0-Volt DC Electrical  
Characteristics). During a break state, VDD + VHI on the RST pin disables the  
COP module.  
NOTE:  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from generating a  
reset even while the main program is not working properly. The one exception to  
this is wait mode (see 6.7.1 Wait Mode).  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
109  
SIM  
CGMXCLK  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
SIM RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP MODULE  
COPEN (FROM SIM)  
COPD (FROM MOR)  
6-BIT COP COUNTER  
RESET  
CLEAR  
COPCTL WRITE  
COP COUNTER  
COPS  
1. See 13.3.2 Active Resets from Internal Sources.  
Figure 6-1. COP Block Diagram  
6.3 I/O Signals  
6.3.1 CGMXCLK  
The following paragraphs describe the signals shown in Figure 6-1.  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to  
the crystal frequency.  
6.3.2 STOP Instruction  
The STOP instruction clears the SIM counter.  
Data Sheet  
110  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 6.4 COP Control  
Register) clears the COP counter and clears bits 12 through 4 of the SIM counter.  
Reading the COP control register returns the reset vector.  
6.3.4 Internal Reset Resources  
An internal reset clears the SIM counter and the COP counter. (See 13.3.2 Active  
Resets from Internal Sources.)  
6.3.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A  
reset vector fetch clears the SIM counter.  
6.3.6 COPD (COP Disable)  
The COPD bit reflects the state of the COP disable bit (COPD) in the MOR register  
($001F). This signal disables COP-generated resets when asserted. (See Section  
10. Mask Options.)  
6.3.7 COPS (COP Short Timeout)  
The COPS bit selects the state of the COP short timeout bit (COPS) in the MOR  
register ($001F). Timeout periods can be (218 –24) or (213 –24) CGMXCLK cycles.  
(See 10.3 Mask Option Register.)  
6.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset  
vector. Writing any value to $FFFF clears the COP counter and starts a new  
timeout period. Reading location $FFFF returns the low byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
6.5 Interrupts  
The COP does not generate CPU interrupt requests.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
111  
6.6 Monitor Mode  
The COP is disabled in monitor mode when VDD + VHI (see 17.4 5.0-Volt DC  
Electrical Characteristics) is present on the IRQ pin or on the RST pin.  
6.7 Low-Power Modes  
The following subsections describe the low-power modes.  
6.7.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during  
wait mode, periodically clear the COP counter in a CPU interrupt routine.  
NOTE:  
If the COP is enabled in wait mode, it must be periodically refreshed. (See 6.3.6  
COPD (COP Disable).)  
6.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the SIM counter.  
Service the COP immediately before entering or after exiting stop mode to ensure  
a full COP timeout period after entering or exiting stop mode.  
The STOP bit in the MOR register ($001F) (see Section 10. Mask Options)  
enables the STOP instruction. To prevent inadvertently turning off the COP with a  
STOP instruction, disable the STOP instruction by programming the STOP bit to  
logic 0.  
6.8 COP Module During Break Interrupts  
The COP is disabled during a break interrupt when VDD + VHI (see 17.4 5.0-Volt  
DC Electrical Characteristics) is present on the RST pin.  
Data Sheet  
112  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 7. Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08 Reference  
Manual (Freescale document order number CPU08RM/AD) contains a description  
of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension  
of addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
113  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory  
map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
V
0
C
1
1
H
I
N
Z
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
Data Sheet  
114  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space.  
H is the upper byte of the index register, and X is the lower byte. H:X is the  
concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register  
to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location  
on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack  
pointer (RSP) instruction sets the least significant byte to $FF and does not affect  
the most significant byte. The stack pointer decrements as data is pushed onto the  
stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack  
pointer can function as an index register to access data on the stack. The CPU  
uses the contents of the stack pointer to determine the conditional address of the  
operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE:  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF)  
frees direct address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
115  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next  
instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next sequential  
memory location every time an instruction or operand is fetched. Jump, branch,  
and interrupt operations load the program counter with an address other than that  
of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located  
at $FFFE and $FFFF. The vector address is the address of the first instruction to  
be executed after exiting the reset state.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that  
indicate the results of the instruction just executed. Bits 6 and 5 are set  
permanently to logic 1. The following paragraphs describe the functions of the  
condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The  
signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
Data Sheet  
116  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits  
3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation.  
The half-carry flag is required for binary-coded decimal (BCD) arithmetic  
operations. The DAA instruction uses the states of the H and C flags to  
determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU  
interrupts are enabled when the interrupt mask is cleared. When a CPU  
interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the  
interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE:  
To maintain M6805 Family compatibility, the upper byte of the index register (H) is  
not stacked automatically. If the interrupt service routine modifies H, then the user  
must stack and unstack H using the PSHH and PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack  
and restores the interrupt mask from the stack. After any reset, the interrupt  
mask is set and can be cleared only by the clear interrupt mask software  
instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation,  
or data manipulation produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or  
data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a  
carry out of bit 7 of the accumulator or when a subtraction operation requires  
a borrow. Some instructions — such as bit test and branch, shift, and  
rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
117  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction  
set.  
Refer to the CPU08 Reference Manual (Freescale document order number  
CPU08RM/AD) for a description of the instructions and addressing modes and  
more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
interrupts. After exit from wait mode by interrupt, the I bit remains clear. After  
exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
external interrupts. After exit from stop mode by external interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in  
monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If  
the break address register match occurs on the last cycle of a CPU instruction, the  
break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break  
interrupt and returns the MCU to normal operation if the break interrupt has been  
deasserted.  
Data Sheet  
118  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
119  
Table 7-1. Instruction Set Summary (Sheet 2 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
BGT opr  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
Data Sheet  
120  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 7-1. Instruction Set Summary (Sheet 3 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
Decimal Adjust A  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
DAA  
U –  
INH  
72  
2
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
121  
Table 7-1. Instruction Set Summary (Sheet 4 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
6B ff rr  
7B rr  
9E6B ff rr  
IX  
SP1  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INH  
5C  
Increment  
IX1  
6C ff  
7C  
IX  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
Jump  
PC Jump Address  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
Data Sheet  
122  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 7-1. Instruction Set Summary (Sheet 5 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
LSL opr  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLA  
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
LSL opr,X  
LSL ,X  
68 ff  
78  
9E68 ff  
b7  
b0  
LSL opr,SP  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0
64 ff  
74  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
Rotate Right through Carry  
Reset Stack Pointer  
ROR opr,X  
ROR ,X  
ROR opr,SP  
IX1  
66 ff  
76  
9E66 ff  
b7  
b0  
IX  
SP1  
RSP  
SP $FF  
– INH  
9C  
1
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
123  
Table 7-1. Instruction Set Summary (Sheet 6 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
Return from Interrupt  
INH  
80  
81  
7
4
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
– INH  
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract with Carry  
A (A) – (M) – (C)  
IX1  
IX  
F2  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
– INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
Data Sheet  
124  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 7-1. Instruction Set Summary (Sheet 7 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H  
I
N Z C  
TST opr  
DIR  
INH  
INH  
IX1  
IX  
3D dd  
4D  
3
1
1
3
2
4
TSTA  
TSTX  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
6D ff  
7D  
9E6D ff  
TST opr,SP  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
A
C
CCR  
dd  
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
H
H
hh ll  
I
ii  
Accumulator  
Carry/borrow bit  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
High and low bytes of operand address in extended addressing  
Interrupt mask  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
Immediate operand byte  
Immediate source to direct destination addressing mode  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
:
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
125  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
4
RTS  
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
4
CMP  
SP1 1 IX  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
5
4
4
6
4
2
3
4
3
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
BLT  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
REL 2 IMM 2 DIR  
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
2
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
BLE  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
5
DEC  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
CLC  
INH  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
4
ROL  
3
ROL  
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
INH  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
4
DEC  
3
DEC  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
ORA  
4
ORA  
3
ORA  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
3
DIR  
5
2
DIR  
4
5
3
3
5
6
4
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1 2 IX  
5
4
INC  
3
INC  
IX  
2
TST  
2
JMP  
DIR  
4
JSR  
4
JMP  
3
JMP  
IX1  
5
JSR  
IX1  
3
LDX  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
SP1  
4
TST  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
1
2
2
2
1
1
IX  
3
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
NOP  
3
DIR  
5
2
DIR  
4
SP1 1 IX  
INH  
2
2
2
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
4
LDX  
BRSET7 BSET7  
MOV  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
2
IX+D  
1
1
4
4
SP2 2 IX1  
5
3
3
SP1 1 IX  
4
3
CLR  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
DIR DIR  
STX  
SP2 2 IX1  
STX  
SP1 1 IX  
3
2
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Data Sheet — MC68HC08AS32  
Section 8. External Interrupt (IRQ)  
8.1 Introduction  
This section describes the non-maskable external interrupt (IRQ) input.  
Features of the IRQ include:  
8.2 Features  
Dedicated external interrupt pin (IRQ)  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
8.3 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt request.  
Figure 8-1 shows the structure of the IRQ module.  
ACK  
TO CPU FOR  
BIL/BIH  
VECTOR  
FETCH  
INSTRUCTIONS  
DECODER  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
LATCH  
IMASK  
MODE  
HIGH  
TO MODE  
SELECT  
LOGIC  
VOLTAGE  
DETECT  
Figure 8-1. IRQ Block Diagram  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
127  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 8-2. Block Diagram Highlighting the IRQ Block and Pins  
Addr.  
Register Name  
Bit 7  
6
5
0
4
0
3
IRQF  
R
2
0
1
IMASK  
0
Bit 0  
MODE1  
0
Read:  
0
R
0
0
IRQ Status and Control  
$001A  
Register (ISCR) Write:  
See page 132.  
R
R
0
R
0
ACK1  
0
Reset:  
0
0
R
= Reserved  
Figure 8-3. IRQ I/O Register Summary  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch  
remains set until one of the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector fetch.  
Software clear — Software can clear an interrupt latch by writing to the  
appropriate acknowledge bit in the interrupt status and control register  
(ISCR). Writing a logic 1 to the ACK bit clears the IRQ latch.  
Reset — A reset automatically clears both interrupt latches.  
The external interrupt pin is falling-edge triggered and is software configurable to  
be both falling-edge and low-level triggered. The MODE bit in the ISCR controls the  
triggering sensitivity of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt latch remains set until a  
vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level triggered, the interrupt latch  
remains set until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt pin returns  
to logic 1. As long as the pin is low, the interrupt request remains pending. A reset  
will clear the latch and the MODE control bit, thereby clearing the interrupt even if  
the pin stays low.  
When set, the IMASK bit in the ISCR masks all external interrupt requests. A  
latched interrupt request is not presented to the interrupt priority logic unless the  
corresponding IMASK bit is clear.  
NOTE:  
The interrupt mask (I) in the condition code register (CCR) masks all interrupt  
requests, including external interrupt requests. (See Figure 8-4.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
129  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION.  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 8-4. IRQ Interrupt Flowchart  
Data Sheet  
130  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
8.4 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector  
fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-level  
sensitive. With MODE set, both of the following actions must occur to clear the IRQ  
latch:  
Vector fetch or software clear — A vector fetch generates an interrupt  
acknowledge signal to clear the latch. Software may generate the interrupt  
acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status  
and control register (ISCR). The ACK bit is useful in applications that poll the  
IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit  
can also prevent spurious interrupts due to noise. Setting ACK does not  
affect subsequent transitions on the IRQ pin. A falling edge on IRQ that  
occurs after writing to the ACK bit latches another interrupt request. If the  
IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the  
vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, the  
IRQ latch remains set.  
The vector fetch or software clear and the return of the IRQ pin to logic 1 can occur  
in any order. The interrupt request remains pending as long as the IRQ pin is at  
logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the  
interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With MODE  
clear, a vector fetch or software clear immediately clears the IRQ latch.  
The IRQF bit in the ISCR register can be used to check for pending interrupts. The  
IRQF bit is not affected by the IMASK bit, which makes it useful in applications  
where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE:  
When using the level-sensitive interrupt trigger, avoid false interrupts by masking  
interrupt requests in the interrupt routine.  
8.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ interrupt latch can  
be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear the latches during the break state. (See  
13.7.3 SIM Break Flag Control Register.)  
To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to  
the BCFE bit. If a latch is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
131  
To protect the latch during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and  
control register during the break state has no effect on the IRQ latch.  
8.6 IRQ Status and Control Register  
The IRQ status and control register (ISCR) controls and monitors operation of the  
IRQ module. The ISCR:  
Shows the state of the IRQ interrupt flag  
Clears the IRQ interrupt latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001A  
Bit 7  
0
6
5
0
4
0
3
IRQF  
R
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
ACK  
0
0
0
0
R
= Reserved  
Figure 8-5. IRQ Status and Control Register (ISCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as  
logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset  
clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears  
MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Data Sheet  
132  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 9. Low-Voltage Inhibit (LVI)  
9.1 Introduction  
This section describes the low-voltage inhibit module (LVI), which monitors the  
voltage on the VDD pin and can force a reset when the VDD voltage falls to the LVI  
trip voltage.  
9.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Digital filtering of VDD pin level  
9.3 Functional Description  
Figure 9-1 shows the structure of the LVI module. The LVI is enabled out of reset.  
The LVI module contains a bandgap reference circuit and comparator. The LVI  
power bit, LVIPWR, enables the LVI to monitor VDD voltage. The LVI reset bit,  
LVIRST, enables the LVI module to generate a reset when VDD falls below a  
voltage, VLVIF, and remains at or below that level for nine or more consecutive CPU  
cycles. LVISTOP, enables the LVI module during stop mode. This will ensure when  
the STOP instruction is implemented, the LVI will continue to monitor the voltage  
level on VDD. LVIPWR, LVISTOP, and LVIRST are in the MOR register ($001F)  
(see Section 10. Mask Options). Once an LVI reset occurs, the MCU remains in  
reset until VDD rises above a voltage, VLVIR. The output of the comparator controls  
the state of the LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to  
external peripheral devices.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
133  
VDD  
LVIPWR  
FROM CONFIG  
FROM CONFIG  
LVIRST  
CPU CLOCK  
VDD  
VDD > VLVIR = 0  
DD < VLVIF = 1  
LVI RESET  
LOW VDD  
DETECTOR  
DIGITAL FILTER  
V
STOP MODE  
FILTER BYPASS  
ANLGTRIP  
LVIOUT  
LVISTOP  
FROM CONFIG  
Figure 9-1. LVI Module Block Diagram  
9.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VLVIF level, software can  
monitor VDD by polling the LVIOUT bit. In the MOR register, the LVIPWR bit must  
be at logic1 to enable the LVI module, and the LVIRST bit must be at logic 0 to  
disable LVI resets.  
9.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VLVIF level, enabling LVI  
resets allows the LVI module to reset the MCU when VDD falls to the VLVIF level  
and remains at or below that level for nine or more consecutive CPU cycles. In the  
MOR register, the LVIPWR and LVIRST bits must be at logic 1 to enable the LVI  
module and to enable LVI resets.  
9.3.3 False Reset Protection  
The VDD pin level is digitally filtered to reduce false resets due to power supply  
noise. In order for the LVI module to reset the MCU,VDD must remain at or below  
the VLVIF level for nine or more consecutive CPU cycles. VDD must be above VLVIR  
for only one CPU cycle to bring the MCU out of reset.  
Data Sheet  
134  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
9.4 LVI Status Register  
The LVI status register flags VDD voltages below the VLVIF level.  
Address:  
$FE0F  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: LVIOUT  
0
Write:  
Reset:  
R
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
R
= Reserved  
Figure 9-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VLVIF  
voltage or 32 to 40 CGMXCLK cycles. (See Table 9-1.) Reset clears the  
LVIOUT bit.  
Table 9-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
At Level:  
VDD > VLVIR  
For Number of CGMXCLK Cycles:  
Any  
0
0
VDD < VLVIF  
VDD < VLVIF  
VDD < VLVIF  
< 32 CGMXCLK Cycles  
Between 32 and 40  
CGMXCLK Cycles  
0 or 1  
> 40 CGMXCLK Cycles  
Any  
1
VLVIF < VDD < VLVIR  
Previous Value  
9.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
9.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low-power standby modes.  
9.6.1 Wait Mode  
With the LVIPWR bit in the MOR register programmed to logic 1, the LVI module  
is active after a WAIT instruction.  
With the LVIRST bit in the MOR register programmed to logic 1, the LVI module  
can generate a reset and bring the MCU out of wait mode.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
135  
9.6.2 Stop Mode  
With the LVISTOP and LVIPWR bits in the configuration register programmed to a  
logic 1, the LVI module will be active after a STOP instruction. Because CPU clocks  
are disabled during stop mode, the LVI trip must bypass the digital filter to generate  
a reset and bring the MCU out of stop.  
With the LVIPWR bit in the MOR register programmed to logic 1 and the LVISTOP  
bit at a logic 0, the LVI module will be inactive after a STOP instruction.  
NOTE:  
If the LVIPWR bit is at logic 1, the LVISTOP bit must be at logic 0 to meet the  
minimum stop mode IDD specification.  
Data Sheet  
136  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 10. Mask Options  
10.1 Introduction  
This section describes use of mask options by custom-masked read-only memory  
(ROMs) and the mask option register in the MC68HC08AS32.  
10.2 Functional Description  
The mask options are hard-wired connections, specified at the same time as the  
ROM code, which allow the user to customize the MCU. The options control the  
enable or disable ability of the following functions:  
ROM security(1)  
Resets caused by the LVI module  
Power to the LVI module  
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)  
COP timeout period (218–24 CGMXCLK cycles or 213–24 CGMXCLK  
cycles)  
STOP instruction  
Computer operating properly module (COP)  
The mask option register ($001F) is used in the initialization of various options. For  
error free compatibility with the emulator OTP (M68HC908AT32CFN), a write to  
$001F in the MC68HC08AS32 has no effect in MCU operation.  
10.3 Mask Option Register  
Address:  
$001F  
Bit 7  
6
5
LVIRST  
R
4
LVIPWR  
R
3
SSREC  
R
2
COPRS  
R
1
STOP  
R
Bit 0  
COPD  
R
Read: LVISTOP ROMSEC  
Write:  
R
R
R
Reset:  
Unaffected by reset  
= Reserved  
Figure 10-1. Mask Option Register (MOR)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the ROM data difficult for unauthorized users.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
137  
LVISTOP — LVI Stop Mode Enable Bit  
LVISTOP enables the LVI module in stop mode.(See Section 9. Low-Voltage  
Inhibit (LVI).)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
ROMSEC — ROM Security Bit  
ROMSEC enables the ROM security feature. Setting the ROMSEC bit prevents  
reading of the ROM contents. Access to the ROM is denied to unauthorized  
users of customer-specified software.  
1 = ROM security enabled  
0 = ROM security disabled  
LVIRST — LVI Reset Enable Bit  
LVIRST enables the reset signal from the LVI module. (See Section 9.  
Low-Voltage Inhibit (LVI).)  
1 = LVI module resets enabled  
0 = LVI module resets disabled  
LVIPWR — LVI Power Enable Bit  
LVIPWR enables the LVI module. (See Section 9. Low-Voltage Inhibit (LVI).)  
1 = LVI module power enabled  
