MB15F72ULWQN [FUJITSU]

PLL Frequency Synthesizer, BICMOS, PQCC20;
MB15F72ULWQN
型号: MB15F72ULWQN
厂家: FUJITSU    FUJITSU
描述:

PLL Frequency Synthesizer, BICMOS, PQCC20

信息通信管理
文件: 总32页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04–21367–2E  
ASSP  
Dual Serial Input  
PLL Frequency Synthesizer  
MB15F72UL  
DESCRIPTION  
The Fujitsu Semiconductor MB15F72UL is a serial input Phase Locked Loop (PLL) frequency synthesizer  
with a 1300 MHz and a 350 MHz prescalers. A 64/65 or a 128/129 for the 1300 MHz prescaler, and a 8/9  
or a 16/17 for the 350 MHz prescaler can be selected for the prescaler that enables pulse swallow operation.  
The BiCMOS process is used, as a result a supply current is typically 2.5 mA at 2.7 V. The supply voltage  
range is from 2.4 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and  
6 mA selectable by serial data. The data format is the same as the previous one MB15F02SL, MB12F72SP.  
Fast locking is achieved for adopting the new circuit.  
FEATURES  
• High frequency operation : RF synthesizer : 1300 MHz Max  
: IF synthesizer : 350 MHz Max  
• Low power supply voltage : VCC = 2.4 to 3.6 V  
• Ultra low power supply current : ICC = 2.5 mA Typ  
(VCC = Vp = 2.7 V, SWIF = SWRF = 0, Ta = +25 °C, in IF, RF locking state)  
• Direct power saving function : Power supply current in power saving mode  
Typ 0.1 μA (VCC = Vp = 2.7 V, Ta = +25 °C)  
Max 10 μA (VCC = Vp = 2.7 V)  
• Software selectable charge pump current : 1.5 mA/6.0 mA Typ  
• Dual modulus prescaler : 1300 MHz prescaler (64/65 or 128/129 ) /350 MHz prescaler (8/9 or 16/17)  
• 23 bit shift resister  
• Serial input 14-bit programmable reference divider : R = 3 to 16,383  
• Serial input programmable divider consisting of :  
- Binary 7-bit swallow counter : 0 to 127  
- Binary 11-bit programmable counter : 3 to 2,047  
• Onchip phase control for phase comparator  
• Onchip phase comparator for fast lock and low noise  
• Built-in digital locking detector circuit to detect PLL locking and unlocking.  
• Operating temperature : Ta = −40 °C to +85 °C  
• Serial data format compatible with MB15F02SL  
Copyright©2001-2012 FUJITSU SEMICONDUCTOR LIMITED All rights reserved  
2012.8  
MB15F72UL  
PIN ASSIGNMENTS  
(TSSOP-20)  
TOP VIEW  
(QFN-20)  
TOP VIEW  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Clock  
Data  
OSCIN  
GND  
finIF  
19 18 17 16  
20  
LE  
finRF  
15  
14  
13  
12  
11  
finIF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
1
2
3
4
5
finRF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
XfinRF  
GNDRF  
XfinRF  
GNDRF  
VCCRF  
PSRF  
VpRF  
DoRF  
V
CCRF  
VpIF  
PSRF  
DoIF  
LD/fout 10  
6
7
8
9
10  
(FPT-20P-M06)  
(LCC-20P-M63)  
2
DS04–21367–2E  
MB15F72UL  
PIN DESCRIPTION  
Pin no.  
Pin name I/O  
Descriptions  
TSSOP QFN  
The programmable reference divider input. TCXO should be connected with  
an AC coupling capacitor.  
1
2
3
19  
20  
1
OSCIN  
GND  
finIF  
I
Ground for OSC input buffer and the shift register circuit.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be via AC coupling.  
I
Prescaler complimentary input pin for the IF-PLL section.  
This pin should be grounded via a capacitor.  
4
5
6
2
3
4
XfinIF  
GNDIF  
VCCIF  
I
Ground for the IF-PLL section.  
Power supply voltage input pin for the IF-PLL section (except for the charge  
pump circuit) , the OSC input buffer and the shift register circuit.  
Power saving mode control for the IF-PLL section. This pin must be set at “L”  
7
5
PSIF  
I
when the power supply is started up. (Open is prohibited.)  
PSIF = “H” ; Normal mode / PSIF = “L” ; Power saving mode  
8
9
6
7
VpIF  
DOIF  
Power supply voltage input pin for the IF-PLL charge pump.  