0 = LVI module power disabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles  
instead of a 4096-CGMXCLK cycle delay. (See 15.5.2 Stop Mode.)  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLK cycles  
NOTE:  
If using an external crystal oscillator, do not set the SSREC bit.  
COPRS — COP Rate Select Timeout Bit  
COPS selects the short COP timeout period. (See Section 6. Computer  
Operating Properly (COP).)  
1 = COP timeout period is 213–24 CGMXCLK cycles.  
0 = COP timeout period is 218–24 CGMXCLK cycles.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 6. Computer Operating  
Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
Data Sheet  
138  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 11. Input/Output (I/O) Ports  
11.1 Introduction  
Forty bidirectional input/output (I/O) pins form six parallel ports. All I/O pins are  
programmable as inputs or outputs.  
NOTE:  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation, termination  
reduces excess current consumption and the possibility of electrostatic damage.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 140.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
(PTB) Write:  
See page 142.  
Reset:  
Read:  
0
0
0
Port C Data Register  
(PTC) Write:  
R
R
R
See page 144.  
Reset:  
Read:  
0
Port D Data Register  
PTD6  
PTD5  
(PTD) Write:  
R
See page 146.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 141.  
Reset:  
Read:  
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB7  
0
DDRB6  
DDRB5  
(DDRB) Write:  
See page 143.  
Reset:  
Read:  
0
0
0
0
Data Direction Register C  
MCLKEN  
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
(DDRC) Write:  
See page 145.  
R
R
0
Reset:  
0
0
= Reserved  
R
Figure 11-1. I/O Port Register Summary  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
139  
Addr.  
Register Name  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
0
R
0
Data Direction Register D  
DDR2  
0
$0007  
(DDRD) Write:  
See page 147.  
Reset:  
Read:  
Port E Data Register  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
$0008  
$0009  
$000C  
$000D  
(PTE) Write:  
See page 149.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Port F Data Register  
PTF3  
R
PTF2  
PTF1  
PTF0  
(PTF) Write:  
R
R
R
See page 151.  
Reset:  
Read:  
Unaffected by reset  
Data Direction Register E  
DDRE7  
DDRE6  
DDRE5  
DDRE4  
DDRE3  
DDRE2  
DDRE1  
DDRE0  
(DDRE) Write:  
See page 150.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
DDRF3  
0
0
DDRF2  
0
0
DDRF1  
0
0
DDRF0  
0
0
Data Direction Register F  
(DDRF) Write:  
See page 153.  
R
0
R
R
0
R
0
Reset:  
0
= Reserved  
R
Figure 11-1. I/O Port Register Summary (Continued)  
11.2 Port A  
Port A is an 8-bit general-purpose bidirectional I/O port.  
11.2.1 Port A Data Register  
The port A data register contains a data latch for each of the eight port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
Figure 11-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A  
pin is under the control of the corresponding bit in data direction register A.  
Reset has no effect on port A data.  
Data Sheet  
140  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
11.2.2 Data Direction Register A  
Data direction register A determines whether each port A pin is an input or an  
output. Writing a logic 1 to a DDRA bit enables the output buffer for the  
corresponding port A pin; a logic 0 disables the output buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 11-3. Data Direction Register A (DDRA)  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[7:0],  
configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE:  
Avoid glitches on port A pins by writing to the port A data register before changing  
data direction register A bits from 0 to 1.  
Figure 11-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 11-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch.  
When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 11-1 summarizes the operation of the port A pins.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
141  
Table 11-1. Port A Pin Functions  
Accessesto  
Accesses to PTA  
Read Write  
DDRA  
Bit  
PTA  
Bit  
DDRA  
I/O Pin Mode  
Read/Write  
DDRA[7:0]  
DDRA[7:0]  
PTA[7:0](1)  
PTA[7:0]  
0
X
X
Input, Hi-Z  
Output  
Pin  
1
PTA[7:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
11.3 Port B  
Port B is an 8-bit special-function port that shares all of its pins with the  
analog-to-digital converter (ADC).  
11.3.1 Port B Data Register  
The port B data register contains a data latch for each of the eight port B pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
ATD4 ATD3  
Alternate  
Functions:  
ATD7  
ATD6  
ATD5  
ATD2  
ATD1  
ATD0  
Figure 11-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B  
pin is under the control of the corresponding bit in data direction register B.  
Reset has no effect on port B data.  
ATD[7:0] — ADC Channels  
PTB7/ATD7–PTB0/ATD0 are eight of the 15 analog-to-digital converter  
channels. The ADC channel select bits, CH[4:0], determine whether the  
PTB7/ATD7–PTB0/ATD0 pins are ADC channels or general-purpose I/O pins.  
If an ADC channel is selected and a read of this corresponding bit in the port B  
data register occurs, the data will be 0 if the data direction for this bit is  
programmed as an input. Otherwise, the data will reflect the value in the data  
latch. (See Section 3. Analog-to-Digital Converter (ADC).) Data direction  
register B (DDRB) does not affect the data direction of port B pins that are being  
used by the ADC. However, the DDRB bits always determine whether reading  
port B returns to the states of the latches or logic 0.  
Data Sheet  
142  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
11.3.2 Data Direction Register B  
Data direction register B determines whether each port B pin is an input or an  
output. Writing a logic 1 to a DDRB bit enables the output buffer for the  
corresponding port B pin; a logic 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 11-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0],  
configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE:  
Avoid glitches on port B pins by writing to the port B data register before changing  
data direction register B bits from 0 to 1.  
Figure 11-7 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 11-7. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch.  
When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the  
pin, or logic 0 if that particular bit is in use by the ADC. The data latch can always  
be written, regardless of the state of its data direction bit. Table 11-2 summarizes  
the operation of the port B pins.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
143  
Table 11-2. Port B Pin Functions  
Accesses to  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
Bit in Use  
by ADC  
I/O Pin  
Mode  
DDRB  
Read/Write  
DDRB[7:0]  
DDRB[7:0]  
DDRB[7:0]  
DDRB[7:0]  
Read  
Write  
PTB[7:0](1)  
PTB[7:0]  
0
1
0
1
X
X
X
X
No  
No  
Input, Hi-Z  
Output  
Pin  
PTB[7:0]  
0
PTB[7:0](1)  
PTB[7:0]  
Yes  
Yes  
Input, Hi-Z  
Input, Hi-Z  
PTB[7:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
11.4 Port C  
Port C is a 5-bit general-purpose bidirectional I/O port that shares one of its pins  
with the bus clock (MCLK).  
11.4.1 Port C Data Register  
The port C data register contains a data latch for each of the five port C pins.  
Address:  
$0002  
Bit 7  
0
6
0
5
0
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
R
R
R
Unaffected by reset  
R
= Reserved  
Alternate  
Functions:  
MCLK  
Figure 11-8. Port C Data Register (PTC)  
PTC[4:0] — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C  
pin is under the control of the corresponding bit in data direction register C.  
Reset has no effect on port C data.  
MCLK — T12 System Bus Clock Bit  
The bus clock (MCLK) is driven out of PTC2 when enabled by the MCLKEN bit  
in PTCDDR7.  
Data Sheet  
144  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
11.4.2 Data Direction Register C  
Data direction register C determines whether each port C pin is an input or an  
output. Writing a logic 1 to a DDRC bit enables the output buffer for the  
corresponding port C pin; a logic 0 disables the output buffer.  
Address:  
$0006  
Bit 7  
6
5
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
MCLKEN  
R
R
0
0
0
R
= Reserved  
Figure 11-9. Data Direction Register C (DDRC)  
MCLKEN — MCLK Enable Bit  
This read/write bit enables MCLK to be an output signal on PTC2. If MCLK is  
enabled, PTC2 is under the control of MCLKEN. Reset clears this bit.  
1 = MCLK output enabled  
0 = MCLK output disabled  
DDRC[4:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC[7:0],  
configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE:  
Avoid glitches on port C pins by writing to the port C data register before changing  
data direction register C bits from 0 to 1.  
Figure 11-10 shows the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 11-10. Port C I/O Circuit  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
145  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch.  
When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 11-3 summarizes the operation of the port C pins.  
Table 11-3. Port C Pin Functions  
Accesses to  
Accesses to PTC  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
DDRC  
Read/Write  
DDRC[7]  
Read  
0
Write  
PTC2  
[7] = 0  
PTC2  
PTC2  
X
Input, Hi-Z  
Output, MCLK  
Input, Hi-Z  
Output  
[7] = 1  
DDRC[7]  
Data Latch  
Pin  
PTC[4:3, 1:0](1)  
PTC[4:3, 1:0]  
0
1
DDRC[4:0]  
DDRC[4:0]  
X
PTC[4:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
11.5 Port D  
Port D is an 8-bit special-function I/O port that shares all of its pins with the  
analog-to-digital converter (ADC).  
11.5.1 Port D Data Register  
The port D data register contains a data latch for the seven port D pins.  
Address:  
$0003  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
R
Unaffected by reset  
ATD12 ATD11  
Alternate  
Functions:  
ATD14/  
TCLK  
R
R
ATD13  
ATD10  
ATD9  
ATD8  
= Reserved  
Figure 11-11. Port D Data Register (PTD)  
PTD[6:0] — Port D Data Bits  
PTD[6:0] are read/write, software programmable bits. Data direction of PTD[6:0]  
pins are under the control of the corresponding bit in data direction register D.  
Data Sheet  
146  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
ATD[14:8] — ADC Channel Status Bits  
PTD6/ATD14/TCLK–PTD0/ATD8 are seven of the 15 analog-to-digital  
converter channels. The ADC channel select bits, CH[4:0], determine whether  
the PTD6/ATD14/TCLK–PTD0/ATD8 pins are ADC channels or  
general-purpose I/O pins. If an ADC channel is selected and a read of this  
corresponding bit in the port B data register occurs, the data will be 0 if the data  
direction for this bit is programmed as an input. Otherwise, the data will reflect  
the value in the data latch. (See Section 3. Analog-to-Digital Converter  
(ADC).)  
NOTE:  
Data direction register D (DDRD) does not affect the data direction of port D pins  
that are being used by the ADC. However, the DDRD bits always determine  
whether reading port D returns the states of the latches or logic 0.  
TCLK — Timer Clock Input Bit  
The PTD6/ATD14/TCLK pin is the external clock input for the TIM. The  
prescaler select bits, PS[2:0], select PTD6/ATD14/TCLK as the TIM clock input.  
(See 15.8.1 TIM Status and Control Register.) When not selected as the TIM  
clock, PTD6/ATD14/TCLK is available for general-purpose I/O or as an ADC  
channel.  
NOTE:  
Do not use ADC channel ATD14 when using the PTD6/ATD14/TCLK pin as the  
clock input for the TIM.  
11.5.2 Data Direction Register D  
Data direction register D determines whether each port D pin is an input or an  
output. Writing a logic 1 to a DDRD bit enables the output buffer for the  
corresponding port D pin; a logic 0 disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
0
0
0
Figure 11-12. Data Direction Register D (DDRD)  
DDRD[6:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[6:0],  
configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE:  
Avoid glitches on port D pins by writing to the port D data register before changing  
data direction register D bits from 0 to 1.  
Figure 11-13 shows the port D I/O logic.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
147  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
PTDx  
RESET  
WRITE PTD ($0003)  
READ PTD ($0003)  
PTDx  
Figure 11-13. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch.  
When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 11-4 summarizes the operation of the port D pins.  
Table 11-4. Port D Pin Functions  
Accesses to  
Accesses to PTD  
DDRD  
Bit  
PTD  
Bit  
Bit in Use  
by ADC  
I/O Pin  
Mode  
DDRD  
Read/Write  
DDRD[6:0]  
DDRD[6:0]  
DDRD[6:0]  
DDRD[6:0]  
Read  
Pin  
Write  
PTD[6:0](1)  
PTD[6:0]  
0
1
0
1
X
X
X
X
No  
No  
Input, Hi-Z  
Output  
PTD[6:0]  
0
PTD[6:0](1)  
PTD[6:0]  
Yes  
Yes  
Input, Hi-Z  
Input, Hi-Z  
PTD[6:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
Data Sheet  
148  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
11.6 Port E  
Port E is an 8-bit special-function port that shares two of its pins with the timer  
interface module (TIM), two of its pins with the serial communications interface  
module (SCI), and four of its pins with the serial peripheral interface module (SPI).  
11.6.1 Port E Data Register  
The port E data register contains a data latch for each of the eight port E pins.  
Address:  
$0008  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
SS TCH1  
Alternate  
Function:  
SPSCK  
MOSI  
MISO  
TCH0  
RxD  
TxD  
Figure 11-14. Port E Data Register (PTE)  
PTE[7:0] — Port E Data Bits  
PTE[7:0] are read/write, software programmable bits. Data direction of each  
port E pin is under the control of the corresponding bit in data direction  
register E.  
SPSCK — SPI Serial Clock Bit  
The PTE7/SPSCK pin is the serial clock input of an SPI slave module and serial  
clock output of an SPI master module. When the SPE bit is clear, the  
PTE7/SPSCK pin is available for general-purpose I/O.  
MOSI — Master Out/Slave In Bit  
The PTE6/MOSI pin is the master out/slave in terminal of the SPI module. When  
the SPE bit is clear, the PTE6/MOSI pin is available for general-purpose I/O.  
(See 14.13.1 SPI Control Register.)  
MISO — Master In/Slave Out Bit  
The PTE5/MISO pin is the master in/slave out terminal of the SPI module. When  
the SPI enable bit, SPE, is clear, the SPI module is disabled, and the  
PTE5/MISO pin is available for general-purpose I/O. (See 14.13.1 SPI Control  
Register.)  
SS — Slave Select Bit  
The PTE4/SS pin is the slave select input of the SPI module. When the SPE bit  
is clear or when the SPI master bit, SPMSTR, is set and MODFEN bit is low, the  
PTE4/SS pin is available for general-purpose I/O. (See 14.12.4 SS (Slave  
Select).) When the SPI is enabled as a slave, the DDRE4 bit in data direction  
register E (DDRE) has no effect on the PTE4/SS pin.  
NOTE:  
Data direction register E (DDRE) does not affect the data direction of port E pins  
that are being used by the SPI module. However, the DDRE bits always determine  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
149  
whether reading port E returns the states of the latches or the states of the pins.  
(See Table 11-5.)  
TCH[1:0] — Timer Channel I/O Bits  
The PTE3/TCH1–PTE2/TCH0 pins are the TIM input capture/output compare  
pins. The edge/level select bits, ELSxB:ELSxA, determine whether the  
PTE3/TCH1–PTE2/TCH0 pins are timer channel I/O pins or general-purpose  
I/O pins. (See 15.8.4 TIM Channel Status and Control Registers.)  
NOTE:  
Data direction register E (DDRE) does not affect the data direction of port E  
pins that are being used by the TIM. However, the DDRE bits always determine  
whether reading port E returns the states of the latches or the states of the pins.  
(See Table 11-5.)  
RxD — SCI Receive Data Input Bit  
The PTE1/RxD pin is the receive data input for the SCI module. When the  
enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE1/RxD  
pin is available for general-purpose I/O. (See 12.8.1 SCI Control Register 1.)  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module. When the  
enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE0/TxD  
pin is available for general-purpose I/O. (See 12.8.1 SCI Control Register 1.)  
NOTE:  
Data direction register E (DDRE) does not affect the data direction of port E pins  
that are being used by the SCI module. However, the DDRE bits always determine  
whether reading port E returns the states of the latches or the states of the pins.  
(See Table 11-5.)  
11.6.2 Data Direction Register E  
Data direction register E determines whether each port E pin is an input or an  
output. Writing a logic 1 to a DDRE bit enables the output buffer for the  
corresponding port E pin; a logic 0 disables the output buffer.  
Address:  
$000C  
Bit 7  
6
DDRE6  
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
DDRE7  
0
Figure 11-15. Data Direction Register E (DDRE)  
DDRE[7:0] — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE[7:0],  
configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
Data Sheet  
150  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
NOTE:  
Avoid glitches on port E pins by writing to the port E data register before changing  
data direction register E bits from 0 to 1.  
Figure 11-16 shows the port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 11-16. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch.  
When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 11-5 summarizes the operation of the port E pins.  
Table 11-5. Port E Pin Functions  
Accessesto  
Accesses to PTE  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
DDRE  
Read/Write  
DDRE[7:0]  
DDRE[7:0]  
Read  
Pin  
Write  
PTE[7:0](1)  
PTE[7:0]  
0
X
X
Input, Hi-Z  
Output  
1
PTE[7:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
151  
11.7 Port F  
Port F is a 4-bit special-function port that shares four of its pins with the timer  
interface module (TIM).  
11.7.1 Port F Data Register  
The port F data register contains a data latch for each of the four port F pins.  
Address:  
$0009  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTF3  
PTF2  
PTF1  
PTF0  
R
R
R
R
Unaffected by reset  
Alternate  
Function:  
TCH5  
TCH4  
TCH3  
TCH2  
R
= Reserved  
Figure 11-17. Port F Data Register (PTF)  
PTF[3:0] — Port F Data Bits  
These read/write bits are software programmable. Data direction of each port F  
pin is under the control of the corresponding bit in data direction register F.  
Reset has no effect on PTF[3:0].  
TCH[5:2] — Timer Channel I/O Bits  
The PTF3/TCH5–PTF0/TCH2 pins are the TIM input capture/output compare  
pins. The edge/level select bits, ELSxB–ELSxA, determine whether the  
PTF3/TCH5–PTF0/TCH2 pins are timer channel I/O pins or general-purpose  
I/O pins. (See 15.8.4 TIM Channel Status and Control Registers.)  
NOTE:  
Data direction register F (DDRF) does not affect the data direction of port F  
pins that are being used by the TIM. However, the DDRF bits always determine  
whether reading port F returns the states of the latches or the states of the pins.  
(See Table 11-6.)  
Data Sheet  
152  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
11.7.2 Data Direction Register F  
Data direction register F determines whether each port F pin is an input or an  
output. Writing a logic 1 to a DDRF bit enables the output buffer for the  
corresponding port F pin; a logic 0 disables the output buffer.  
Address:  
$000D  
Bit 7  
0
6
5
0
4
0
3
DDRF3  
0
2
DDRF2  
0
1
DDRF1  
0
Bit 0  
DDRF0  
0
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
0
0
R
= Reserved  
Figure 11-18. Data Direction Register F (DDRF)  
DDRF[3:0] — Data Direction Register F Bits  
These read/write bits control port F data direction. Reset clears DDRF[3:0],  
configuring all port F pins as inputs.  
1 = Corresponding port F pin configured as output  
0 = Corresponding port F pin configured as input  
NOTE:  
Avoid glitches on port F pins by writing to the port F data register before changing  
data direction register F bits from 0 to 1.  
Figure 11-19 shows the port F I/O logic.  
READ DDRF ($000D)  
WRITE DDRF ($000D)  
DDRFx  
RESET  
WRITE PTF ($0009)  
PTFx  
PTFx  
READ PTF ($0009)  
Figure 11-19. Port F I/O Circuit  
When bit DDRFx is a logic 1, reading address $0009 reads the PTFx data latch.  
When bit DDRFx is a logic 0, reading address $0009 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 11-6 summarizes the operation of the port F pins.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
153  
Table 11-6. Port F Pin Functions  
Accessesto  
Accesses to PTF  
Read Write  
DDRF  
Bit  
PTF  
Bit  
I/O Pin  
DDRF  
Mode  
Read/Write  
DDRF[3:0]  
DDRF[3:0]  
PTF[3:0](1)  
PTF[3:0]  
0
X
X
Input, Hi-Z  
Output  
Pin  
1
PTF[3:0]  
X = Don’t Care  
Hi-Z = High Impedance  
1. Writing affects data register, but does not affect input.  
Data Sheet  
154  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 12. Serial Communications Interface (SCI)  
12.1 Introduction  
12.2 Features  
This section describes the serial communications interface module (SCI,  
Version D), which allows high-speed asynchronous communications with  
peripheral devices and other MCUs.  
Features of the SCI module include:  
Full duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
155  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 12-1. Block Diagram Highlighting SCI Block and Pins  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
SCI Control Register 1  
TXINV  
$0013  
(SCC1) Write:  
See page 170.  
Reset:  
Read:  
0
0
SCI Control Register 2  
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
(SCC2) Write:  
See page 172.  
Reset:  
Read:  
0
R8  
R
0
0
SCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 174.  
Reset:  
Read:  
U
U
TC  
R
0
SCRF  
R
0
IDLE  
R
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
SCTE  
R
SCI Status Register 1  
(SCS1) Write:  
See page 175.  
Reset:  
Read:  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2) Write:  
R
R
R
R
R
R
See page 178.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
See page 179.  
Reset:  
Read:  
Unaffected by reset  
0
R
0
0
SCI Baud Rate Register  
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 179.  
R
Reset:  
0
0
R
= Reserved  
U = Unaffected  
Figure 12-2. SCI I/O Register Summary  
12.3 Functional Description  
Figure 12-3 shows the structure of the SCI module. The SCI allows full-duplex,  
asynchronous, NRZ serial communication between the MCU and remote devices,  
including other MCUs. The transmitter and receiver of the SCI operate  
independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the SCI, writes the data to be  
transmitted, and processes received data.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
157  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PTE1/RxD  
PTE0/TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
PRE-  
BAUD RATE  
÷ 4  
CGMXCLK  
SCALER  
GENERATOR  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 12-3. SCI Module Block Diagram  
Data Sheet  
158  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.3.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated  
in Figure 12-4.  
8-BIT DATA FORMAT  
POSSIBLE  
(BIT M IN SCC1 CLEAR)  
PARITY  
NEXT  
START  
BIT  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
POSSIBLE  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
BIT 8 STOP  
BIT  
Figure 12-4. SCI Data Formats  
12.3.2 Transmitter  
Figure 12-5 shows the structure of the SCI transmitter.  
12.3.3 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit  
in SCI control register 1 (SCC1) determines character length. When transmitting  
9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8).  
12.3.4 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the  
PTE0/TxD pin. The SCI data register (SCDR) is the write-only buffer between the  
internal data bus and the transmit shift register. To initiate an SCI transmission:  
1. Initialize the Tx and Rx rate in the SCI baud register (SCBR) ($0019) see  
12.8.7 SCI Baud Rate Register.  
2. Enable the SCI by writing a logic 1 to ENSCI in SCI control register 1 (SCC1)  
($0013).  
3. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE)  
in SCI control register 2 (SCC2) ($0014).  
4. Clear the SCI transmitter empty bit (SCTE) by first reading SCI status  
register (SCS1) ($0016) and then writing to the SCDR ($0018).  
5. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the  
transmit shift register with a preamble of 10 or 11 logic 1s. After the preamble shifts  
out, control logic transfers the SCDR data into the transmit shift register. A logic 0  
start bit automatically goes into the least significant bit position of the transmit shift  
register. A logic 1 stop bit goes into the most significant bit position.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
159  
The SCI transmitter empty bit, SCTE in the SCI status control register (SCS1),  
becomes set when the SCDR transfers a byte to the transmit shift register. The  
SCTE bit indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE (SCC2), is also set, the SCTE bit  
generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the PTE0/TxD pin  
goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in  
SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the  
port E pins.  
INTERNAL BUS  
PRE-  
BAUD  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCALER DIVIDER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
PTE0/TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 12-5. SCI Transmitter  
Data Sheet  
160  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.3.5 Break Characters  
Writing a logic 1 to the send break bit, SBK (SCC2), loads the transmit shift register  
with a break character. A break character contains all logic 0s and has no start,  
stop, or parity bit. Break character length depends on the M bit (SCC1). As long as  
SBK is at logic 1, transmitter logic continuously loads break characters into the  
transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the recognition of the  
start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine  
logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break  
character has the following effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in  
progress flag (RPF) bits  
12.3.6 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle  
character length depends on the M bit (mode character length) in SCC1. The  
preamble is a synchronizing idle character that begins every transmission.  
If the TE bit (transmitter enable) is cleared during a transmission, the PTE0/TxD pin  
becomes idle after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be sent after  
the character currently being transmitted.  
NOTE:  
When a break sequence is followed immediately by an idle character, this SCI  
design exhibits a condition in which the break character length is reduced by one  
half bit time. In this instance, the break sequence will consist of a valid start bit,  
eight or nine data bits (as defined by the M bit in SCC1) of logic 0, and one half data  
bit length of logic 0 in the stop bit position followed immediately by the idle  
character. To ensure a break character of the proper length is transmitted, always  
queue up a byte of data to be transmitted while the final break sequence is in  
progress.  
When queueing an idle character, return the TE bit to logic 1 before the stop bit of  
the current character shifts out to the PTE0/TxD pin. Setting TE after the stop bit  
appears on PTE0/TxD causes loss of data previously written to the SCDR.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
161  
A good time to toggle the TE bit is when the SCTE bit becomes set and just before  
writing the next byte to the SCDR.  
12.3.7 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the  
polarity of transmitted data. All transmitted values, including idle, break, start,  
and stop bits, are inverted when TXINV is at logic 1. (See 12.8.1 SCI Control  
Register 1.)  
12.3.8 Transmitter Interrupts  
The following conditions can generate CPU interrupt requests from the SCI  
transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the  
SCDR has transferred a character to the transmit shift register. SCTE can  
generate a transmitter CPU interrupt request. Setting the SCI transmit  
interrupt enable bit, SCTIE (SCC2), enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the  
transmit shift register and the SCDR are empty and that no break or idle  
character has been generated. The transmission complete interrupt enable  
bit, TCIE (SCC2), enables the TC bit to generate transmitter CPU interrupt  
requests.  
12.3.9 Receiver  
Figure 12-6 shows the structure of the SCI receiver.  
12.3.10 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in  
SCI control register 1 (SCC1) determines character length. When receiving 9-bit  
data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving  
8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
12.3.11 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the  
PTE1/RxD pin. The SCI data register (SCDR) is the read-only buffer between the  
internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of  
the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status  
register 1 (SCS1) becomes set, indicating that the received byte can be read. If the  
SCI receive interrupt enable bit, SCRIE (SCC2), is also set, the SCRF bit  
generates a receiver CPU interrupt request.  
Data Sheet  
162  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
INTERNAL BUS  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
PRE-  
BAUD  
÷ 4  
÷ 16  
SCALER DIVIDER  
11-BIT  
RECEIVE SHIFT REGISTER  
CGMXCLK  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
PTE1/RxD  
ALL ZEROS  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 12-6. SCI Receiver Block Diagram  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
163  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCI Control Register 1  
(SCC1)  
TXINV  
$0013  
See page 170.  
0
0
SCI Control Register 2  
(SCC2)  
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
See page 172.  
0
R8  
R
0
0
SCI Control Register 3  
(SCC3)  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
See page 174.  
U
U
TC  
R
0
SCRF  
R
0
IDLE  
R
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
SCTE  
R
SCI Status Register 1  
(SCS1)  
See page 175.  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2)  
R
R
R
R
R
R
See page 178.  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
See page 179.  
Unaffected by reset  
0
R
0
0
SCI Baud Rate Register  
(SCBR)  
SCP1  
0
SCP0  
0
R
0
SCR2  
0
SCR1  
0
SCR0  
0
R
See page 179.  
0
R
= Reserved  
Table 12-1. SCI Receiver I/O Register Summary  
12.3.12 Data Sampling  
The receiver samples the PTE1/RxD pin at the RT clock rate. The RT clock is an  
internal signal with a frequency 16 times the baud rate. To adjust for baud rate  
mismatch, the RT clock is resynchronized at the following times (see Figure 12-7):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the  
majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1  
and the majority of the next RT8, RT9, and RT10 samples returns a valid  
logic 0)  
To locate the start bit, data recovery logic does an asynchronous search for a  
logic 0 preceded by three logic 1s. When the falling edge of a possible start bit  
occurs, the RT clock begins to count to 16.  
Data Sheet  
164  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
START BIT  
LSB  
PTE1/RxD  
START BIT  
START BIT  
DATA  
SAMPLES  
QUALIFICATION  
VERIFICATION  
SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 12-7. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3,  
RT5, and RT7. Table 12-2 summarizes the results of the start bit verification  
samples.  
Table 12-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for  
a start bit begins.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
165  
To determine the value of a data bit and to detect noise, recovery logic takes  
samples at RT8, RT9, and RT10. Table 12-3 summarizes the results of the data  
bit samples.  
Table 12-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE:  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of  
the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start  
bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a  
start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9,  
and RT10. Table 12-4 summarizes the results of the stop bit samples.  
Table 12-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
Data Sheet  
166  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.3.13 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in  
an incoming character, it sets the framing error bit, FE, in SCS1. The FE flag is set  
at the same time that the SCRF bit (SCS1) is set. A break character that has no  
stop bit also sets the FE bit.  
12.3.14 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in  
multiple-receiver systems, the receiver can be put into a standby state. Setting the  
receiver wakeup bit, RWU (SCC2), puts the receiver into a standby state during  
which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the  
PTE1/RxD pin can bring the receiver out of the standby state:  
Address mark — An address mark is a logic 1 in the most significant bit  
position of a received character. When the WAKE bit is set, an address mark  
wakes the receiver from the standby state by clearing the RWU bit. The  
address mark also sets the SCI receiver full bit, SCRF. Software can then  
compare the character containing the address mark to the user-defined  
address of the receiver. If they are the same, the receiver remains awake  
and processes the characters that follow. If they are not the same, software  
can set the RWU bit and put the receiver back into the standby state.  
Idle input line condition — When the WAKE bit is clear, an idle character on  
the PTE1/RxD pin wakes the receiver from the standby state by clearing the  
RWU bit. The idle character that wakes the receiver does not set the  
receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type  
bit, ILTY, determines whether the receiver begins counting logic 1s as idle  
character bits after the start bit or after the stop bit.  
NOTE:  
Clearing the WAKE bit after the PTE1/RxD pin has been idle may cause the  
receiver to wake up immediately.  
12.4 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive  
shift register has transferred a character to the SCDR. SCRF can generate  
a receiver CPU interrupt request. Setting the SCI receive interrupt enable  
bit, SCRIE (SCC2), enables the SCRF bit to generate receiver CPU  
interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive  
logic 1s shifted in from the PTE1/RxD pin. The idle line interrupt enable bit,  
ILIE (SCC2), enables the IDLE bit to generate CPU interrupt requests.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
167  
12.4.1 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register  
shifted in a new character before the previous character was read from the  
SCDR. The previous character remains in the SCDR, and the new character  
is lost. The overrun interrupt enable bit, ORIE (SCC3), enables OR to  
generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming  
data or break characters, including start, data, and stop bits. The noise error  
interrupt enable bit, NEIE (SCC3), enables NF to generate SCI error CPU  
interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where  
the receiver expects a stop bit. The framing error interrupt enable bit, FEIE  
(SCC3), enables FE to generate SCI error CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity  
error in incoming data. The parity error interrupt enable bit, PEIE (SCC3),  
enables PE to generate SCI error CPU interrupt requests.  
12.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power standby modes.  
12.5.1 Wait Mode  
The SCI module remains active after the execution of a WAIT instruction. In wait  
mode, the SCI module registers are not accessible by the CPU. Any enabled CPU  
interrupt request from the SCI module can bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT instruction.  
12.5.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect SCI register states. SCI module operation resumes after  
an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop mode during  
an SCI transmission or reception results in invalid data.  
12.6 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during interrupts generated by the break module. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear status bits  
during the break state.  
Data Sheet  
168  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a 2-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at logic  
0. After the break, doing the second step clears the status bit.  
12.7 I/O Signals  
Port E shares two of its pins with the SCI module. The two SCI I/O pins are:  
PTE0/TxD — Transmit data  
PTE1/RxD — Receive data  
12.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the SCI transmitter. The SCI  
shares the PTE0/TxD pin with port E. When the SCI is enabled, the PTE0/TxD pin  
is an output regardless of the state of the DDRE0 bit in data direction register E  
(DDRE).  
12.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI shares the  
PTE1/RxD pin with port E. When the SCI is enabled, the PTE1/RxD pin is an input  
regardless of the state of the DDRE1 bit in data direction register E (DDRE).  
12.8 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
169  
12.8.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
Figure 12-8. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the PTE1/RxD  
pin is disconnected from the SCI, and the transmitter output goes into the  
receiver input. Both the transmitter and the receiver must be enabled to use loop  
mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing  
ENSCI sets the SCTE and TC bits in SCI status register 1 and disables  
transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the  
TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE:  
Setting the TXINV bit inverts all transmitted values, including idle, break, start, and  
stop bits.  
Data Sheet  
170  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits  
long. (See Table 12-5.) The ninth bit can serve as an extra stop bit, as a receiver  
wakeup signal, or as a parity bit. Reset clears the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a logic 1  
(address mark) in the most significant bit position of a received character or an  
idle condition on the PTE1/RxD pin. Reset clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as idle  
character bits. The counting begins either after the start bit or after the stop bit.  
If the count begins after the start bit, then a string of logic 1s preceding the stop  
bit can cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly  
synchronized transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 12-5.) When  
enabled, the parity function inserts a parity bit in the most significant bit position.  
(See Figure 12-4.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd  
parity or even parity. (See Table 12-5.) Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE:  
Changing the PTY bit in the middle of a transmission or reception can generate a  
parity error.  
Table 12-5. Character Format Selection  
Control Bits  
Character Format  
M
PEN:PTY  
Start Bits  
Data Bits  
Parity  
None  
None  
Even  
Odd  
Stop Bits  
Character Length  
10 Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
1
1
1
1
1
1
11 Bits  
10 Bits  
10 Bits  
Even  
Odd  
11 Bits  
11 Bits  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
171  
12.8.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 12-9. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt requests  
0 = SCTE not enabled to generate CPU interrupt requests  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt  
requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt  
requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt requests  
0 = SCRF not enabled to generate CPU interrupt requests  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt  
requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10  
or 11 logic 1s from the transmit shift register to the PTE0/TxD pin. If software  
Data Sheet  
172  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
clears the TE bit, the transmitter completes any transmission in progress before  
the PTE0/TxD returns to the idle condition (logic 1). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character  
currently being transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE:  
NOTE:  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI  
is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the  
receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver  
interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input  
or an address mark brings the receiver out of the standby state and clears the  
RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed  
by a logic 1. The logic 1 after the break character guarantees recognition of a  
valid start bit. If SBK remains set, the transmitter continuously transmits break  
characters with no logic 1s between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters transmitted  
NOTE:  
Do not toggle the SBK bit immediately after setting the SCTE bit because toggling  
SBK too early causes the SCI to send a break character instead of a preamble.  
12.8.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be  
transmitted  
Enables these interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
173  
Address:  
$0015  
Bit 7  
R8  
R
6
5
R
0
4
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
T8  
R
U
U
0
R
= Reserved  
U = Unaffected  
Figure 12-10. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8)  
of the received character. R8 is received at the same time that the SCDR  
receives the other eight bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7).  
Reset has no effect on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit  
8) of the transmitted character. T8 is loaded into the transmit shift register at the  
same time that the SCDR is loaded into the transmit shift register. Reset has no  
effect on the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the  
receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the  
noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the  
framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt requests generated by  
the parity error bit, PE. (See Figure 12-11.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
Data Sheet  
174  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.8.4 SCI Status Register 1  
SCI status register 1 contains flags to signal the following conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0016  
Bit 7  
SCTE  
R
6
5
SCRF  
R
4
IDLE  
R
3
OR  
R
2
NF  
R
1
FE  
R
Bit 0  
PE  
R
Read:  
Write:  
Reset:  
TC  
R
1
1
0
0
0
0
0
0
R
= Reserved  
Figure 12-11. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the  
transmit shift register. SCTE can generate an SCI transmitter CPU interrupt  
request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter  
CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1  
with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
NOTE:  
Setting the TE bit for the first time also sets the SCTE bit. Setting the TE and SCTIE  
bits generates an SCI transmitter CPU request.  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set and no data, preamble, or  
break character is being transmitted. TC generates an SCI transmitter CPU  
interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically  
when data, preamble, or break character is queued and ready to be sent. There  
may be up to 1.5 transmitter clocks of latency between queueing data,  
preamble, and break character and the transmission actually starting. Reset  
sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register  
transfers to the SCI data register. SCRF can generate an SCI receiver CPU  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
175  
interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with  
SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear  
on the receiver input. IDLE generates an SCI error CPU interrupt request if the  
ILIE bit in SCC2 also is set and the DMARE bit in SCC3 is clear. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the SCRF bit  
before an idle condition can set the IDLE bit. Also, after the IDLE bit has been  
cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before  
the receive shift register receives the next character. The OR bit generates an  
SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in  
the shift register is lost, but the data already in the SCDR is not affected. Clear  
the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset  
clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and  
SCDR in the flag-clearing sequence. Figure 12-12 shows the normal  
flag-clearing sequence and an example of an overrun caused by a delayed  
flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and  
is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of  
byte 2.  
In applications that are subject to software latency or in which it is important to  
know which byte is lost due to an overrun, the flag-clearing routine can check  
the OR bit in a second read of SCS1 after reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the PTE1/RxD  
pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also  
set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears  
the NF bit.  
1 = Noise detected  
0 = No noise detected  
Data Sheet  
176  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE  
generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set.  
Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset  
clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in  
incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3  
is also set. Clear the PE bit by reading SCS1 with PE set and then reading the  
SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 12-12. Flag Clearing Sequence  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
177  
12.8.5 SCI Status Register 2  
SCI status register 2 contains flags to signal two conditions:  
1. Break character detected  
2. Incoming data  
Address:  
$0017  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
BKF  
R
Bit 0  
RPF  
R
Read:  
Write:  
Reset:  
R
R
0
0
0
0
R
= Reserved  
Figure 12-13. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on  
the PTE1/RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit  
character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate  
a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then  
reading the SCDR. Once cleared, BKF can become set again only after logic 1s  
again appear on the PTE1/RxD pin followed by another break character. Reset  
clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time  
period of the start bit search. RPF does not generate an interrupt request. RPF  
is reset after the receiver detects false start bits, usually from noise or a baud  
rate mismatch or when the receiver detects an idle character. Polling RPF  
before disabling the SCI module or entering stop mode can show whether a  
reception is in progress.  
1 = Reception in progress  
0 = No reception in progress  
Data Sheet  
178  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
12.8.6 SCI Data Register  
The SCI data register is the buffer between the internal data bus and the receive  
and transmit shift registers. Reset has no effect on data in the SCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 12-14. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits, R7–R0.  
Writing to address $0018 writes the data to be transmitted, T7–T0. Reset has  
no effect on the SCI data register.  
12.8.7 SCI Baud Rate Register  
The baud rate register selects the baud rate for both the receiver and the  
transmitter.  
Address:  
$0019  
Bit 7  
6
5
SCP1  
0
4
SCP0  
0
3
R
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
R
0
0
R
= Reserved  
Figure 12-15. SCI BAUD Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in Table  
12-6. Reset clears SCP1 and SCP0.  
Table 12-6. SCI Baud Rate Prescaling  
SCP1:SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
179  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 12-7.  
Reset clears SCR2:SCR0.  
Table 12-7. SCI Baud Rate Selection  
SCR2:SCR1:SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use the following formula to calculate the SCI baud rate:  
CGMXCLK  
Baud rate = ------------------------------------  
64 × PD × BD  
PD = Prescale divisor (see Table 12-6)  
BD = Baud rate divisor (see Table 12-7)  
Table 12-8 shows the SCI baud rates that can be generated with a 4.194-MHz  
crystal.  
Data Sheet  
180  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 12-8. SCI Baud Rate Selection Examples  
Baud Rate  
(fXCLK = 4.194 MHz)  
Prescaler Divisor  
Baud Rate Divisor  
(BD)  
SCP1:SCP0  
SCR2:SCR1:SCR0  
(PD)  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
65,531  
32,766  
16,383  
8191  
4095  
2048  
1024  
512  
1
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
21,844  
10,922  
5461  
2730  
1365  
683  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
341  
3
171  
4
16,383  
8191  
4096  
2048  
1024  
512  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