O
O
O
Charge pump output pin for the IF-PLL section.  
Lock detect signal output (LD) /phase comparator monitoring  
output (fout) pins.The output signal is selected by LDS bit in the serial data.  
LDS bit = “H” ; outputs fout signal / LDS bit = “L” ; outputs LD signal  
10  
8
LD/fout  
11  
12  
9
DORF  
VpRF  
Charge pump output pin for the RF-PLL section.  
10  
Power supply voltage input pin for the RF-PLL charge pump.  
Power saving mode control pin for the RF-PLL section. This pin must be set  
13  
11  
PSRF  
I
at “L” when the power supply is started up. (Open is prohibited.)  
PSRF = “H” ; Normal mode / PSRF = “L” ; Power saving mode  
Power supply voltage input pin for the RF-PLL section (except for the charge  
pump circuit)  
14  
15  
16  
12  
13  
14  
VCCRF  
GNDRF  
XfinRF  
Ground for the RF-PLL section  
Prescaler complimentary input pin for the RF-PLL section.  
This pin should be grounded via a capacitor.  
I
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be via AC coupling.  
17  
18  
15  
16  
finRF  
LE  
I
Load enable signal input pin (with the schmitt trigger circuit)  
When LE is set “H”, data in the shift register is transferred to the  
corresponding latch according to the control bit in the serial data.  
I
Serial data input pin (with the schmitt trigger circuit)  
Data is transferred to the corresponding latch (IF-ref. counter, IF-prog.  
counter, RF-ref. counter, RF-prog. counter) according to the control bit in  
the serial data.  
19  
20  
17  
18  
Data  
I
I
Clock input pin for the 23-bit shift register (with the schmitt trigger circuit)  
One bit of data is shifted into the shift register on a rising edge of the clock.  
Clock  
DS04–21367–2E  
3
MB15F72UL  
BLOCK DIAGRAM  
VpIF  
VCCIF GNDIF  
(3)  
(6)  
(4)  
6
5
8
Intermittent  
mode control  
(IF-PLL)  
3 bit latch  
PSIF 7  
7 bit latch  
Binary 7-bit  
11 bit latch  
Binary 11-bit  
(5)  
fpIF  
Phase  
comp.  
(IF-PLL)  
Charge  
pump  
(IF-PLL)  
9
(7)  
DoIF  
Current  
Switch  
swallow counter programmable  
(IF-PLL)  
counter (IF-PLL)  
finIF 3  
(1)  
XfinIF 4  
(2)  
Prescaler  
(IF-PLL)  
(8/9, 16/17  
Lock Det.  
(IF-PLL)  
2 bit latch  
14 bit latch  
1 bit latch  
LDIF  
Binary 14-bit pro-  
grammable ref.  
counter(IF-PLL)  
C/P setting  
counter  
T1 T2  
frIF  
Fast  
lock  
Tuning  
OSCIN 1  
(19)  
Selector  
AND  
frRF  
LD  
frIF  
frRF  
fpIF  
fpRF  
Binary 14-bit pro-  
grammable ref.  
counter (RF-PLL))  
C/P setting  
counter  
T1 T2  
10  
(8) fout  
LD/  
OR  
2 bit latch  
14 bit latch  
1 bit latch  
LDRF  
(15)  
finRF 17  
Prescaler  
(RF-PLL)  
(64/65, 128/129)  
Lock Det.  
(RF-PLL)  
XfinRF 16  
(
14  
)
Phase  
comp.  
(RF-PLL)  
Charge  
pump  
(RF-PLL)  
Binary 11-bit  
programmable  
counter (RF-PLL)  
Binary 7-bit  
swallow counter  
(RF-PLL)  
Current  
Switch  
11  
(9)  
DoRF  
Intermittent  
mode control  
(RF-PLL)  
PSRF 13  
fpRF  
3 bit latch  
7 bit latch  
11 bit latch  
(11)  
Schmitt  
circuit  
LE 18  
(16)  
Latch selector  
(17)  
Data 19  
Schmitt  
circuit  
C
N
1
C
N
2
23-bit shift register  
Schmitt  
circuit  
Clock 20  
(18)  
2 (20)  
GND  
(12) 14  
VCCRF  
15 (13)  
GNDRF  
12(10)  
VpRF  
O : TSSOP  
( ) : QFN  
4
DS04–21367–2E  
MB15F72UL  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
0.5  
VCC  
Max  
VCC  
Vp  
+4.0  
4.0  
V
V
Power supply voltage  
Input voltage  
VI  
0.5  
GND  
GND  
55  
VCC + 0.5  
VCC  
V
LD/fout  
VO  
V
Output voltage  
DoIF, DoRF  
VDO  
Tstg  
Vp  
V
Storage temperature  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
2.4  
Typ  
2.7  
2.7  
Max  
3.6  
VCC  
Vp  
VI  
V
V
VCCRF = VCCIF  
Power supply voltage  
VCC  
3.6  
Input voltage  
GND  
40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
Notes : VCCRF, VpRF, VCCIF and VpIF must supply equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, VpRF, VCCIF and VpIF  
to keep them equal.  