256  
4
128  
13  
13  
13  
13  
13  
13  
13  
13  
5041  
1664  
1260  
630  
2
4
8
16  
32  
64  
128  
315  
158  
78.8  
39.4  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
181  
Data Sheet  
182  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 13. System Integration Module (SIM)  
13.1 Introduction  
This section describes the system integration module (SIM), which supports up to  
24 external and/or internal interrupts. The SIM is a system state controller that  
coordinates CPU and exception timing. Together with the central processor unit  
(CPU), the SIM controls all MCU activities. A block diagram of the SIM is shown in  
Figure 13-2. Figure 13-3 is a summary of the SIM input/output (I/O) registers.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer  
operating properly (COP) timeout  
Interrupt control  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
183  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 13-1. Block Diagram Highlighting SIM Block and Pins  
MODULE STOP  
MODULE WAIT  
CPU STOP FROM CPU  
CPU WAIT FROM CPU  
STOP/WAIT  
CONTROL  
SIMOSCEN TO CGM  
SIM  
COP CLOCK  
COUNTER  
CGMXCLK FROM CGM  
CGMOUT FROM CGM  
÷ 2  
CLOCK  
CLOCK GENERATORS  
INTERNAL CLOCKS  
CONTROL  
LVI FROM LVI MODULE  
RESET  
POR CONTROL  
PIN LOGIC  
MASTER  
ILLEGAL OPCODE FROM CPU  
RESET  
RESET PIN CONTROL  
ILLEGAL ADDRESS FROM ADDRESS  
CONTROL  
MAP DECODERS  
SIM RESET STATUS REGISTER  
COP FROM COP MODULE  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 13-2. SIM Block Diagram  
Addr.  
Register Name  
SIM Break Status Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
(SBSR) Write:  
R
R
R
R
R
R
SBSW  
R
$FE00  
See page 198.  
Reset:  
Read:  
0
LVI  
R
POR  
R
PIN  
COP  
R
ILOP  
ILAD  
R
0
R
0
0
R
0
SIM Reset Status Register  
$FE01  
$FE03  
(SRSR) Write:  
See page 199.  
R
R
0
Reset:  
Read:  
1
0
0
0
0
POR  
R
PIN  
COP  
R
ILOP  
R
ILAD  
R
0
LVI  
R
0
SIM Break Flag Control Register  
(SBFCR) Write:  
See page 199.  
R
R
0
R
0
Reset:  
1
0
0
0
0
0
R
= Reserved  
Figure 13-3. SIM I/O Register Summary  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
185  
Table 13-1 shows the internal signal names used in this section.  
Table 13-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
13.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals  
on the MCU. The system clocks are generated from an incoming clock, CGMOUT,  
as shown in Figure 13-4. This clock can come from either an external oscillator or  
from the on-chip PLL. (See Section 5. Clock Generator Module (CGM).)  
13.2.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator output  
(CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four. (See  
Section 5. Clock Generator Module (CGM).)  
13.2.2 Clock Startup from POR or LVI Reset  
When the power-on reset (POR) module or the low-voltage inhibit (LVI) module  
generates a reset, the clocks to the CPU and peripherals are inactive and held in  
an inactive phase until after 4096 CGMXCLK cycles. The RST pin is driven low by  
the SIM during this entire period. The bus clocks start upon completion of the  
timeout.  
Data Sheet  
186  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
CGMXCLK  
CGMOUT  
OSC1  
SIM COUNTER  
CLOCK  
SELECT  
CIRCUIT  
A
B
BUS CLOCK  
GENERATORS  
÷ 2  
÷ 2  
CGMVCLK  
S*  
*When S = 1,  
CGMOUT = B  
BCS  
SIM  
PLL  
PTC3  
MONITOR MODE  
USER MODE  
CGM  
Figure 13-4. CGM Clock Signals  
13.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not  
become active until after the stop delay timeout. This timeout is selectable as  
4096 or 32 CGMXCLK cycles. (See 13.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. However, some modules can be  
programmed to be active in wait mode. Refer to the wait mode subsection of each  
module to see if the module is active or inactive in wait mode.  
13.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
Each of these resets produces the vector $FFFE–FFFF ($FEFE–FEFF in monitor  
mode) and asserts the internal reset signal (IRST). IRST causes all registers to be  
returned to their default values and all modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 13.4 SIM Counter), but an external  
reset does not. Each of the resets sets a corresponding bit in the SIM reset status  
register (SRSR). (See 13.7 SIM Registers.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
187  
13.3.1 External Pin Reset  
Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a minimum of 67  
CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of  
the reset. See Table 13-2 for details. Figure 13-5 shows the relative timing.  
Table 13-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 13-5. External Reset Timing  
13.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to  
allow resetting of external peripherals. The internal reset signal IRST continues to  
be asserted for an additional 32 cycles (see Figure 13-6). An internal reset can be  
caused by an illegal address, illegal opcode, COP timeout, LVI, or POR (see  
Figure 13-7.  
NOTE:  
For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles during  
which the SIM forces the RST pin low. The internal reset signal then follows the  
sequence from the falling edge of RST shown in Figure 13-6.  
IRST  
RSTPULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 13-6. Internal Reset Timing  
Data Sheet  
188  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 13-7. Sources of Internal Reset  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other  
chips within a system built around the MCU.  
13.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR)  
generates a pulse to indicate that power-on has occurred. The external reset pin  
(RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles.  
Another 64 CGMXCLK cycles later, the CPU and memories are released from  
reset to allow the reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits  
in the register are cleared.  
See Figure 13-8.  
13.3.2.2 Computer Operating Properly (COP) Reset  
The overflow of the COP counter causes an internal reset and sets the COP bit in  
the SIM reset status register (SRSR) if the COPD bit in the MOR register is at  
logic 0. (See Section 6. Computer Operating Properly (COP).)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
189  
OSC1  
PORRST  
4096  
32  
32  
CYCLES  
CYCLES  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 13-8. POR Recovery  
13.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal  
instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a  
reset.  
NOTE:  
A $9E opcode (pre-byte for SP instructions) followed by an $8E opcode (stop  
instruction) generates a stop mode recovery reset.  
If the stop enable bit, STOP, in the MOR register is logic 0, the SIM treats the STOP  
instruction as an illegal opcode and causes an illegal opcode reset.  
13.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset.  
The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit  
in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from  
an unmapped address does not generate a reset.  
13.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit (LVI) module asserts its output to the SIM when the VDD  
voltage falls to the VLVIF voltage. The LVI bit in the SIM reset status register  
(SRSR) is set and a chip reset is asserted if the LVIPWR and LVIRST bits in the  
CONFIG register are at logic 1. The RST pin will be held low until the SIM counts  
4096 CGMXCLK cycles after VDD rises above VLVIR. Another 64 CGMXCLK cycles  
later, the CPU is released from reset to allow the reset vector sequence to occur.  
(See Section 9. Low-Voltage Inhibit (LVI).)  
Data Sheet  
190  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
13.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode  
recovery to allow the oscillator time to stabilize before enabling the internal bus  
(IBUS) clocks. The SIM counter also serves as a prescaler for the computer  
operating properly (COP) module. The SIM counter overflow supplies the clock for  
the COP module. The SIM counter is 12 bits long and is clocked by the falling edge  
of CGMXCLK.  
13.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At  
power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized,  
it enables the clock generation module (CGM) to drive the bus clock state machine.  
13.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears  
the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the  
short stop recovery bit, SSREC, in the MOR register. If the SSREC bit is a logic 1,  
then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles  
down to 32 CGMXCLK cycles. This is ideal for applications using canned  
oscillators that do not require long startup times from stop mode. External crystal  
applications should use the full stop recovery time with SSREC cleared.  
13.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 13.6.2 Stop Mode for  
details.) The SIM counter is free-running after all reset states. (See 13.3.2 Active  
Resets from Internal Sources for counter control and internal reset recovery  
sequences.)  
13.5 Program Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts:  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
191  
13.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the  
stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end  
of an interrupt, the RTI instruction recovers the CPU register contents from the  
stack so that normal processing can resume. Figure 13-9 shows interrupt entry  
timing. Figure 13-10 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start of  
interrupt processing. The arbitration result is a constant that the CPU uses to  
determine which vector to fetch. Once an interrupt is latched by the SIM, no other  
interrupt can take precedence, regardless of priority, until the latched interrupt is  
serviced or the I bit is cleared. (See Figure 13-11.)  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY  
PC1[7:0]  
PC–1[15:8]  
X
A
CCR  
V DATA H V DATA L  
OPCODE  
R/W  
Figure 13-9. Hardware Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1 [15:8] PC–1[7:0]  
OPCODE OPERAND  
R/W  
Figure 13-10. Hardware Interrupt Recovery  
Data Sheet  
192  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ0  
INTERRUPT?  
NO  
IRQ1  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
YES  
YES  
SWI  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 13-11. Interrupt Processing  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
193  
13.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a  
hardware interrupt begins after completion of the current instruction. When the  
current instruction is complete, the SIM checks all pending hardware interrupts. If  
interrupts are not masked (I bit clear in the condition code register) and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt  
processing; otherwise, the next instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the  
highest priority interrupt is serviced first. Figure 13-12 demonstrates what happens  
when two interrupts are pending. If an interrupt is pending upon exit from the  
original interrupt service routine, the pending interrupt is serviced before the LDA  
instruction is executed.  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE:  
To maintain compatibility with the M68HC05, M6805, and M146805 Families, the  
H register is not pushed on the stack during interrupt entry. If the interrupt service  
routine modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 13-12. Interrupt Recognition Example  
13.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt  
regardless of the state of the interrupt mask (I bit) in the condition code register.  
NOTE:  
A software interrupt pushes PC onto the stack. A software interrupt does not push  
PC – 1, as a hardware interrupt does.  
Data Sheet  
194  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
13.5.2 Reset  
All reset sources always have higher priority than interrupts and cannot be  
arbitrated.  
13.5.3 Break Interrupts  
The break module can stop normal program flow at a software-programmable  
break point by asserting its break interrupt output. (See Section 16. Development  
Support.) The SIM puts the CPU into the break state by forcing it to the SWI vector  
location. Refer to the break interrupt subsection of each module to see how the  
break state affects each module.  
13.5.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared  
during break mode. The user can select to protect flags from being cleared by  
properly initializing the break clear flag enable bit (BCFE) in the SIM break flag  
control register (SBFCR). (See 13.7.3 SIM Break Flag Control Register.)  
Protecting flags in break mode ensures that set flags will not be cleared while in  
break mode. This protection allows registers to be freely read and written during  
break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break  
mode, a flag remains cleared even when break mode is exited. Status flags with a  
2-step clearing mechanism — for example, a read of one register followed by the  
read or write of another — are protected, even when the first step is accomplished  
prior to entering break mode. Upon leaving break mode, execution of the second  
step will clear the flag as usual.  
13.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low-power mode for  
standby situations. The SIM holds the CPU in a non-clocked state. The operation  
of each of these modes is described below. Both STOP and WAIT clear the  
interrupt mask (I) in the condition code register, allowing interrupts to occur.  
13.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while one set of peripheral clocks  
continues to run. Figure 13-13 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if  
the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT  
instruction during which the interrupt occurred. Refer to the wait mode subsection  
of each module to see if the module is active or inactive in wait mode. Some  
modules can be programmed to be active in wait mode.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
195  
Wait mode also can be exited by a reset or break. A break interrupt during wait  
mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register  
(SBSR). If the COP disable bit, COPD, in the mask option register (MOR $001F) is  
logic 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 13-13. Wait Mode Entry Timing  
Figure 13-14 and Figure 13-15 show the timing for wait recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin or CPU interrupt or break interrupt  
Figure 13-14. Wait Recovery from Interrupt or Break  
32  
32  
CYCLES  
CYCLES  
IAB  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 13-15. Wait Recovery from Internal Reset  
Data Sheet  
196  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
13.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An  
interrupt request from a module can cause an exit from stop mode. Stacking for  
interrupts begins after the selected stop recovery time has elapsed. Reset or break  
also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK)  
in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable  
using the short stop recovery (SSREC) bit in the MOR register ($001F). If SSREC  
is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles  
down to 32. This is ideal for applications using canned oscillators that do not  
require long startup times from stop mode.  
NOTE:  
External crystal applications should use the full stop recovery time by clearing the  
SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the  
SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP instruction until  
the beginning of stop recovery. It is then used to time the recovery period. Figure  
13-16 shows stop mode entry timing and Figure 13-17 shows the recovery from  
interrupt or break timing.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 13-16. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 13-17. Stop Mode Recovery from Interrupt or Break  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
197  
13.7 SIM Registers  
The SIM has three memory mapped registers.  
13.7.1 SIM Break Status Register  
The SIM break status register contains a flag to indicate that a break caused an  
exit from stop mode or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
= Reserved  
Figure 13-18. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait Bit  
This status bit is useful in applications requiring a return to wait mode or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it.  
Reset clears SBSW.  
1 = Stop mode or wait mode exited by break interrupt  
0 = Stop mode or wait mode not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can modify the  
return address on the stack by subtracting one from it. The following code is an  
example of this. Writing 0 to the SBSW bit  
clears it.  
;This code works if the H register has been pushed onto the stack in the break service  
;routine software. This code should be executed at the end of the break service  
;routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
PULH  
RTI  
LOBYTE,SP  
DOLO  
HIBYTE,SP  
LOBYTE,SP  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
DOLO  
RETURN  
Data Sheet  
198  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
13.7.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset. The status  
register will clear automatically after reading it. A power-on reset sets the POR bit  
and clears all other bits in the register.  
Address:  
$FE01  
Bit 7  
POR  
R
6
PIN  
R
5
COP  
R
4
ILOP  
R
3
ILAD  
R
2
0
1
LVI  
R
Bit 0  
0
Read:  
Write:  
Reset:  
R
0
R
1
0
0
0
0
0
0
R
= Reserved  
Figure 13-19. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset was caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
199  
13.7.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to clear status  
bits while the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 13-20. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
In some module registers, this read/write bit will enable software to clear status  
bits by accessing status registers only while the MCU is in a break state. To  
clear status bits during the break state, the BCFE bit must be set.This operation  
is important for modules with status bits which can be cleared only by being  
read. See the register descriptions in each module for additional details.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Data Sheet  
200  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 14. Serial Peripheral Interface (SPI)  
14.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows  
full-duplex, synchronous, serial communications with peripheral devices.  
14.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master mode and slave mode  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts with CPU service:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with cpu interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
201  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 14-1. Block Diagram Highlighting SPI Block and Pins  
14.3 Pin Name and Register Name Conventions  
The generic names of the SPI input/output (I/O) pins are:  
SS (slave select)  
SPSCK (SPI serial clock)  
MOSI (master out/slave in)  
MISO (master in/slave out)  
The SPI shares four I/O pins with a parallel I/O port. The full name of an SPI pin  
reflects the name of the shared port pin. Table 14-1 shows the full names of the  
SPI I/O pins. The generic pin names appear in the text that follows.  
Table 14-1. Pin Name Conventions  
SPI Generic Pin Name:  
MISO  
MOSI  
SS  
SPSCK  
Full SPI Pin Name: PTE5/MISO  
PTE6/MOSI  
PTE4/SS  
PTE7/SPSCK  
The generic names of the SPI I/O registers are:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
Table 14-2 shows the names and the addresses of the SPI I/O registers.  
Table 14-2. I/O Register Addresses  
Register Name  
SPI control register  
Address  
$0010  
SPI status and control register  
SPI data register  
$0011  
$0012  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
203  
14.4 Functional Description  
Figure 14-3 summarizes the SPI I/O registers and Figure 14-2 shows the structure  
of the SPI module.  
The SPI module allows full-duplex, synchronous, serial communication between  
the MCU and peripheral devices, including other MCUs. Software can poll the SPI  
status flags or SPI operation can be interrupt-driven. All SPI interrupts can be  
serviced by the CPU.  
The following paragraphs describe the operation of the SPI module.  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUS CLOCK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
RECEIVE DATA REGISTER  
DIVIDER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR  
SPE  
SELECT  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPI  
CONTROL  
SPRIE  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 14-2. SPI Module Block Diagram  
Data Sheet  
204  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
SPI Control Register  
$0010  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
(SPCR) Write:  
See page 221.  
Reset:  
1
OVRF  
R
0
MODF  
R
1
SPTE  
R
Read: SPRF  
SPI Status and Control Register  
See page 223.  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
(SPSCR) Write:  
R
0
Reset:  
Read:  
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 225.  
Reset:  
Unaffected by reset  
R
= Reserved  
Figure 14-3. SPI I/O Register Summary  
14.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR (SPCR  
$0010), is set.  
NOTE:  
Configure the SPI modules as master and slave before enabling them. Enable the  
master SPI before enabling the slave SPI. Disable the slave SPI before disabling  
the master SPI. (See 14.13.1 SPI Control Register.)  
Only a master SPI module can initiate transmissions. Software begins the  
transmission from a master SPI module by writing to the SPI data register. If the  
shift register is empty, the byte immediately transfers to the shift register, setting  
the SPI transmitter empty bit, SPTE (SPSCR $0011). The byte begins shifting out  
on the MOSI pin under the control of the serial clock. (See Figure 14-4.)  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 14-4. Full-Duplex Master-Slave Connections  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
205  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed  
of the shift register. (See 14.13.2 SPI Status and Control Register.) Through the  
SPSCK pin, the baud rate generator of the master also controls the shift register of  
the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the  
slave on the master’s MISO pin. The transmission ends when the receiver full bit,  
SPRF (SPSCR), becomes set. At the same time that SPRF becomes set, the byte  
from the slave transfers to the receive data register. In normal operation, SPRF  
signals the end of a transmission. Software clears SPRF by reading the SPI status  
and control register and then reading the SPI data register. Writing to the SPI data  
register clears the SPTE bit.  
14.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit (SPCR $0010) is clear. In  
slave mode the SPSCK pin is the input for the serial clock from the master MCU.  
Before a data transmission occurs, the SS pin of the slave MCU must be at logic 0.  
SS must remain low until the transmission is complete. (See 14.6.2 Mode Fault  
Error.)  
In a slave SPI module, data enters the shift register under the control of the serial  
clock from the master SPI module. After a byte enters the shift register of a slave  
SPI, it is transferred to the receive data register, and the SPRF bit (SPSCR) is set.  
To prevent an overflow condition, slave software then must read the SPI data  
register before another byte enters the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus  
clock speed, which is twice as fast as the fastest master SPSCK clock that can be  
generated. The frequency of the SPSCK for an SPI configured as a slave does not  
have to correspond to any SPI baud rate. The baud rate only controls the speed of  
the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or  
equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register  
begins shifting out on the MISO pin. The slave can load its shift register with a new  
byte for the next transmission by writing to its transmit data register. The slave must  
write to its transmit data register at least one bus cycle before the master starts the  
next transmission. Otherwise, the byte already in the slave shift register shifts out  
on the MISO pin. Data written to the slave shift register during a a transmission  
remains in a buffer until the end of the transmission.  
Data Sheet  
206  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a  
transmission. When CPHA is clear, the falling edge of SS starts a transmission.  
(See 14.5 Transmission Formats.)  
If the write to the data register is late, the SPI transmits the data already in the shift  
register from the previous transmission.  
NOTE:  
To prevent SPSCK from appearing as a clock edge, SPSCK must be in the proper  
idle state before the slave is enabled.  
14.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially)  
and received (shifted in serially). A serial clock line synchronizes shifting and  
sampling on the two serial data lines. A slave select line allows individual selection  
of a slave SPI device; slave devices that are not selected do not interfere with SPI  
bus activities. On a master SPI device, the slave select line can be used optionally  
to indicate a multiple-master bus contention.  
14.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SCK) phase and  
polarity using two bits in the SPI control register (SPCR). The clock polarity is  
specified by the CPOL control bit, which selects an active high or low clock and has  
no significant effect on the transmission format.  
The clock phase (CPHA) control bit (SPCR) selects one of two fundamentally  
different transmission formats. The clock phase and polarity should be identical for  
the master SPI device and the communicating slave device. In some cases, the  
phase and polarity are changed between transmissions to allow a master device to  
communicate with peripheral slaves having different requirements.  
NOTE:  
Before writing to the CPOL bit or the CPHA bit (SPCR), disable the SPI by clearing  
the SPI enable bit (SPE).  
14.5.2 Transmission Format When CPHA = 0  
Figure 14-5 shows an SPI transmission in which CPHA (SPCR) is logic 0. The  
figure should not be used as a replacement for data sheet parametric  
information.Two waveforms are shown for SCK: one for CPOL = 0 and another for  
CPOL = 1. The diagram may be interpreted as a master or slave timing diagram  
since the serial clock (SCK), master in/slave out (MISO), and master out/slave in  
(MOSI) pins are directly connected between the master and the slave. The MISO  
signal is the output from the slave, and the MOSI signal is the output from the  
master. The SS line is the slave select input to the slave. The slave SPI drives its  
MISO output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not shown but is  
assumed to be inactive. The SS pin of the master must be high or must be  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
207  
reconfigured as general-purpose I/O not affecting the SPI. (See 14.6.2 Mode Fault  
Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe.  
Therefore, the slave must begin driving its data before the first SPSCK edge, and  
a falling edge on the SS pin is used to start the transmission. The SS pin must  
be toggled high and then low again between each byte transmitted as shown in  
Figure 14-6.  
SCK CYCLE #  
1
2
3
4
5
6
7
8
FOR REFERENCE  
SCK CPOL = 0  
SCK CPOL = 1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
MSB  
FROM SLAVE  
SS TO SLAVE  
CAPTURE STROBE  
Figure 14-5. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 14-6. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the  
transmission. This causes the SPI to leave its idle state and begin driving the MISO  
pin with the MSB of its data. Once the transmission begins, no new data is allowed  
into the shift register from the transmit data register. Therefore, the SPI data  
register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
Data Sheet  
208  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
14.5.3 Transmission Format When CPHA = 1  
Figure 14-7 shows an SPI transmission in which CPHA (SPCR) is logic 1. The  
figure should not be used as a replacement for data sheet parametric information.  
Two waveforms are shown for SCK: one for CPOL = 0 and another for CPOL = 1.  
The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI)  
pins are directly connected between the master and the slave. The MISO signal is  
the output from the slave, and the MOSI signal is the output from the master. The  
SS line is the slave select input to the slave. The slave SPI drives its MISO output  
only when its slave select input (SS) is at logic 0, so that only the selected slave  
drives to the master. The SS pin of the master is not shown but is assumed to be  
inactive. The SS pin of the master must be high or must be reconfigured as  
general-purpose I/O not affecting the SPI. (See 14.6.2 Mode Fault Error.) When  
CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge.  
Therefore, the slave uses the first SPSCK edge as a start transmission signal. The  
SS pin can remain low between transmissions. This format may be preferable in  
systems having only one master and only one slave driving the MISO data line.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning  
of the transmission. This causes the SPI to leave its idle state and begin driving the  
MISO pin with the MSB of its data. Once the transmission begins, no new data is  
allowed into the shift register from the transmit data register. Therefore, the SPI  
data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register  
and transferred to the shift register after the current transmission.  
SCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SCK CPOL = 0  
SCK CPOL =1  
MOSI  
FROM MASTER  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
FROM SLAVE  
LSB  
SS TO SLAVE  
CAPTURE STROBE  
Figure 14-7. Transmission Format (CPHA = 1)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
209  
14.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), transmissions are started  
by a software write to the SPDR ($0012). CPHA has no effect on the delay to the  
start of the transmission, but it does affect the initial state of the SCK signal.  
When CPHA = 0, the SCK signal remains inactive for the first half of the first SCK  
cycle. When CPHA = 1, the first SCK cycle begins with an edge on the SCK line  
from its inactive to its active level. The SPI clock rate (selected by SPR1–SPR0)  
affects the delay from the write to SPDR and the start of the SPI transmission. (See  
Figure 14-8.) The internal SPI clock in the master is a free-running derivative of the  
internal MCU clock. It is only enabled when both the SPE and SPMSTR bits  
(SPCR) are set to conserve power. SCK edges occur halfway through the low time  
of the internal MCU clock. Since the SPI clock is free-running, it is uncertain where  
the write to the SPDR will occur relative to the slower SCK. This uncertainty causes  
the variation in the initiation delay shown in Figure 14-8. This delay will be no  
longer than a single SPI bit time. That is, the maximum delay between the write to  
SPDR and the start of the SPI transmission is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles  
for DIV128.  
14.6 Error Conditions  
Two flags signal SPI error conditions:  
1. Overflow (OVRFin SPSCR) — Failing to read the SPI data register before  
the next byte enters the shift register sets the OVRF bit. The new byte does  
not transfer to the receive data register, and the unread byte still can be read  
by accessing the SPI data register. OVRF is in the SPI status and control  
register.  
2. Mode fault error (MODF in SPSCR) — The MODF bit indicates that the  
voltage on the slave select pin (SS) is inconsistent with the mode of the SPI.  
MODF is in the SPI status and control register.  
14.6.1 Overflow Error  
The overflow flag (OVRF in SPSCR) becomes set if the SPI receive data register  
still has unread data from a previous transmission when the capture strobe of bit 1  
of the next transmission occurs. (See Figure 14-5 and Figure 14-7.) If an overflow  
occurs, the data being received is not transferred to the receive data register so  
that the unread data can still be read. Therefore, an overflow error always indicates  
the loss of data.  
Data Sheet  
210  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
WRITE  
INITIATION DELAY  
MSB  
TO SPDR  
BUS  
CLOCK  
MOSI  
BIT 6  
BIT 5  
SCK  
CPHA = 1  
SCK  
CPHA = 0  
SCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 14-8. Transmission Start Delay (Master)  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable  
bit (ERRIE in SPSCR) is also set. MODF and OVRF can generate a receiver/error  
CPU interrupt request. (See Figure 14-11.) It is not possible to enable only MODF  
or OVRF to generate a receiver/error CPU interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
If an end-of-block transmission interrupt was meant to pull the MCU out of wait,  
having an overflow condition without overflow interrupts enabled causes the MCU  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
211  
to hang in wait mode. If the OVRF is enabled to generate an interrupt, it can pull  
the MCU out of wait mode instead.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an  
overflow condition. Figure 14-9 shows how it is possible to miss an overflow.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
2
5
READ SPSCR  
READ SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
5
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS SET. BYTE 4 IS LOST.  
Figure 14-9. Missed Read of Overflow Condition  
The first part of Figure 14-9 shows how to read the SPSCR and SPDR to clear the  
SPRF without problems. However, as illustrated by the second transmission  
example, the OVRF flag can be set in between the time that SPSCR and SPDR are  
read.  
In this case, an overflow can be easily missed. Since no more SPRF interrupts can  
be generated until this OVRF is serviced, it will not be obvious that bytes are being  
lost as more transmissions are completed. To prevent this, either enable the OVRF  
interrupt or do another read of the SPSCR after the read of the SPDR. This ensures  
that the OVRF was not set before the SPRF was cleared and that future  
transmissions will complete with an SPRF interrupt. Figure 14-10 illustrates this  
process. Generally, to avoid this second SPSCR read, enable the OVRF to the  
CPU by setting the ERRIE bit (SPSCR).  
Data Sheet  
212  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
2
4
6
9
12  
14  
READ SPSCR  
READ SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 14-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
14.6.2 Mode Fault Error  
For the MODF flag (in SPSCR) to be set, the mode fault error enable bit (MODFEN  
in SPSCR) must be set. Clearing the MODFEN bit does not clear the MODF flag  
but does prevent MODF from being set again after MODF is cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable  
bit (ERRIE in SPSCR) is also set. The SPRF, MODF, and OVRF interrupts share  
the same CPU interrupt vector. MODF and OVRF can generate a receiver/error  
CPU interrupt request. (See Figure 14-11.) It is not possible to enable only MODF  
or OVRF to generate a receiver/error CPU interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag  
(MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes the  
following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port  
drivers.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
213  
NOTE:  
To prevent bus contention with another master SPI after a mode fault error, clear  
all data direction register (DDR) bits associated with the SPI shared port pins.  
Setting the MODF flag (SPSCR) does not clear the SPMSTR bit. Reading  
SPMSTR when MODF = 1 will indicate that a MODE fault error occurred in either  
master mode or slave mode.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high  
during a transmission. When CPHA = 0, a transmission begins when SS goes low  
and ends once the incoming SPSCK returns to its idle level after the shift of the  
eighth data bit. When CPHA = 1, the transmission begins when the SPSCK leaves  
its idle level and SS is already low. The transmission continues until the SPSCK  
returns to its IDLE level after the shift of the last data bit. (See 14.5 Transmission  
Formats.)  
NOTE:  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and later  
unselected (SS is at logic 1) even if no SPSCK is sent to that slave. This happens  
because SS at logic 0 indicates the start of the transmission (MISO driven out with  
the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and  
then later unselected with no transmission occurring. Therefore, MODF does not  
occur since a transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU  
interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit  
or reset the SPI in any way. Software can abort the SPI transmission by toggling  
the SPE bit of the slave.  
NOTE:  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if a  
transmission has begun.  
To clear the MODF flag, read the SPSCR and then write to the SPCR register. This  
entire clearing procedure must occur with no MODF condition existing or else the  
flag will not be cleared.  
14.7 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests, as  
shown in Table 14-3.  
Table 14-3. SPI Interrupts  
Flag  
Request  
SPTE (transmitter empty)  
SPRF (receiver full)  
OVRF (overflow)  
SPI transmitter CPU Interrupt request (SPTIE = 1)  
SPI receiver CPU interrupt request (SPRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1, MODFEN = 1)  
MODF (mode fault)  
Data Sheet  
214  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate  
transmitter CPU interrupt requests.  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate  
receiver CPU interrupt, provided that the SPI is enabled (SPE = 1).  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF flags to  
generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set  
so that only the OVRF flag is enabled to generate receiver/error CPU interrupt  
requests.  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 14-11. SPI Interrupt Request Generation  
Two sources in the SPI status and control register can generate CPU interrupt  
requests:  
1. SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte  
transfers from the shift register to the receive data register. If the SPI  
receiver interrupt enable bit, SPRIE, is also set, SPRF can generate an SPI  
receiver/error CPU interrupt request.  
2. SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a  
byte transfers from the transmit data register to the shift register. If the SPI  
transmit interrupt enable bit, SPTIE, is also set, SPTE can generate an  
SPTE CPU interrupt request.  
14.8 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and  
transmitted. For an SPI configured as a master, a queued data byte is transmitted  
immediately after the previous transmission has completed. The SPI transmitter  
empty flag (SPTE in SPSCR) indicates when the transmit data buffer is ready to  
accept new data. Write to the SPI data register only when the SPTE bit is high.  
Figure 14-12 shows the timing associated with doing back-to-back transmissions  
with the SPI (SPSCK has CPHA–CPOL = 1–0).  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
215  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK (CPHA:CPOL = 1:0)  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
3
4
7
8
CPU WRITES BYTE 1 TO SPDR, CLEARING  
SPTE BIT.  
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING  
BYTE 3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING  
BYTE 2 AND CLEARING SPTE BIT.  
10  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 14-12. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave  
precisely timing its writes between transmissions as in a system with a single data  
buffer. Also, if no new data is written to the data buffer, the last value contained in  
the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the  
SPTE is set again no more than two bus cycles after the transmit buffer empties  
into the shift register. This allows the user to queue up a 16-bit value to send. For  
an already active slave, the load of the shift register cannot occur until the  
transmission is completed. This implies that a back-to-back write to the transmit  
data register is not possible. The SPTE indicates when the next write can occur.  
Data Sheet  
216  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
14.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI  
enable bit (SPE) is low. Whenever SPE is low, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete  
transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
These additional items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between  
transmissions without having to reset all control bits when SPE is set back to high  
for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these  
interrupts after the SPI has been disabled. The user can disable the SPI by writing  
0 to the SPE bit. The SPI also can be disabled by a mode fault occurring in an SPI  
that was configured as a master with the MODFEN bit set.  
14.10 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power standby modes.  
14.10.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait  
mode, the SPI module registers are not accessible by the CPU. Any enabled CPU  
interrupt request from the SPI module can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to  
generate CPU interrupt requests by setting the error interrupt enable bit (ERRIE).  
(See 14.7 Interrupts.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
217  
14.10.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions. SPI operation resumes after the  
MCU exits stop mode. If stop mode is exited by reset, any transfer in progress is  
aborted and the SPI is reset.  
14.11 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR, $FE03) enables software to clear status bits during the break  
state. (See 13.7.3 SIM Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a 2-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at logic  
0. After the break, doing the second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a  
write to the data register in break mode will not initiate a transmission nor will this  
data be transferred into the shift register. Therefore, a write to the SPDR in break  
mode with the BCFE bit cleared has no effect.  
14.12 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel I/O port.  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
VSS — Clock ground  
The SPI has limited inter-integrated circuit (I2C) capability (requiring software  
support) as a master in a single-master environment. To communicate with I2C  
peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI  
control register is set. In I2C communication, the MOSI and MISO pins are  
connected to a bidirectional pin from the I2C peripheral and through a pullup  
resistor to VDD  
.
Data Sheet  
218  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
14.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmit serial data. In full duplex  
operation, the MISO pin of the master SPI module is connected to the MISO pin of  
the slave SPI module. The master SPI simultaneously receives data on its MISO  
pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as  
a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its SS  
pin is at logic 0. To support a multiple-slave system, a logic 1 on the SS pin puts  
the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the  
state of the data direction register of the shared I/O port.  
14.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmit serial data. In full duplex  
operation, the MOSI pin of the master SPI module is connected to the MOSI pin of  
the slave SPI module. The master SPI simultaneously transmits data from its MOSI  
pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the  
state of the data direction register of the shared I/O port.  
14.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave  
devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the  
SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs  
exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the  
state of the data direction register of the shared I/O port.  
14.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI.  
For an SPI configured as a slave, the SS is used to select a slave. For CPHA = 0,  
the SS is used to define the start of a transmission. (See 14.5 Transmission  
Formats.) Since it is used to indicate the start of a transmission, the SS must be  
toggled high and low between each byte transmitted for the CPHA = 0 format.  
However, it can remain low throughout the transmission for the CPHA = 1 format.  
See Figure 14-13.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
219  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 14-13. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input.  
It cannot be used as a general-purpose I/O regardless of the state of the MODFEN  
control bit. However, the MODFEN bit can still prevent the state of the SS from  
creating a MODF error. (See 14.13.2 SPI Status and Control Register.)  
NOTE:  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK clocks, even if  
a transmission already has begun.  
When an SPI is configured as a master, the SS input can be used in conjunction  
with the MODF flag to prevent multiple masters from driving MOSI and SPSCK.  
(See 14.6.2 Mode Fault Error.) For the state of the SS pin to set the MODF flag,  
the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for  
an SPI master, the SS pin can be used as a general-purpose I/O under the control  
of the data direction register of the shared I/O port. With MODFEN high, it is an  
input-only pin to the SPI regardless of the state of the data direction register of the  
shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate  
pin as an input and reading the data register. (See Table 14-4.)  
Table 14-4. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
0
1
1
1
X
0
1
1
X
X
0
1
Slave  
Input only to SPI  
General-purpose I/O;  
SS ignored by SPI  
Master without MODF  
Master with MODF  
Input only to SPI  
X = don’t care  
14.12.5 VSS (Clock Ground)  
VSS is the ground return for the serial clock pin, SPSCK, and the ground for the port  
output buffers. To reduce the ground return path loop and minimize radio frequency  
(RF) emissions, connect the ground pin of the slave to the VSS pin.  
Data Sheet  
220  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
14.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR, $0010)  
SPI status and control register (SPSCR, $0011)  
SPI data register (SPDR, $0012)  
14.13.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Selects CPU interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address:  
Read:  
$0010  
SPRIE  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
R
Write:  
Reset:  
0
0
R
= Reserved  
Figure 14-14. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit.  
The SPRF bit is set when a byte transfers from the shift register to the receive  
data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation.  
Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between  
transmissions. (See Figure 14-5 and Figure 14-7.) To transmit data between  
SPI modules, the SPI modules must have identical CPOL bits. Reset clears the  
CPOL bit.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
221  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and  
SPI data. (See Figure 14-5 and Figure 14-7.) To transmit data between SPI  
modules, the SPI modules must have identical CPHA bits. When CPHA = 0, the  
SS pin of the slave SPI module must be set to logic 1 between bytes. (See  
Figure 14-13.) Reset sets the CPHA bit.  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of  
the transmission. This causes the SPI to leave its idle state and begin driving  
the MISO pin with the MSB of its data. Once the transmission begins, no new  
data is allowed into the shift register from the data register. Therefore, the slave  
data register must be loaded with the desired transmit data before the falling  
edge of SS. Any data written after the falling edge is stored in the data register  
and transferred to the shift register at the current transmission.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning  
of the transmission. The same applies when SS is high for a slave. The MISO  
pin is held in a high-impedance state, and the incoming SPSCK is ignored. In  
certain cases, it may also cause the MODF flag to be set. (See 14.6.2 Mode  
Fault Error.) A logic 1 on the SS pin does not in any way affect the state of the  
SPI state machine.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO  
so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable Bit  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset  
of the SPI. (See 14.9 Resetting the SPI.) Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPTE bit.  
SPTE is set when a byte transfers from the transmit data register to the shift  
register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
Data Sheet  