It is recommended that the non-use PLL is controlled by power saving function.  
Although this device contains an anti-static element to prevent electrostatic breakdown and the  
circuitry has been improved in electrostatic protection, observe the following precautions when  
handling the device.  
When storing and transporting the device, put it in a conductive case.  
Before handling the device, confirm the (jigs and) tools to be used have been uncharged  
(grounded) as well as yourself. Use a conductive sheet on working bench.  
Before fitting the device into or removing it from the socket, turn the power supply off.  
When handling (such as transporting) the device mounted board, protect the leads with a  
conductive sheet.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
DS04–21367–2E  
5
MB15F72UL  
ELECTRICAL CHARACTERISTICS  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Sym-  
Parameter  
bol  
Condition  
Min  
Typ  
Max  
finIF = 270 MHz  
*1  
*1  
ICCIF  
0.6  
1.0  
1.7  
mA  
mA  
VCCIF = VpIF = 2.7 V  
Power supply current  
finRF = 910 MHz  
VCCRF = VpRF = 2.7 V  
ICCRF  
1.0  
1.5  
2.5  
IPSIF  
PSIF = PSRF = “L”  
PSIF = PSRF = “L”  
0.1 *2  
0.1 *2  
10  
10  
μA  
μA  
Power saving current  
Operating frequency  
IPSRF  
finIF*3  
finRF*3  
OSCIN  
finIF  
finIF IF PLL  
finRF RF PLL  
fOSC  
50  
350  
1300  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
VP P  
100  
3
PfinIF IF PLL, 50 Ω system  
PfinRF RF PLL, 50 Ω system  
15  
15  
0.5  
+2  
Input sensitivity  
finRF  
+2  
OSCIN  
VOSC  
VCC  
Data,  
LE,  
Clock  
“H” level input voltage  
“L” level input voltage  
VIH  
Schmitt trigger input  
0.7 VCC + 0.4  
V
V
VIL  
Schmitt trigger input  
0.3 VCC 0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
0.7 VCC  
V
V
PSIF,  
PSRF  
VIL  
0.3 VCC  
Data,  
LE,  
Clock,  
PSIF,  
PSRF  
“H” level input current  
“L” level input current  
IIH*4  
1.0  
1.0  
+1.0  
+1.0  
μA  
μA  
IIL*4  
“H” level input current  
“L” level input current  
IIH  
0
+100  
μA  
μA  
OSCIN  
IIL*4  
100  
0
VCC = Vp = 2.7 V,  
IOH = −1 mA  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
“L” level output voltage  
VOH  
VOL  
VCC 0.4  
0.4  
V
V
V
V
LD/fout  
VCC = Vp = 2.7 V,  
IOL = 1 mA  
VCC = Vp = 2.7 V,  
IDOH = −0.5 mA  
VDOH  
VDOL  
Vp 0.4  
DoIF,  
DoRF  
VCC = Vp = 2.7 V,  
IDOL = 0.5 mA  
0.4  
VCC = Vp = 2.7 V  
VOFF = 0.5 V to Vp −  
0.5 V  
High impedance  
cutoff current  
DoIF,  
DoRF  
IOFF  
2.5  
nA  
“H” level output current  
“L” level output current  
IOH*4 VCC = Vp = 2.7 V  
IOL VCC = Vp = 2.7 V  
1.0  
mA  
mA  
LD/fout  
1.0  
(Continued)  
6
DS04–21367–2E  
MB15F72UL  
(Continued)  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
VCC = Vp = 2.7 V,  
VDOH = Vp / 2,  
Ta = +25 °C  
Min  
Typ  
Max  
CS bit = “H”  
CS bit = “L”  
CS bit = “H”  
CS bit = “L”  
8.2  
6.0  
4.1  
mA  
mA  
mA  
mA  
*8  
“H” level output  
current  
DoIF ,  
*4  
IDOH  
DoRF  
2.2  
4.1  
1.5  
6.0  
0.8  
8.2  
VCC = Vp = 2.7 V,  
VDOL = Vp / 2,  
Ta = +25 °C  
*8  
“L” level output  
current  
DoIF ,  
IDOL  
DoRF  
0.8  
1.5  
2.2  
*5  
IDOL/IDOH IDOMT  
vs. VDO IDOVD  
VDO = Vp / 2  
3
%
%
*6  
*7  
Charge pump  
current rate  
0.5 V VDO Vp 0.5 V  
10  
40 °C Ta ≤ +85 °C,  
VDO = Vp / 2  
vs.Ta  
IDOTA  
5
%
*1 : Conditions ; fosc = 12.8 MHz, Ta = +25 °C, SW = “L” in locking state.  