222  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
14.13.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal the following conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address:  
$0011  
Bit 7  
SPRF  
R
6
5
OVRF  
R
4
MODF  
R
3
SPTE  
R
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
ERRIE  
0
0
0
0
1
R
= Reserved  
Figure 14-15. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift  
register to the receive data register. SPRF generates a CPU interrupt request if  
the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status  
and control register with SPRF set and then reading the SPI data register. Any  
read of the SPI data register clears the SPRF bit, and reset also clears the  
SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This bit enables the MODF and OVRF flags to generate CPU interrupt requests.  
Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
223  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the  
receive data register before the next byte enters the shift register. In an overflow  
condition, the byte already in the receive data register is unaffected, and the  
byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and  
control register with OVRF set and then reading the SPI data register. Reset  
clears the OVRF flag.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, ready-only flag is set in a slave SPI if the SS pin goes high during  
a transmission. In a master SPI, the MODF flag is set if the SS pin goes low at  
any time. Clear the MODF bit by reading the SPI status and control register with  
MODF set and then writing to the SPI control register. Reset clears the MODF  
bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register  
transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt  
request if the SPTIE bit in the SPI control register is set also.  
NOTE:  
Do not write to the SPI data register unless the SPTE bit is high.  
For an idle master or idle slave that has no data loaded into its transmit buffer,  
the SPTE will be set again within two bus cycles since the transmit buffer  
empties into the shift register. This allows the user to queue up a 16-bit value to  
send. For an already active slave, the load of the shift register cannot occur until  
the transmission is completed. This implies that a back-to-back write to the  
transmit data register is not possible. The SPTE indicates when the next write  
can occur. Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF  
flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is  
enabled as a master and the MODFEN bit is low, then the SS pin is available as  
a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-purpose I/O.  
When the SPI is enabled as a slave, the SS pin is not available as a  
general-purpose I/O regardless of the value of MODFEN. (See 14.12.4 SS  
(Slave Select).)  
If the MODFEN bit is low, the level of the SS pin does not affect the operation  
of an enabled SPI configured as a master. For an enabled SPI configured as a  
slave, having MODFEN low only prevents the MODF flag from being set. It does  
not affect any other part of SPI operation. (See 14.6.2 Mode Fault Error.)  
Data Sheet  
224  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in  
Table 14-5. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1  
and SPR0.  
Table 14-5. SPI Master Baud Rate Selection  
SPR1:SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM),  
see Section 5. Clock Generator Module (CGM).  
BD = baud rate divisor  
14.13.3 SPI Data Register  
The SPI data register is the read/write buffer for the receive data register and the  
transmit data register. Writing to the SPI data register writes data into the transmit  
data register. Reading the SPI data register reads data from the receive data  
register. The transmit data and receive data registers are separate buffers that can  
contain different values. See Figure 14-2.  
Address:  
$0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 14-16. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE:  
Do not use read-modify-write instructions on the SPI data register since the buffer  
read is not the same as the buffer written.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
225  
Data Sheet  
226  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 15. Timer Interface (TIM)  
15.1 Introduction  
This section describes the timer interface module (TIM6). The TIM is a 6-channel  
timer that provides a timing reference with input capture, output compare, and  
pulse-width-modulation functions. Figure 15-2 is a block diagram of the TIM.  
15.2 Features  
Features of the TIM include:  
Six input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIM clock input  
7-frequency internal bus clock prescaler selection  
External TIM clock input (4-MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
15.3 Functional Description  
Figure 15-2 shows the TIM structure. The central component of the TIM is the  
16-bit TIM counter that can operate as a free-running counter or a modulo  
up-counter. The TIM counter provides the timing reference for the input capture  
and output compare functions. The TIM counter modulo registers,  
TMODH–TMODL, control the modulo value of the TIM counter. Software can read  
the TIM counter value at any time without affecting the counting sequence.  
The six TIM channels are programmable independently as input capture or output  
compare channels.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
227  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
VREFH  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTB7/ATD7–PTB0/ATD0  
CONTROL AND STATUS REGISTERS — 69 BYTES  
USER ROM — 32,256 BYTES  
BREAK  
PTC4–PTC3  
PTC2/MCLK  
PTC1–PTC0  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER EEPROM — 512 BYTES  
PTD6/ATD14/TCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD5/ATD13–PTD0/ATD8  
USER RAM — 1024 BYTES  
MONITOR ROM — 224 BYTES  
USER ROM VECTOR SPACE — 36 BYTES  
OSC1  
TIMER INTERFACE  
MODULE  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TCH1  
PTE2/TCH0  
PTE1/RxD  
PTE0/TxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
CLOCK GENERATOR  
OSC2  
MODULE  
CGMXFC  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF3/TCH5  
PTF2/TCH4  
PTF1/TCH3  
PTF0/TCH2  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
BYTE DATA LINK CONTROLLER  
DIGITAL MODULE  
IRQ  
MODULE  
BDRxD  
BDTxD  
POWER-ON RESET  
MODULE  
VSS  
VDD  
VDDA/VDDAREF  
POWER  
VSSA/VREFL  
Figure 15-1. Block Diagram Highlighting TIM Block and Pins  
TCLK  
PTD6/ATD14/TCLK  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
TOF  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH–TMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H–TCH0L  
TOV0  
PTE2  
PTE2/TCH0  
PTE3/TCH1  
CH0MAX  
LOGIC  
CH0F  
MS0B  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH0IE  
MS0A  
ELS1B  
ELS2B  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H–TCH1L  
TOV1  
CH1MAX  
PTE3  
LOGIC  
CH1F  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH1IE  
MS1A  
ELS2A  
CHANNEL 2  
16-BIT COMPARATOR  
TCH2H–TCH2L  
TOV2  
CH2MAX  
PTF0  
PTF0/TCH2  
PTF1/TCH3  
LOGIC  
CH2F  
MS2B  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH2IE  
MS2A  
ELS3B  
ELS4B  
ELS3A  
CHANNEL 3  
16-BIT COMPARATOR  
TCH3H–TCH3L  
TOV3  
PTF1  
CH3MAX  
LOGIC  
CH3F  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH3IE  
MS3A  
ELS4A  
CHANNEL 4  
16-BIT COMPARATOR  
TCH4H–TCH4L  
TOV4  
CH5MAX  
PTF2  
PTF2/TCH4  
PTF3/TCH5  
LOGIC  
CH4F  
MS4B  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH4IE  
MS4A  
ELS5B  
ELS5A  
CHANNEL 5  
16-BIT COMPARATOR  
TCH5H–TCH5L  
TOV5  
CH5MAX  
PTF3  
LOGIC  
CH5F  
INTER-  
RUPT  
16-BIT LATCH  
LOGIC  
CH5IE  
MS5A  
Figure 15-2. TIM Block Diagram  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
229  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
3
0
2
1
Bit 0  
PS0  
Read:  
0
Timer Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
$0020  
Register (TSC) Write:  
See page 241.  
TRST  
R
0
Reset:  
0
0
14  
R
0
1
13  
R
0
0
12  
R
0
0
10  
R
0
0
9
0
Bit 8  
R
Read:  
Bit 15  
R
11  
R
0
Timer Counter Register High  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
(TCNTH) Write:  
See page 242.  
R
0
Reset:  
Read:  
0
0
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Timer Counter Register Low  
(TCNTL) Write:  
See page 242.  
R
0
R
0
R
0
R
0
R
0
R
0
Reset:  
Read:  
0
0
Timer Modulo Register High  
Bit 15  
1
14  
13  
12  
11  
10  
9
Bit 8  
(TMODH) Write:  
See page 243.  
Reset:  
Read:  
1
1
1
1
1
1
1
Bit 0  
1
Timer Modulo Register Low  
Bit 7  
6
1
5
1
4
1
3
2
1
(TMODL) Write:  
See page 243.  
Reset:  
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer Channel 0 Status and  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Control Register (TSC0) Write:  
0
0
See page 244.  
Reset:  
Read:  
Timer Channel 0 Register High  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
(TCH0H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 0 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH0L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
R
0
Timer Channel 1 Status and  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Control Register (TSC1) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 1 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH1H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 1 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH1L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: CH2F  
Timer Channel 2 Status and  
CH2IE  
MS2B  
0
MS2A  
0
ELS2B  
0
ELS2A  
0
TOV2  
0
CH2MAX  
0
Control Register (TSC2) Write:  
0
0
See page 244.  
Reset:  
0
= Reserved  
R
Figure 15-3. TIM I/O Register Summary (Sheet 1 of 2)  
Data Sheet  
230  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Timer Channel 2 Register High  
Bit 15  
14  
13  
12  
11  
10  
$002D  
(TCH2H) Write:  
See page 248.  
Reset:  
Read:  
Indeterminate after reset  
Timer Channel 2 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
(TCH2L) Write:  
See page 248.  
Reset:  
Read: CH3F  
Indeterminate after reset  
0
R
0
Timer Channel 3 Status and  
CH3IE  
MS3A  
0
ELS3B  
ELS3A  
TOV3  
CH3MAX  
Control Register (TSC3) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 3 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH3H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 3 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH3L Write:  
See page 248.)  
Reset:  
Indeterminate after reset  
Read: CH4F  
Timer Channel 4 Status and  
CH4IE  
MS4B  
0
MS4A  
0
ELS4B  
ELS4A  
TOV4  
CH4MAX  
Control Register (TSC4) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 4 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH4H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 4 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TCH4L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read: CH5F  
0
R
0
Timer Channel 5 Status and  
CH5IE  
MS5A  
0
ELS5B  
ELS5A  
TOV5  
CH5MAX  
Control Register (TSC5) Write:  
0
0
See page 244.  
Reset:  
0
0
0
0
9
0
Read:  
Timer Channel 5 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TCH5H) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
Read:  
Timer Channel 5 Register Low  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
(TCH5L) Write:  
See page 248.  
Reset:  
Indeterminate after reset  
= Reserved  
Figure 15-3. TIM I/O Register Summary (Sheet 2 of 2)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
231  
15.3.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs or the TIM clock  
pin, PTD6/ATD14/TCLK. The prescaler generates seven clock rates from the  
internal bus clock. The prescaler select bits, PS[2–0], in the TIM status and control  
register select the TIM clock source.  
15.3.2 Input Capture  
An input capture function has three basic parts: edge select logic, an input capture  
latch, and a 16-bit counter. Two 8-bit registers, which make up the 16-bit input  
capture register, are used to latch the value of the free-running counter after the  
corresponding input capture edge detector senses a defined transition. The  
polarity of the active edge is programmable. The level transition which triggers the  
counter transfer is defined by the corresponding input edge bits (ELSxB and  
ELSxA in TSC0 through TSC5 control registers with x referring to the active  
channel number). When an active edge occurs on the pin of an input capture  
channel, the TIM latches the contents of the TIM counter into the TIM channel  
registers, TCHxH–TCHxL. Input captures can generate TIM CPU interrupt  
requests. Software can determine that an input capture event has occurred by  
enabling input capture interrupts or by polling the status flag bit.  
The free-running counter contents are transferred to the TIM channel registers  
(TCHxH–TCHxL) (see 15.8.5 TIM Channel Registers) on each proper signal  
transition regardless of whether the TIM channel flag (CH0F–CH5F in TSC0–TSC5  
registers) is set or clear. When the status flag is set, a CPU interrupt is generated  
if enabled. The value of the count latched or “captured” is the time of the event.  
Because this value is stored in the input capture register when the actual event  
occurs, user software can respond to this event at a later time and determine the  
actual time of the event. However, this must be done prior to another input capture  
on the same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal, software can  
determine the period and/or pulse width of the signal. To measure a period, two  
successive edges of the same polarity are captured. To measure a pulse width, two  
alternate polarity edges are captured. Software should track the overflows at the  
16-bit module counter to extend its range.  
Another use for the input capture function is to establish a time reference. In this  
case, an input capture function is used in conjunction with an output compare  
function. For example, to activate an output signal a specified number of clock  
cycles after detecting an input event (edge), use the input capture function to  
record the time at which the edge occurred. A number corresponding to the desired  
delay is added to this captured value and stored to an output compare register  
(see 15.8.5 TIM Channel Registers). Because both input captures and output  
compares are referenced to the same 16-bit modulo counter, the delay can be  
controlled to the resolution of the counter independent of software latencies.  
Data Sheet  
232  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Reset does not affect the contents of the input capture channel (TCHxH–TCHxL)  
registers.  
15.3.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a  
programmable polarity, duration, and frequency. When the counter reaches the  
value in the registers of an output compare channel, the TIM can set, clear, or  
toggle the channel pin. Output compares can generate TIM CPU interrupt  
requests.  
15.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as  
described in 15.3.3 Output Compare. The pulses are unbuffered because  
changing the output compare value requires writing the new value over the old  
value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare  
value could cause incorrect operation for up to two counter overflow periods. For  
example, writing a new value before the counter reaches the old value but after the  
counter reaches the new value prevents any compare during that counter overflow  
period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new  
value before it is written.  
Use the following methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current output  
compare pulse. The interrupt routine has until the end of the counter  
overflow period to write the new value.  
When changing to a larger output compare value, enable  
TIM overflow interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current counter  
overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur  
in the same counter overflow period.  
15.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose  
output appears on the PTE2/TCH0 pin. The TIM channel registers of the linked pair  
alternately control the output.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
233  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The output compare value in the TIM channel 0 registers  
initially controls the output on the PTE2/TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control the output  
after the TIM overflows. At each subsequent overflow, the TIM channel registers  
(0 or 1) that control the output are the ones written to last. TSC0 controls and  
monitors the buffered output compare function, and TIM channel 1 status and  
control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
PTE3/TCH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered output compare channel whose  
output appears on the PTF0/TCH2 pin. The TIM channel registers of the linked pair  
alternately control the output.  
Setting the MS2B bit in TIM channel 2 status and control register (TSC2) links  
channel 2 and channel 3. The output compare value in the TIM channel 2 registers  
initially controls the output on the PTF0/TCH2 pin. Writing to the TIM channel 3  
registers enables the TIM channel 3 registers to synchronously control the output  
after the TIM overflows. At each subsequent overflow, the TIM channel registers (2  
or 3) that control the output are the ones written to last. TSC2 controls and monitors  
the buffered output compare function, and TIM channel 3 status and control  
register (TSC3) is unused. While the MS2B bit is set, the channel 3 pin,  
PTF1/TCH3, is available as a general-purpose I/O pin.  
Channels 4 and 5 can be linked to form a buffered output compare channel whose  
output appears on the PTF2/TCH4 pin. The TIM channel registers of the linked pair  
alternately control the output.  
Setting the MS4B bit in TIM channel 4 status and control register (TSC4) links  
channel 4 and channel 5. The output compare value in the TIM channel 4 registers  
initially controls the output on the PTF2/TCH4 pin. Writing to the TIM channel 5  
registers enables the TIM channel 5 registers to synchronously control the output  
after the TIM overflows. At each subsequent overflow, the TIM channel registers (4  
or 5) that control the output are the ones written to last. TSC4 controls and monitors  
the buffered output compare function, and TIM channel 5 status and control  
register (TSC5) is unused. While the MS4B bit is set, the channel 5 pin,  
PTF3/TCH5, is available as a general-purpose I/O pin.  
NOTE:  
In buffered output compare operation, do not write new output compare values to  
the currently active channel registers. User software should track the currently  
active channel to prevent writing a new value to the active channel. Writing to the  
active channel registers is the same as generating unbuffered output compares.  
15.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM  
can generate a PWM signal. The value in the TIM counter modulo registers  
determines the period of the PWM signal. The channel pin toggles when the  
Data Sheet  
234  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
counter reaches the value in the TIM counter modulo registers. The time between  
overflows is the period of the PWM signal.  
As Figure 15-4 shows, the output compare value in the TIM channel registers  
determines the pulse width of the PWM signal. The time between overflow and  
output compare is the pulse width. Program the TIM to clear the channel pin on  
output compare if the state of the PWM pulse is logic 1. Program the TIM to set the  
pin if the state of the PWM pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 15-4. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected prescaler output  
determines the frequency of the PWM output. The frequency of an 8-bit PWM  
signal is variable in 256 increments. Writing $00FF (255) to the TIM counter  
modulo registers produces a PWM period of 256 times the internal bus clock period  
if the prescaler select value is $000 (see 15.8.1 TIM Status and Control  
Register).  
The value in the TIM channel registers determines the pulse width of the PWM  
output. The pulse width of an 8-bit PWM signal is variable in 256 increments.  
Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256  
or 50%.  
15.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described  
in 15.3.4 Pulse Width Modulation (PWM). The pulses are unbuffered because  
changing the pulse width requires writing the new pulse width value over the value  
currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width  
value could cause incorrect operation for up to two PWM periods. For example,  
writing a new value before the counter reaches the old value but after the counter  
reaches the new value prevents any compare during that PWM period. Also, using  
a TIM overflow interrupt routine to write a new, smaller pulse width value may  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
235  
cause the compare to be missed. The TIM may pass the new value before it is  
written to the timer channel (TCHxH/TCHxL) registers.  
Use the following methods to synchronize unbuffered changes in the PWM pulse  
width on channel x:  
When changing to a shorter pulse width, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current pulse. The  
interrupt routine has until the end of the PWM period to write the new value.  
When changing to a longer pulse width, enable TIM overflow interrupts and  
write the new value in the TIM overflow interrupt routine. The TIM overflow  
interrupt occurs at the end of the current PWM period. Writing a larger value  
in an output compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
and removes the ability of the channel to self-correct in the event of software error  
or noise. Toggling on output compare also can cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
15.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output  
appears on the PTE2/TCH0 pin. The TIM channel registers of the linked pair  
alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The TIM channel 0 registers initially control the pulse  
width on the PTE2/TCH0 pin. Writing to the TIM channel 1 registers enables the  
TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers  
(0 or 1) that control the pulse width are the ones written to last. TSC0 controls and  
monitors the buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTE3/TCH1, is  
available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered PWM channel whose output  
appears on the PTF0/TCH2 pin. The TIM channel registers of the linked pair  
alternately control the pulse width of the output.  
Setting the MS2B bit in TIM channel 2 status and control register (TSC2) links  
channel 2 and channel 3. The TIM channel 2 registers initially control the pulse  
width on the PTF0/TCH2 pin. Writing to the TIM channel 3 registers enables the  
TIM channel 3 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers  
(2 or 3) that control the pulse width are the ones written to last. TSC2 controls and  
monitors the buffered PWM function, and TIM channel 3 status and control register  
Data Sheet  
236  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
(TSC3) is unused. While the MS2B bit is set, the channel 3 pin, PTF1/TCH3, is  
available as a general-purpose I/O pin.  
Channels 4 and 5 can be linked to form a buffered PWM channel whose output  
appears on the PTF2/TCH4 pin. The TIM channel registers of the linked pair  
alternately control the pulse width of the output.  
Setting the MS4B bit in TIM channel 4 status and control register (TSC4) links  
channel 4 and channel 5. The TIM channel 4 registers initially control the pulse  
width on the PTF2/TCH4 pin. Writing to the TIM channel 5 registers enables the  
TIM channel 5 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers  
(4 or 5) that control the pulse width are the ones written to last. TSC4 controls and  
monitors the buffered PWM function, and TIM channel 5 status and control register  
(TSC5) is unused. While the MS4B bit is set, the channel 5 pin, PTF3/TCH5, is  
available as a general-purpose I/O pin.  
NOTE:  
In buffered PWM signal generation, do not write pulse width values to the currently  
active channel registers. User software should track the currently active channel to  
prevent writing a new value to the active channel. Writing to the active channel  
registers is the same as generating unbuffered PWM signals.  
15.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals,  
use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit,  
TRST.  
2. In the TIM counter modulo registers (TMODH–TMODL), write the value for  
the required PWM period.  
3. In the TIM channel x registers (TCHxH–TCHxL), write the value for the  
required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0–1 (for unbuffered output compare or PWM signals) or 1–0 (for  
buffered output compare or PWM signals) to the mode select bits,  
MSxB–MSxA. (See Table 15-2.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1–0 (to clear output on compare) or 1–1 (to set output on  
compare) to the edge/level select bits, ELSxB–ELSxA. The output  
action on compare must force the output to the complement of the  
pulse width level. (See Table 15-2.)  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
237  
and removes the ability of the channel to self-correct in the event of software error  
or noise. Toggling on output compare can also cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM  
operation. The TIM channel 0 registers (TCH0H–TCH0L) initially control the  
buffered PWM output. TIM status control register 0 (TSC0) controls and monitors  
the PWM signal from the linked channels. MS0B takes priority over MS0A.  
Setting MS2B links channels 2 and 3 and configures them for buffered PWM  
operation. The TIM channel 2 registers (TCH2H–TCH2L) initially control the  
buffered PWM output. TIM status control register 2 (TSC2) controls and monitors  
the PWM signal from the linked channels. MS2B takes priority over MS2A.  
Setting MS4B links channels 4 and 5 and configures them for buffered PWM  
operation. The TIM channel 4 registers (TCH4H–TCH4L) initially control the  
buffered PWM output. TIM status control register 4 (TSC4) controls and monitors  
the PWM signal from the linked channels. MS4B takes priority over MS4A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows.  
Subsequent output compares try to force the output to a state it is already in and  
have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit  
generates a 100% duty cycle output. (See 15.8.4 TIM Channel Status and  
Control Registers.)  
15.4 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches  
the modulo value programmed in the TIM counter modulo registers. The TIM  
overflow interrupt enable bit, TOIE, enables TIM overflow interrupt requests.  
TOF and TOIE are in the TIM status and control register.  
TIM channel flags (CH5F–CH0F) — The CHxF bit is set when an input  
capture or output compare occurs on channel x. Channel x TIM CPU  
interrupt requests are controlled by the channel x interrupt enable bit,  
CHxIE.  
15.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power standby modes.  
Data Sheet  
238  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
15.5.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the  
TIM registers are not accessible by the CPU. Any enabled CPU interrupt request  
from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by  
stopping the TIM before executing the WAIT instruction.  
15.5.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction  
does not affect register conditions or the state of the TIM counter. TIM operation  
resumes when the MCU exits stop mode.  
15.6 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear status bits during the break state. (See  
13.7.3 SIM Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a 2-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at  
logic 0. After the break, doing the second step clears the status bit.  
15.7 I/O Signals  
Port D shares one of its pins with the TIM. Port E shares two of its pins with the TIM  
and port F shares four of its pins with the TIM. PTD6/ATD14/TCLK is an external  
clock input to the TIM prescaler. The six TIM channel I/O pins are PTE2/TCH0,  
PTE3/TCH1, PTF0/TCH2, PTF1/TCH3, PTF2/TCH4, and PTF3/TCH5.  
15.7.1 TIM Clock Pin (PTD6/ATD14/TCLK)  
PTD6/ATD14/TCLK is an external clock input that can be the clock source for the  
TIM counter instead of the prescaled internal bus clock. Select the  
PTD6/ATD14/TCLK input by writing logic 1s to the three prescaler select bits,  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
239  
PS[2–0]. (See 15.8.1 TIM Status and Control Register.) The minimum TCLK  
pulse width, TCLKLMIN or TCLKHMIN, is:  
1
------------------------------------- + t  
SU  
bus frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTD6/ATD14/TCLK is available as a general-purpose I/O pin or ADC channel  
when not used as the TIM clock input. When the PTD6/ATD14/TCLK pin is the TIM  
clock input, it is an input regardless of the state of the DDRD6 bit in data direction  
register D.  
15.7.2 TIM Channel I/O Pins (PTF3/TCH5–PTF0/TCH2 and PTE3/TCH1–PTE2/TCH0)  
Each channel I/O pin is programmable independently as an input capture pin or an  
output compare pin. PTE2/TCH0, PTE6/TCH2, and PTF2/TCH4 can be configured  
as buffered output compare or buffered PWM pins.  
15.8 I/O Registers  
These I/O registers control and monitor TIM operation:  
TIM status and control register (TSC)  
TIM control registers (TCNTH–TCNTL)  
TIM counter modulo registers (TMODH–TMODL)  
TIM channel status and control registers (TSC0, TSC1, TSC2, TSC3, TSC4,  
and TSC5)  
TIM channel registers (TCH0H–TCH0L, TCH1H–TCH1L, TCH2H–TCH2L,  
TCH3H–TCH3L, TCH4H–TCH4L, and TCH5H–TCH5L)  
15.8.1 TIM Status and Control Register  
The TIM status and control register:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Data Sheet  
240  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Address:  
$0020  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
R
0
0
R
= Reserved  
Figure 15-5. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter resets reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by reading  
the TIM status and control register when TOF is set and then writing a logic 0 to  
TOF. If another TIM overflow occurs before the clearing sequence is complete,  
then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request  
cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit.  
Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes  
set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is  
cleared. Reset sets the TSTOP bit, stopping the TIM counter until software  
clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE:  
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit  
wait mode. Also when the TSTOP bit is set and the timer is configured for input  
capture operation, input captures are inhibited until the TSTOP bit is cleared.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting  
TRST has no effect on any other registers. Counting resumes from $0000.  
TRST is cleared automatically after the TIM counter is reset and always reads  
as logic 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE:  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value  
of $0000.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
241  
PS[2–0] — Prescaler Select Bits  
These read/write bits select either the PTD6/ATD14/TCLK pin or one of the  
seven prescaler outputs as the input to the TIM counter as Table 15-1 shows.  
Reset clears the PS[2–0] bits.  
Table 15-1. Prescaler Selection  
PS[2–0]  
000  
TIM Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTD6/ATD14/TCLK  
001  
010  
011  
100  
101  
110  
111  
15.8.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value  
in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low  
byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched  
TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting  
the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE:  
If TCNTH is read during a break interrupt, be sure to unlatch TCNTL by reading  
TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value  
latched during the break.  
Register Name and Address  
Bit 7  
TCNTH — $0022  
5
6
BIT 14  
R
4
3
BIT 11  
R
2
BIT 10  
R
1
BIT 9  
R
Bit 0  
BIT 8  
R
Read:  
Write:  
Reset:  
BIT 15  
BIT 13  
BIT 12  
R
0
R
0
R
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TCNTL — $0023  
5
6
BIT 6  
R
4
3
BIT 3  
R
2
BIT 2  
R
1
BIT 1  
R
Bit 0  
BIT 0  
R
Read:  
Write:  
Reset:  
BIT 7  
BIT 5  
BIT 4  
R
0
R
0
R
0
0
0
0
0
0
R
R = Reserved  
Figure 15-6. TIM Counter Registers (TCNTH and TCNTL)  
Data Sheet  
242  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
15.8.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter.  
When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes  
set, and the TIM counter resumes counting from $0000 at the next timer clock.  
Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until  
the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Register Name and Address  
Bit 7  
TMODH — $0024  
5
6
BIT 14  
1
4
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
Write:  
BIT 13  
1
BIT 12  
1
Reset:  
1
Register Name and Address  
Bit 7  
TMODL — $0025  
5
6
BIT 6  
1
4
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
Write:  
BIT 5  
1
BIT 4  
1
Reset:  
1
Figure 15-7. TIM Counter Modulo Registers (TMODH and TMODL)  
NOTE:  
Reset the TIM counter before writing to the TIM counter modulo registers.  
15.8.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture  
trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
243  
Register Name and Address  
Bit 7  
TSC0 — $0026  
5
6
CH0IE  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
MS0B  
0
0
0
Register Name and Address  
Bit 7  
TSC1 — $0029  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1F  
CH1IE  
0
0
R
0
0
R
= Reserved  
Register Name and Address  
Bit 7  
TSC2 — $002C  
5
6
CH2IE  
0
4
MS2A  
0
3
ELS2B  
0
2
ELS2A  
0
1
TOV2  
0
Bit 0  
CH2MAX  
0
Read:  
Write:  
Reset:  
CH2F  
MS2B  
0
0
0
Register Name and Address  
Bit 7  
TSC3 — $002F  
6
CH3IE  
0
5
0
4
MS3A  
0
3
ELS3B  
0
2
ELS3A  
0
1
TOV3  
0
Bit 0  
CH3MAX  
0
Read:  
Write:  
Reset:  
CH3F  
0
0
R
0
Register Name and Address  
Bit 7  
TSC4 — $0032  
5
6
CH4IE  
0
4
MS4A  
0
3
ELS4B  
0
2
ELS4A  
0
1
TOV4  
0
Bit 0  
CH4MAX  
0
Read:  
Write:  
Reset:  
CH4F  
MS4B  
0
0
0
Register Name and Address  
Bit 7  
TSC5 — $0035  
6
CH5IE  
0
5
0
4
MS5A  
0
3
ELS5B  
0
2
ELS5A  
0
1
TOV5  
0
Bit 0  
CH5MAX  
0
Read:  
Write:  
Reset:  
CH5F  
0
0
R
0
R
R = Reserved  
Figure 15-8. TIM Channel Status  
and Control Registers (TSC0–TSC5)  
Data Sheet  
244  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an  
active edge occurs on the channel x pin. When channel x is an output compare  
channel, CHxF is set when the value in the TIM counter registers matches the  
value in the TIM channel x registers.  
When CHxIE = 1, clear CHxF by reading TIM channel x status and control  
register with CHxF set, and then writing a logic 0 to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing logic 0 to  
CHxF has no effect. Therefore, an interrupt request cannot be lost due to  
inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB  
exists only in the TIM channel 0, TIM channel 2, and TIM channel 4 status and  
control registers.  
Setting MS0B disables the channel 1 status and control register and reverts  
TCH1 pin to general-purpose I/O.  
Setting MS2B disables the channel 3 status and control register and reverts  
TCH3 pin to general-purpose I/O.  
Setting MS4B disables the channel 5 status and control register and reverts  
TCH5 pin to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB–ELSxA 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation. (See Table 15-2.)  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB–ELSxA = 00, this read/write bit selects the initial output level of  
the TCHx pin once PWM, input capture, or output compare operation is  
enabled. (See Table 15-2.) Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
245  
NOTE:  
Before changing a channel function by writing to the MSxB or MSxA bit, set the  
TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the  
active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the  
channel x output behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port E or  
port F, and pin PTEx/TCHx or pin PTFx/TCHx is available as a general-purpose  
I/O pin. However, channel x is at a state determined by these bits and becomes  
transparent to the respective pin when PWM, input capture, or output compare  
mode is enabled. Table 15-2 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
Table 15-2. Mode, Edge, and Level Selection  
MSxB–MSxA  
ELSxB–ELSxA  
Mode  
Configuration  
Pin under port control;  
X0  
00  
Initialize timer  
Output level high  
Output  
preset  
Pin under port control;  
Initialize timer  
X1  
00  
Output level low  
00  
00  
00  
01  
01  
01  
1X  
1X  
01  
10  
11  
01  
10  
11  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Input  
capture  
Output  
compare  
or PWM  
Buffered  
output  
compare  
orbuffered  
PWM  
Toggle output on compare  
Clear output on compare  
1X  
11  
Set output on compare  
NOTE:  
Before enabling a TIM channel register for input capture operation, make sure that  
the PTEx/TCHx pin or PTFx/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the  
behavior of the channel x output when the TIM counter overflows. When  
channel x is an input capture channel, TOVx has no effect. Reset clears the  
TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
Data Sheet  
246  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
NOTE:  
When TOVx is set, a TIM counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1 and clear output on compare is selected, setting  
the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals  
to 100%. As Figure 15-9 shows, the CHxMAX bit takes effect in the cycle after  
it is set or cleared. The output stays at 100% duty cycle level until the cycle after  
CHxMAX is cleared.  
NOTE:  
The PWM 0% duty cycle is defined as output low all of the time. To generate the  
0% duty cycle, select clear output on compare and then clear the TOVx bit  
(CHxMAX = 0). The PWM 100% duty cycle is defined as output high all of the time.  
To generate the 100% duty cycle, use the CHxMAX bit in the TSCx register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
CHxMAX  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
COMPARE  
COMPARE  
COMPARE  
COMPARE  
Figure 15-9. CHxMAX Latency  
15.8.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input  
capture function or the output compare value of the output compare function. The  
state of the TIM channel registers after reset is unknown.  
In input capture mode (MSxB–MSxA = 0–0), reading the high byte of the TIM  
channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is  
read.  
In output compare mode (MSxB–MSxA 0–0), writing to the high byte of the TIM  
channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is  
written.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
247  
Register Name and Address  
Bit 7  
TCH0H — $0027  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH0L — $0028  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH1H — $002A  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH1L — $002B  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH2H — $002D  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH2L — $002E  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH3H — $0030  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Figure 15-10. TIM Channel Registers  
(TCH0H/L–TCH3H/L) (Sheet 1 of 2)  
Data Sheet  
248  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Register Name and Address  
Bit 7  
TCH3L — $0031  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH4H — $0033  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH4L — $0034  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH5H — $0036  
5
6
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TCH5L — $0037  
5
6
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Write:  
Reset:  
Indeterminate after reset  
Figure 15-10. TIM Channel Registers  
(TCH0H/L–TCH3H/L) (Sheet 2 of 2)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
249  
Data Sheet  
250  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 16. Development Support  
16.1 Introduction  
This section describes the break module, the monitor read-only memory (MON),  
and the monitor mode entry methods.  
16.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow  
at a defined address to enter a background program.  
Features of the break module include:  
Accessible I/O registers during the break interrupt  
CPU-generated break interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
16.2.1 Functional Description  
When the internal address bus matches the value written in the break address  
registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM  
then causes the CPU to load the instruction register with a software interrupt  
instruction (SWI) after completion of the current CPU instruction. The program  
counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
These events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter) matches  
the contents of the break address registers  
Software writes a logic 1 to the BRKA bit in the break status and control  
register.  
When a CPU-generated address matches the contents of the break address  
registers, the break interrupt begins after the CPU completes its current instruction.  
A return-from-interrupt instruction (RTI) in the break routine ends the break  
interrupt and returns the MCU to normal operation. Figure 16-1 shows the  
structure of the break module.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
251  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
TO SIM  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 16-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
Bit 15  
0
6
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
1
Bit 0  
Bit 8  
0
Read:  
Break Address Register High  
14  
$FE0C  
(BRKH) Write:  
See page 254.  
Reset:  
Read:  
0
Break Address Register Low  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
$FE0D  
$FE0E  
(BRKL) Write:  
See page 254.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control Regis-  
BRKE  
BRKA  
ter (BRKSCR) Write:  
See page 253.  
R
0
R
0
R
0
R
0
R
0
R
0
Reset:  
0
0
= Reserved  
R
Figure 16-2. Break I/O Register Summary  
16.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether module status bits can be  
cleared during the break state. The BCFE bit in the SIM break flag control register  
(SBFCR) enables software to clear status bits during the break state. (See 13.7.3  
SIM Break Flag Control Register and the Break Interrupts subsection for each  
module.)  
Data Sheet  
252  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
16.2.1.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC–$FFFD ($FEFC–$FEFD in  
monitor mode)  
The break interrupt begins after completion of the CPU instruction in progress. If  
the break address register match occurs on the last cycle of a CPU instruction, the  
break interrupt begins immediately.  
16.2.1.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
16.2.1.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VDD + VHI is present on the RST  
pin. For VHI, see 17.4 5.0-Volt DC Electrical Characteristics.  
16.2.2 Break Module Registers  
Three registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
16.2.2.1 Break Status and Control Register  
The break status and control register contains break module enable and status  
bits.  
Address: $FE0E  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
BRKA  
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 16-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear  
BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
253  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs.  
Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a  
logic 0 to it before exiting the break routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
16.2.2.2 Break Address Registers  
The break address registers contain the high and low bytes of the desired  
breakpoint address. Reset clears the break address registers.  
Address: $FE0C  
Bit 7  
BIT 15  
0
6
BIT 13  
0
5
BIT 13  
0
4
BIT 12  
0
3
BIT 11  
0
2
BIT 10  
0
1
BIT 9  
0
Bit 0  
BIT 8  
0
Read:  
Write:  
Reset:  
Figure 16-4. Break Address Register (BRKH)  
Address: $FE0D  
Bit 7  
6
BIT 6  
0
5
BIT 5  
0
4
BIT 4  
0
3
BIT 3  
0
2
BIT 2  
0
1
BIT 1  
0
Bit 0  
BIT 0  
0
Read:  
BIT 7  
Write:  
Reset:  
0
Figure 16-5. Break Address Register (BRKL)  
16.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power standby modes.  
16.2.3.1 Wait Mode  
If enabled, the break module is active in wait mode. The SIM break stop/wait bit  
(SBSW) in the SIM break status register indicates whether wait was exited by a  
break interrupt. If so, the user can modify the return address on the stack by  
subtracting one from it to re-execute the stop or wait opcode. (See 13.7.1 SIM  
Break Status Register.)  
16.2.3.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does not affect  
break module register states. A break interrupt will cause an exit from stop mode  
and sets the SBSW bit in the SIM break status register.  
Data Sheet  
254  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
16.3 Monitor ROM (MON)  
The monitor ROM allows complete testing of the MCU through a single-wire  
interface with a host computer.  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM and Host  
computer  
Standard mark/space non-return-to-zero (NRZ) communication with host  
computer  
4800 Baud–28.8 kBaud communication with host computer  
Execution of code in RAM or ROM  
16.3.1 Functional Description  
Monitor ROM receives and executes commands from a host computer.  
Figure 16-6 shows a sample circuit used to enter monitor mode and communicate  
with a host computer via a standard RS-232 interface.  
While simple monitor commands can access any memory address, the  
MC68HC08AS32 has a ROM security feature that requires proper procedures to  
be followed before the ROM can be accessed. Access to the ROM is denied to  
unauthorized users of customer-specified software.  
In monitor mode, the MCU can execute host-computer code in RAM while all MCU  
pins except PTA0 retain normal operating mode functions. All communication  
between the host computer and the MCU is through the PTA0 pin. A level-shifting  
and multiplexing interface is required between PTA0 and the host computer. PTA0  
is used in a wired-OR configuration and requires a pullup resistor.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
255  
VDD  
10 kΩ  
68HC08  
RST  
0.1 µF  
VDD + VHI  
10 Ω  
IRQ1/VPP  
VDDA  
VDDA/VDDAREF  
CGMXFC  
0.1 µF  
1
20  
MC145407  
+
+
+
+
10 µF  
10 µF  
10 µF  
10 µF  
OSC1  
OSC2  
3
4
18  
17  
X1  
20 pF  
10 MΩ  
4.9152 MHz  
VDD  
20 pF  
2
19  
VSS  
DB-25  
2
5
6
16  
15  
3
7
VDD  
VDD  
0.1 µF  
VDD  
VDD  
1
2
6
4
14  
3
MC74HC125  
10 kΩ  
PTA0  
PTC3  
5
VDD  
10 kΩ  
VDD  
7
10 kΩ  
PTC0  
PTC1  
A
(SEE  
B
NOTE.)  
NOTE: Position A — Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4  
Position B — Bus clock = CGMXCLK ÷ 2  
Figure 16-6. Monitor Mode Circuit  
Data Sheet  
256  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
16.3.1.1 Entering Monitor Mode  
Table 16-1 shows the pin conditions for entering monitor mode.  
Table 16-1. Mode Selection  
IRQ  
Pin  
PTCO PTC1 PTA0 PTC3  
Bus  
Frequency  
MODE  
CGMOUT  
PIN  
PIN  
PIN  
PIN  
VDD  
+
CGMXCLK  
CGMVCLK  
CGMOUT  
--------------------------  
1
0
1
1
Monitor  
----------------------------- or -----------------------------  
(1)  
2
2
2
VHI  
VDD  
+
CGMOUT  
--------------------------  
1
0
1
0
Monitor  
CGMXCLK  
(1)  
2
VHI  
1. For VHI, see 17.4 5.0-Volt DC Electrical Characteristics and 17.1 Maximum Ratings  
Enter monitor mode by either:  
Executing a software interrupt instruction (SWI) or  
Applying a logic 0 and then a logic 1 to the RST pin  
The MCU sends a break signal (10 consecutive logic 0s) to the host computer,  
indicating that it is ready to receive a command. The break signal also provides a  
timing reference to allow the host to determine the necessary baud rate.  
Monitor mode uses alternate vectors for reset, SWI, and break interrupt. The  
alternate vectors are in the $FE page instead of the $FF page and allow code  
execution from the internal monitor firmware instead of user code. The COP  
module is disabled in monitor mode as long as VDD + VHI (see 17.4 5.0-Volt DC  
Electrical Characteristics) is applied to either the IRQ pin or the VDD pin. (See  
Section 13. System Integration Module (SIM) for more information on modes of  
operation.)  
NOTE:  
Holding the PTC3 pin low when entering monitor mode causes a bypass of a  
divide-by-two stage at the oscillator. The CGMOUT frequency is equal to the  
CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks.  
In this case, the OSC1 signal must have a 50% duty cycle at maximum bus  
frequency.  
Table 16-2 is a summary of the differences between user mode and monitor mode.  
Table 16-2. Mode Differences  
Functions  
Modes  
Reset  
Vector High  
Reset  
Vector Low  