*2 : VCCIF = VpIF = VCCRF = VpRF = 2.7 V, fosc = 12.8 MHz, Ta = +25 °C, in power saving mode  
PSIF = PSRF = GND, VIH = VCC VIL = GND (at CLK, Data, LE)  
*3 : AC coupling. 1000 pF capacitor is connected under the condition of minimum operating frequency.  
*4 : The symbol “–” (minus) means the direction of current flow.  
*5 : VCC = Vp = 2.7 V, Ta = +25 °C (||I3| |I4||) / [ (|I3| + |I4|) / 2] × 100 (%)  
*6 : VCC = Vp = 2.7 V, Ta = +25°C [ (||I2| |I1||) / 2] / [ (|I1| + |I2|) / 2] × 100 (%) (Applied to both lDOL and lDOH)  
*7 : VCC = Vp = 2.7 V, [||IDO (+85°C) | |IDO (–40°C) || / 2] / [|IDO (+85°C) | + |IDO (–40°C) | / 2] × 100 (%) (Applied to both  
IDOL and IDOH)  
*8 : When Charge pump current is measured, set LDS = “L” , T1 = “L” and T2 = “H”.  
I1  
I3  
I4  
I2  
IDOL  
IDOH  
I1  
Vp/2  
Vp 0.5 Vp  
0.5  
Charge pump output voltage (V)  
DS04–21367–2E  
7
MB15F72UL  
FUNCTIONAL DESCRIPTION  
1. Pulse swallow function :  
fVCO = [ (P × N) + A] × fOSC ÷ R  
fVCO : Output frequency of external voltage controlled oscillator (VCO)  
P : Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64 or 128 for RF-PLL)  
N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
A : Preset divide ratio of binary 7-bit swallow counter (0 A 127, A < N)  
fOSC : Reference oscillation frequency (OSCIN input frequency)  
R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
2. Serial Data Input  
The serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/  
RF-PLL sections, and programmable reference dividers of IF/RF-PLL sections are controlled individually.  
The serial data of binary data is entered through Data pin.  
On a rising edge of Clock, one bit of the serial data is transferred into the shift register. On a rising edge of  
load enable signal, the data stored in the shift register is transferred to one of latches depending upon the  
control bit data setting.  
The programmable The programmable  
The programmable  
The programmable  
reference counter reference counter counter and the swallow counter and the swallow  
for the IF-PLL  
for the RF-PLL  
counter for the IF-PLL  
counter for the RF-PLL  
CN1  
CN2  
0
0
1
0
0
1
1
1
(1) Shift Register Configuration  
• Programmable Reference Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS  
X
X
X
X
CS  
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)  
T1, T2 : LD/fout output setting bit.  
CN1, CN2 : Control bit  
: Charge pump current select bit  
X
: Dummy bits (Set “0” or “1”)  
Note : Data input with MSB first.  
8
DS04–21367–2E  
MB15F72UL  
• Programmable Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SWIF FCIF/  
CN1 CN2 LDS  
A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11  
/RF  
RF  
A1 to A7  
: Divide ratio setting bits for the swallow counter (0 to 127)  
N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)  
LDS  
: LD/fout signal select bit  
SWIF/RF  
FCIF/RF  
: Divide ratio setting bit for the prescaler (IF : SWIF, RF : SWRF)  
: Phase control bit for the phase detector (IF : FCIF, RF : FCRF)  
CN1, CN2 : Control bit  
Note : Data input with MSB first.  
(2) Data setting  
• Binary 14-bit Programmable Reference Counter Data Setting (R1 to R14)  
Divide ratio  
R14 R13 R12 R11 R10 R9  
R8  
R7  
R6  
R5  
R4 R3 R2 R1  
3
0
0
0
0
0
0
0
0
0
0
0
0
1
1
4
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
16383  
Note : Divide ratio less than 3 is prohibited.  