Break  
Vector High  
Break  
Vector Low  
SWI  
Vector High  
SWI  
Vector Low  
COP  
User  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Disabled(1)  
Monitor  
1. If the high voltage (VDD + VHI) is removed from the IRQ/VPP pin while in monitor mode, the SIM asserts its COP enable output.  
The COP is a mask option enabled or disabled by the COPD bit in the configuration register. (See 17.4 5.0-Volt DC Electrical  
Characteristics.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
257  
16.3.1.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ)  
mark/space data format. (See Figure 16-7 and Figure 16-8.)  
The data transmit and receive rate can be anywhere from 4800 baud to  
28.8 kBaud. Transmit and receive baud rates must be identical.  
NEXT  
START  
START  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT  
BIT  
Figure 16-7. Monitor Data Format  
NEXT  
START  
BIT  
START  
STOP  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
BIT  
BIT  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
BIT 1  
Figure 16-8. Sample Monitor Waveforms  
16.3.1.3 Echoing  
As shown in Figure 16-9, the monitor ROM immediately echoes each received  
byte back to the PTA0 pin for error checking.  
Any result of a command appears after the echo of the last byte of the command.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 16-9. Read Transaction  
16.3.1.4 Break Signal  
A start bit followed by nine low bits is a break signal. (See Figure 16-10.) When the  
monitor receives a break signal, it drives the PTA0 pin high for the duration of two  
bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 16-10. Break Transaction  
Data Sheet  
258  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
16.3.1.5 Commands  
The monitor ROM uses these commands:  
READ, read memory  
WRITE, write memory  
IREAD, indexed read  
IWRITE, indexed write  
READSP, read stack pointer  
RUN, run user program  
A sequence of IREAD or IWRITE commands can access a block of memory  
sequentially over the full 64-Kbyte memory map.  
Table 16-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand Specifies 2-byte address in high byte:low byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 16-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
SENT TO  
MONITOR  
WRITE  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
ECHO  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
259  
Table 16-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand Specifies 2-byte address in high byte:low byte order  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 16-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Specifies single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
Table 16-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Data Returned Returns stack pointer in high byte:low byte order  
Opcode $0C  
Command Sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Data Sheet  
260  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Table 16-8. RUN (Run User Program) Command  
Description Executes RTI instruction  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
16.3.1.6 Baud Rate  
With a 4.9152-MHz crystal and the PTC3 pin at logic 1 during reset, data is  
transferred between the monitor and host at 4800 baud. If the PTC3 pin is at logic 0  
during reset, the monitor baud rate is 9600. When the CGM output, CGMOUT, is  
driven by the PLL, the baud rate is determined by the MUL[7:4] bits in the PLL  
programming register (PPG). (See Section 5. Clock Generator Module (CGM).)  
Table 16-9. Monitor Baud Rate Selection  
VCO Frequency Multiplier (N)  
1
2
3
4
5
6
Monitor Baud Rate (4.9152 MHz)  
Monitor Baud Rate (4.194 MHz)  
4800  
4096  
9600  
8192  
14,400 19,200 24,000 28,800  
12,288 16,384 20,480 24,576  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
261  
Data Sheet  
262  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 17. Electrical Specifications  
17.1 Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without  
permanently damaging it.  
NOTE:  
This device is not guaranteed to operate properly at the maximum ratings. Refer to  
17.4 5.0-Volt DC Electrical Characteristics for guaranteed operating conditions.  
Rating(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VIN  
VSS –0.3 to VDD +0.3  
V
Maximum current per pin excluding VDD and VSS  
I
± 25  
–55 to +150  
100  
mA  
°C  
mA  
mA  
V
TSTG  
IMVSS  
IMVDD  
VHI  
Storage temperature  
Maximum current out of VSS  
Maximum current into VDD  
100  
VDD to VDD + 2  
Reset IRQ input voltage  
1. Voltages are referenced to VSS  
.
NOTE:  
This device contains circuitry to protect the inputs against damage due to high  
static voltages or electric fields; however, it is advised that normal precautions be  
taken to avoid application of any voltage higher than maximum-rated voltages to  
this high-impedance circuit. For proper operation, it is recommended that VIN and  
VOUT be constrained to the range VSS (VIN or VOUT) VDD. Reliability of  
operation is enhanced if unused inputs are connected to an appropriate logic  
voltage level (for example, either VSS or VDD.)  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
263  
17.2 Functional Operating Range  
Rating  
Symbol  
Value  
Unit  
°C  
TA  
Operating temperature range  
Operating voltage range  
–40 to 125  
5.0 ± 10%  
VDD  
V
17.3 Thermal Characteristics  
Characteristic  
Thermal resistance  
Symbol  
Value  
50  
Unit  
°C/W  
W
θJA  
PLCC (52 pins)  
PI/O  
PD  
I/O pin power dissipation  
User determined  
PD = (IDD x VDD) +  
Power dissipation(1)  
Constant(2)  
W
PI/O = K/(TJ + 273°C)  
PD x (TA + 273°C)  
K
W/°C  
+ (PD2 x θJA  
)
TJ  
Average junction temperature  
°C  
°C  
TA = PD × θJA  
TJM  
Maximum junction temperature  
150  
1. Power dissipation is a function of temperature  
2. K is a constant unique to the device. K can be determined from a known TA and measured PD. With  
this value of K, PD and TJ can be determined for any value of TA.  
Data Sheet  
264  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
17.4 5.0-Volt DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
VOH  
VDD –0.8  
V
(ILoad = –2.0 mA) All Ports, RST  
Output low voltage  
VOL  
VIH  
VIL  
0.7 x VDD  
VSS  
0.4  
VDD  
V
V
V
(ILoad = 1.6 mA) All Ports, RST  
Input high voltage  
All Ports, IRQs, RESET, OSC1  
Input low voltage  
0.3 x VDD  
All Ports, IRQs, RESET, OSC1  
V
+ V  
/V  
supply current  
DD  
DDA DDAREF  
30  
15  
mA  
mA  
Run(3)  
Wait(4)  
Stop(5)  
IDD  
5
50  
100  
400  
500  
µA  
µA  
µA  
µA  
µA  
25°C  
–40°C to +105°C  
–40°C to +125°C  
25°C with LVI enabled  
–40°C to +105°C with LVI enabled  
IL  
I/O ports Hi-Z leakage current  
Input current  
± 1  
± 1  
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
12  
8
pF  
Ports (as input or output)  
VLVF  
HLVI  
Low-voltage reset inhibit  
3.7  
50  
4.1  
150  
4.45  
V
mV  
mV  
mV  
V/ms  
V
Low-voltage reset inhibit/recover hysteresis  
POR rearm voltage(6)  
VPOR  
VPORRST  
RPOR  
VHI  
0
200  
POR reset voltage(7)  
0
800  
POR rise time ramp rate(8)  
High COP disable voltage(9)  
0.02  
VDD  
VDD + 2  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = –40°C to +105°C, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (Operating) IDD measured using external square wave clock source (fOP = 8.4 MHz). All inputs 0.2 V from rail. No dc loads.  
Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run  
IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 8.4 MHz). All inputs 0.2 Vdc from rail. No dc loads. Less  
than 100 pF on all outputs, CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
.
Measured with all modules enabled.  
5. Stop IDD measured with OSC1 = VSS  
.
6. Maximum is highest voltage that POR is guaranteed.  
7. Maximum is highest voltage that POR is possible.  
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
9. See 6.8 COP Module During Break Interrupts.  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
265  
17.5 Control Timing  
Characteristic(1)  
Symbol  
fBUS  
Min  
Max  
8.4  
Unit  
MHz  
tCYC  
tCYC  
tCYC  
Bus operating frequency (4.5–5.5 V — VDD only)  
RST pulse width low  
tRL  
1.5  
tILHI  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
1.5  
(2)  
tILIL  
tEEPGM  
tEBYTE  
tEBLOCK  
tEBULK  
tEEFPV  
EEPROM programming time per byte  
EEPROM erasing time per byte  
10  
10  
ms  
ms  
ms  
ms  
µs  
EEPROM erasing time per block  
10  
EEPROM erasing time per bulk  
10  
EEPROM programming voltage discharge period  
100  
16-bit timer(3)  
tTH, TL  
t
Input capture pulse width(2)  
Input capture period  
2
(4)  
tCYC  
tTLTL  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = –40°C to +105°C, unless otherwise noted.  
2. Refer to Table 15-2. Mode, Edge, and Level Selection and supporting note.  
3. The 2-bit timer prescaler is the limiting factor in determining timer resolution.  
4. The minimum period tTLTL or tILIL should not be less than the number of cycles it takes to execute the capture interrupt service  
routine plus 1 tCYC  
.
17.6 ADC Characteristics  
Characteristic  
Min  
Max  
Unit  
Comments  
Resolution  
8
8
Bits  
Absolute accuracy  
–1  
+1  
LSB  
Includes quantization  
(VREFL = 0 V, VDDA = VREFH = 5 V ± 10%)  
Conversion range(1)  
Power-up time  
VREFL  
16  
VREFH  
17  
VREFL = VSSA  
V
µs  
Conversion time period  
Input leakage(2) (3) ports B and D  
Conversion Time  
± 1  
µA  
ADC clock cycles  
Inherent within total error  
Hex  
16  
17  
Includes sampling time  
Monotonicity  
VIN = VREFL  
VIN = VREFH  
Zero input reading  
00  
01  
FF  
Full-scale reading  
FE  
Hex  
Sample time(2) (3)  
Input capacitance  
ADC internal clock  
Analog input voltage  
5
8
ADC clock cycles  
pF  
Hz  
V
Not tested  
500 k  
–0.3  
1.048 M  
VDD + 0.3  
Tested only at 1 MHz  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDA/VDDAREF = 5.0 Vdc ± 10%, VSSA = 0 Vdc, VREFH = 5.0 Vdc ± 10%  
2. The external system error caused by input leakage current is approximately equal to the product of R source and input current.  
3. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
Data Sheet  
266  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
17.7 5.0-Vdc ± 10% Serial Peripheral Interface (SPI) Timing  
Num(1)  
Characteristic(2)  
Operating frequency(3)  
Symbol  
Min  
Max  
Unit  
fBUS(M)  
fBUS/2  
fBUS  
fBUS/128  
dc  
MHz  
Master  
Slave  
fBUS  
(S)  
Cycle time  
Master  
tCYC  
tCYC  
1
2
1
128  
(M)  
Slave  
tCYC  
(S)  
t
2
3
Enable lead time  
Enable lag time  
15  
15  
ns  
ns  
Lead  
t
Lag  
Clock (SCK) high time  
t
4
5
6
7
Master  
Slave  
100  
50  
ns  
ns  
ns  
ns  
W(SCKH)M  
t
W(SCKH)S  
Clock (SCK) low time  
Master  
t
100  
50  
W(SCKL)M  
Slave  
t
W(SCKL)S  
Data setup time, inputs  
t
Master  
Slave  
45  
5
SU(M)  
t
SU(S)  
Data hold time, inputs  
Master  
t
0
15  
H(M)  
Slave  
t
H(S)  
Access time, slave(4)  
CPHA = 0  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
20  
ns  
ns  
ns  
CPHA = 1  
t
Slave disable time, hold time to high-impedance state  
25  
DIS  
Enable edge lead time to data valid(5)  
t
10  
10  
40  
EV(M)  
Master  
Slave  
t
EV(S)  
Enable edge lead time to data invalid  
t
11  
Master  
Slave  
0
5
ns  
EI(M)  
t
EI(S)  
Data valid  
t
12  
13  
90  
---  
---  
ns  
ns  
V(M)  
Master (before capture edge)  
Data hold time (outputs)  
t
100  
HO(M)  
Master (after capture edge)  
1. Item numbers refer to dimensions in Figure 17-1 and Figure 17-2.  
2. All timing is shown with respect to 30% VDD and 70% VDD, unless otherwise noted; assumes 100 pF load on all SPI pins.  
3. fBUS = the currently active bus frequency for the microcontroller.  
4. Time to data active from high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
267  
SS  
SS pin of master held high.  
(INPUT)  
1
5
4
SCK (CPOL = 0)  
(OUTPUT)  
NOTE  
4
5
SCK (CPOL = 1)  
(OUTPUT)  
NOTE  
6
7
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
(INPUT)  
10  
11  
10  
11  
MOSI  
MASTER MSB OUT  
13  
MASTER LSB OUT  
(OUTPUT)  
12  
NOTE: This first clock edge is generated internally, but is not seen at the SCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
SS pin of master held high.  
1
(INPUT)  
SCK (CPOL = 0)  
(OUTPUT)  
5
4
NOTE  
NOTE  
4
5
SCK (CPOL = 1)  
(OUTPUT)  
6
7
LSB IN  
11  
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
(INPUT)  
10  
11  
10  
MOSI  
MASTER MSB OUT  
12  
13  
MASTER LSB OUT  
(OUTPUT)  
NOTE: This last clock edge is generated internally, but is not seen at the SCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 17-1. SPI Master Timing  
Data Sheet  
268  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
SS  
(INPUT)  
3
1
SCK (CPOL = 0)  
(INPUT)  
11  
4
4
5
2
SCK (CPOL = 1)  
(INPUT)  
9
8
MISO  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
(INPUT)  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
(OUTPUT)  
NOTE: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
SCK (CPOL = 0)  
(INPUT)  
5
4
5
2
3
SCK (CPOL = 1)  
(INPUT)  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
(OUTPUT)  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
(INPUT)  
NOTE: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 17-2. SPI Slave Timing  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
269  
17.8 CGM Operating Conditions  
Characteristic  
Crystal reference frequency  
Symbol  
Min  
1
Typ  
Max  
8
Unit  
MHz  
MHz  
fXCLK  
fNOM  
Range nominal multiplier  
4.9152  
VCO center-of-range frequency(1)  
Medium voltage VCO center-of-range frequency  
VCO frequency multiplier  
4.9152  
4.9152  
1
32.8  
16.4  
15  
MHz  
MHz  
fVRS  
N
L
VCO center-of-range multiplier  
VCO operating frequency  
1
15  
fVCLK  
fVRSMIN  
fVRSMAX  
MHz  
1. 5.0 V ± 10% VDD only  
17.9 CGM Component Information  
Characteristic  
Crystal (X1) frequency (MHz)(1)  
Crystal load capacitance(2)  
Symbol  
Min  
1
Typ  
Max  
8
Unit  
MHz  
µF  
fXCLK  
4.9152  
CL  
C1  
0
3.3  
Crystal fixed capacitance(2)  
2 × CL  
2 × CL  
1
µF  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
µF  
RB  
MΩ  
kΩ  
Series resistor(3)  
Filter capacitor  
RS  
CF  
C
Fact × (VDDA XCLK  
/f  
)
µF  
Bypass capacitor(4)  
CBYP  
0.1  
µF  
1. Fundamental mode crystals only  
2. Consult crystal manufacturer’s data.  
3. Not required  
4. CBYP must provide low AC impedance from f = fXCLK/100 to 100 × fVCLK, so series resistance must be considered.  
Data Sheet  
270  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
17.10 CGM Acquisition/Lock Time Information  
Description  
Filter capacitor multiply factor  
Symbol  
Min  
Typ  
Max  
Unit  
F/sV  
V
CFact  
0.0154  
0.1135  
0.0174  
KACQ  
KTRK  
Acquisition mode time factor  
Tracking mode time factor  
V
8 × VDDA  
XCLK × KACQ  
Manual mode time to stable(1)  
Manual stable to lock time(1)  
tACQ  
s
----------------------------------  
f
4 × VDDA  
tAL  
Sec  
---------------------------------  
f
XCLK × KTRK  
tLock  
tACQ + tAL  
Manual acquisition time  
0
Sec  
Tracking mode entry frequency tolerance  
Acquisition mode entry frequency tolerance  
LOCK entry frequency tolerance  
± 3.6%  
± 7.2%  
± 0.9%  
± 1.8%  
TRK  
±6.3%  
0
ACQ  
Lock  
LOCK exit frequency tolerance  
±0.9%  
UNL  
nACQ  
nTRK  
Reference cycles per acquisition mode measurement  
Reference cycles per tracking mode measurement  
32  
128  
Cycles  
Cycles  
nACQ  
-------------  
fXCLK  
8 × VDDA  
XCLK × KACQ  
Automatic mode time to stable(1)  
tACQ  
Sec  
----------------------------------  
f
nTRK  
-------------  
fXCLK  
4 × VDDA  
Automatic stable to lock time(1)  
Automatic lock time  
PLL jitter(2)  
tAL  
tLock  
fJ  
Sec  
Sec  
Hz  
---------------------------------  
f
XCLK × KTRK  
tACQ + tAL  
0
± fCRYS × 0.025%  
× 2PN/4  
1. If C chosen correctly  
F
2. Deviation of average bus frequency over 2 ms, N = VCO frequency multiplier  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
271  
17.11 Timer Module Characteristics  
Characteristic  
Input capture pulse width  
Symbol  
tTIH, TIL  
Min  
125  
Max  
Unit  
ns  
t
t
TCH, tTCL  
(1/fOP) + 5  
Input clock pulse width  
ns  
17.12 RAM Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
VRDR  
RAM data retention voltage  
0.7  
V
17.13 EEPROM Characteristics  
Characteristic  
Value  
10,000  
10  
Unit  
Cycles  
Years  
EEPROM write/erase cycles @ 10 ms write time + 85 °C  
EEPROM data retention after 10,000 write/erase cycles  
17.14 BDLC Transmitter VPW Symbol Timings  
Characteristic(1), (2)  
Passive logic 0  
Number  
10  
Symbol  
Min  
62  
Typ  
64  
Max  
66  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tTVP1  
tTVP2  
tTVA1  
tTVA2  
tTVA3  
tTVP3  
tTV4  
Passive logic 1  
11  
126  
126  
62  
128  
128  
64  
130  
130  
66  
Active logic 0  
12  
Active logic 1  
13  
Start-of-frame (SOF)  
End-of-data (EOD)  
End-of-frame (EOF)  
Inter-frame separator (IFS)  
14  
198  
198  
278  
298  
200  
200  
280  
300  
202  
202  
282  
302  
15  
16  
tTV6  
17  
1. fBDLC = 1.048576 or 1.0 MHz, VDD = 5.0 V ± 10%, VSS = 0 V  
2. See Figure 17-3.  
Data Sheet  
272  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
17.15 BDLC Receiver VPW Symbol Timings  
Characteristic(1), (2), (3)  
Passive logic 0  
Number  
10  
Symbol  
Min  
34  
Typ  
64  
Max  
96  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tTRVP1  
tTRVP2  
tTRVA1  
tTRVA2  
tTRVA3  
tTRVP3  
tTRV4  
Passive logic 1  
Active logic 0  
11  
96  
128  
128  
64  
163  
163  
96  
12  
96  
Active logic 1  
13  
34  
Start-of-frame (SOF)  
End-of-data (EOD)  
End-of-frame (EOF)  
Break  
14  
163  
163  
239  
280  
200  
200  
280  
239  
239  
320  
15  
16  
tTRV6  
18  
1. fBDLC = 1.048576 or 1.0 MHz, VDD = 5.0 V ± 10%, VSS = 0 V  
2. The receiver symbol timing boundaries are subject to an uncertainty of 1 tBDLC µs due to sampling considerations.  
3. See Figure 17-3.  
14  
10  
12  
SOF  
0
0
13  
11  
15  
1
1
0
EOD  
16  
EOF  
18  
BRK  
Figure 17-3. BDLC Variable Pulse Width Modulation (VPW) Symbol Timing  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
273  
17.16 BDLC Transmitter DC Electrical Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
BDTxD output low voltage  
VOLTX  
0.4  
V
(IBDTxD = 1.6 mA)  
BDTxD output high voltage  
VOHTX  
VDD –0.8  
V
(IBDTx = –800 µA)  
1. VDD = 5.0 Vdc + 10%, VSS = 0 Vdc, TA = –40oC to +125oC, unless otherwise noted  
17.17 BDLC Receiver DC Electrical Characteristics  
Characteristic(1)  
BDRxD input low voltage  
Symbol  
VILRX  
Min  
VSS  
Max  
0.3 x VDD  
VDD  
Unit  
V
VIHRX  
0.7 x VDD  
–1  
BDRxD input high voltage  
BDRxD input low current  
BDRxD input high current  
V
IILBDRXI  
IHBDRX  
+1  
µA  
µA  
–1  
+1  
1. VDD = 5.0 Vdc + 10%, VSS = 0 Vdc, TA = –40oC to +125oC, unless otherwise noted  
Data Sheet  
274  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet — MC68HC08AS32  
Section 18. Ordering Information and Mechanical Specifications  
18.1 Introduction  
This section provides ordering information for the MC68HC08AS32 along with the  
dimensions for:  
52-pin plastic leaded chip carrier (PLCC)  
64-pin quad flat pack (QFP)  
The following figures show the latest package drawings at the time of this  
publication. To make sure that you have the latest package specifications, contact  
your local Freescale sales office  
18.2 MC Order Numbers  
These part numbers are generic numbers only. To place an order, ROM code must  
be submitted to the ROM Processing Center (RPC).  
Table 18-1. MC Order Numbers  
MC Order Number  
Operating  
Temperature Range  
MC68HC08AS32FN(1)  
MC68HC08AS32CFN  
MC68HC08AS32VFN  
0°C to + 70°C  
–40°C to + 85°C  
–40°C to + 105°C  
0°C to + 70°C  
MC68HC08AS32FU(2)  
MC68HC08AS32CFU  
MC68HC08AS32VFU  
–40°C to + 85°C  
–40°C to + 105°C  
1. FN = plastic leaded chip carrier  
2. FU = quad flat pack  
M C 6 8 H C 0 8 A S 3 2 X X X  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 18-1. Device Numbering System  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
275  
18.3 52-Pin Plastic Leaded Chip Carrier Package (Case 778)  
M
S
S
0.007 (0.18)  
T
L–M  
N
B
Y BRK  
–N–  
M
S
S
0.007 (0.18)  
T
L–M  
N
U
D
Z
–M–  
–L–  
W
D
G1  
52  
1
X
S
S
S
0.010 (0.25)  
T
L–M  
N
V
VIEW D–D  
NOTES:  
M
M
S
S
1. DATUMS –L–, –M–, AND –N– DETERMINED WHERE  
TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT  
MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE MEASURED  
AT DATUM –T–, SEATING PLANE.  
0.007 (0.18)  
0.007 (0.18)  
T
T
L–M  
L–M  
N
A
R
Z
S
S
N
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD  
FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250)  
PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
5. CONTROLLING DIMENSION: INCH.  
E
C
0.004 (0.100)  
6. THE PACKAGE TOP MAY BE SMALLER THAN THE  
PACKAGE BOTTOM BY UP TO 0.012 (0.300).  
DIMENSIONS R AND U ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE  
BURRS AND INTERLEAD FLASH, BUT INCLUDING  
ANY MISMATCH BETWEEN THE TOP AND BOTTOM  
OF THE PLASTIC BODY.  
–T– SEATING  
J
G
PLANE  
VIEW S  
G1  
S
S
S
0.010 (0.25)  
T
L–M  
N
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037 (0.940).  
THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE  
H DIMENSION TO BE SMALLER THAN 0.025 (0.635).  
M
S
S
H
F
0.007 (0.18)  
0.007 (0.18)  
T
L–M  
N
INCHES  
MILLIMETERS  
K1  
K
DIM  
A
B
C
E
MIN  
MAX  
0.795  
0.795  
0.180  
0.110  
0.019  
MIN  
19.94  
19.94  
4.20  
2.29  
0.33  
MAX  
20.19  
20.19  
4.57  
2.79  
0.48  
0.785  
0.785  
0.165  
0.090  
0.013  
M
S
S
T
L–M  
N
F
G
H
J
K
R
U
V
W
X
Y
0.050 BSC  
1.27 BSC  
VIEW S  
0.026  
0.020  
0.025  
0.750  
0.750  
0.042  
0.042  
0.042  
–––  
0.032  
–––  
–––  
0.756  
0.756  
0.048  
0.048  
0.056  
0.020  
10  
0.66  
0.51  
0.64  
19.05  
19.05  
1.07  
1.07  
1.07  
–––  
0.81  
–––  
–––  
19.20  
19.20  
1.21  
1.21  
1.42  
0.50  
10  
Z
2
2
G1  
K1  
0.710  
0.040  
0.730  
–––  
18.04  
1.02  
18.54  
–––  
Data Sheet  
276  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
18.4 64-Pin Quad Flat Pack (Case 840B)  
L
48  
33  
49  
32  
B
B
P
–A–  
–B–  
L
V
B
–A–, –B–, –D–  
DETAIL A  
DETAIL A  
F
64  
17  
1
16  
–D–  
A
M
H
S
S
S
S
0.20 (0.008)  
A–B  
D
J
N
0.05 (0.002) A–B  
S
BASE  
METAL  
M
C
0.20 (0.008)  
A–B  
D
E
C
D
DETAILC  
M
0.20 (0.008)  
M
S
S
C A–B  
D
SECTION B-B  
DATUM  
PLANE  
–H–  
–C–  
SEATING  
PLANE  
0.10 (0.004)  
M
H
G
U
NOTES:  
MILLIMETERS  
INCHES  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
DIM MIN  
MAX  
14.10  
14.10  
2.45  
0.45  
2.40  
MIN  
MAX  
0.555  
0.555  
0.096  
0.018  
0.094  
0.016  
A
B
C
D
E
F
13.90  
13.90  
2.15  
0.30  
2.00  
0.30  
0.547  
0.547  
0.085  
0.012  
0.079  
0.012  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED  
AT DATUM PLANE –H–.  
T
R
0.40  
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
0.80 BSC  
0.031 BSC  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –C–.  
DATUM  
PLANE  
–H–  
–––  
0.13  
0.65  
0.25  
0.23  
0.95  
–––  
0.005  
0.026  
0.010  
0.009  
0.037  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) PER SIDE.  
TOTAL IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION. DAMBAR  
CANNOT BE LOCATED ON THE LOWER RADIUS  
OR THE FOOT.  
Q
12.00 REF  
0.472 REF  
5
10  
5
10  
0.13  
0.17  
0.005  
0.007  
K
0.40 BSC  
0.016 BSC  
0
0.13  
16.95  
0.13  
0
7
0.30  
17.45  
–––  
0
7
W
0.005  
0.667  
0.005  
0
0.012  
0.687  
–––  
X
–––  
–––  
DETAIL C  
16.95  
0.35  
17.45  
0.45  
0.667  
0.014  
0.687  
0.018  
1.6 REF  
0.063 REF  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
Data Sheet  
277  
Data Sheet  
278  
MC68HC08AS32 — Rev. 4.1  
Freescale Semiconductor  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
How to Reach Us:  
Home Page:  
www.freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners. The ARM  
POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a  
trademark of ARM Limited. Java and all other Java-based marks are trademarks or  
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The  
Bluetooth trademarks are owned by their proprietor and used by Freescale  
Semiconductor, Inc. under license.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Rev. 4.1  
MC68HC08AS32/D  
July 13, 2005  

相关型号:

MC68HC08AZ0

Advance Information
MOTOROLA

MC68HC08AZ0CFU

Advance Information
MOTOROLA

MC68HC08AZ16

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ24

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32

Advance Information
FREESCALE

MC68HC08AZ32

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32A

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32A

Microcontrollers
FREESCALE

MC68HC08AZ32ACFU

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32ACFU

Microcontrollers
FREESCALE

MC68HC08AZ32ACFUE

8-BIT, EEPROM, 8.4MHz, MICROCONTROLLER, PQFP64, 14 X 14 MM, ROHS COMPLIANT, QFP-64
NXP

MC68HC08AZ32AMFU

HCMOS Microcontroller Unit
MOTOROLA