• Binary 11-bit Programmable Counter Data Setting (N1 to N11)  
Divide ratio  
N11  
N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
3
0
0
0
0
0
0
0
0
0
1
1
4
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
2047  
Note : Divide ratio less than 3 is prohibited.  
• Binary 7-bit Swallow Counter Data Setting (A1 to A7)  
Divide ratio  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
127  
DS04–21367–2E  
9
MB15F72UL  
• Prescaler Data Setting (SW)  
Divide ratio  
SW = “1”  
8/9  
SW = “0”  
16/17  
Prescaler divide ratio IF-PLL  
Prescaler divide ratio RF-PLL  
64/65  
128/129  
• Charge Pump Current Setting (CS)  
Current value  
6.0 mA  
CS  
1
1.5 mA  
0
• LD/fout output Selectable Bit Setting  
LD/fout pin state  
LD output  
frIF  
LDS  
0
T1  
0
T2  
0
0
1
0
0
1
1
1
0
0
frRF  
fpIF  
1
1
0
fout  
outputs  
1
0
1
fpRF  
1
1
1
• Phase Comparator Phase Switching Data Setting (FCIF, FCRF)  
FCIF = “1” FCRF = “1” FCIF = “0” FCRF = “0”  
DoIF  
Phase comparator input  
DoRF  
DoIF  
DoRF  
fr > fp  
fr < fp  
H
L
L
H
Z
fr = fp  
Z
Z : High-impedance  
Depending upon the VCO and LPF polarity, FC bit should be set.  
High  
(1)  
(1) VCO polarity FC = “1”  
(2) VCO polarity FC = “0”  
VCO Output  
Frequency  
(2)  
Max.  
LPF Output voltage  
Note : Give attention to the polarity for using active type LPF.  
10  
DS04–21367–2E  
MB15F72UL  
3. Power Saving Mode (Intermittent Mode Control Circuit)  
Status  
PSIF/PSRF pins  
Normal mode  
H
L
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pins low, the device enters into the power saving mode, reducing the current consumption.  
See the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.  
Setting the PS pins high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal  
operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredict-  
able. This is because of the unknown relationship between the comparison frequency (fp) and the reference  
frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump  
and an increase in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the  
error signal from the phase detector when it returns to normal operation.  
Notes: When power (VCC) is first applied, the device must be in standby mode, PSIF = PSRF = Low, for at least  
1 μs.  
PS pins must be set at “L” at Power-ON.  
OFF  
ON  
VCC  
tV  
1 s  
Clock  
Data  
LE  
PSIF  
PSRF  
tPS > 100 ns  
(1)  
(2)  
(3)  
(1) PSIF = PSRF = “L” (power saving mode) at Power-ON  
(2) Set serial data at least 1 μs after the power supply becomes stable (VCC 2.2 V) .  
(3) Release power saving mode (PSIF, PSRF : “L” “H”) at least 100 ns after setting serial  
data.  
DS04–21367–2E  
11  
MB15F72UL  
4. Serial Data Input Timing  
Frequency multiplier setting is performed through a serial interface using the Data pin, Clock pin, and LE pin.  
Setting data is read into the shift register at the rise of the clock signal, and transferred to a latch at the rise  
of the LE signal. The following diagram shows the data input timing.  
1st data  
2nd data  
Control bit Invalid data  
LSB  
Data  
MSB  
Clock  
t1  
t2  
t3  
t6  
t7  
LE  
t4  
t5  
Parameter  
Min  
20  
Typ  
Max Unit  
Parameter  
Min  
100  
20  
Typ  
Max Unit  
t1  
t2  
t3  
t4  
ns  
ns  
ns  
ns  
t5  
t6  
t7  
ns  
ns  
ns  
20  
30  
100  
30  
Note : LE should be “L” when the data is transferred into the shift register.  
12  
DS04–21367–2E  
MB15F72UL  
PHASE COMPARATOR OUTPUT WAVEFORM  
frIF/frRF  
fpIF/fpRF  
tWU  
tWL  
LD  
(FC bit = "1")  
H
DoIF/DoRF  
Z
L
(FC bit = "0")  
H
DoIF/DoRF  
Z
L
• LD Output Logic  
IF-PLL section  
RF-PLL section  
Locking state/Power saving state  
Unlocking state  
LD output  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes : Phase error detection range = −2π to +2π  
Pulses on DoIF/DoRF signals are output to prevent dead zone during locking state.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles  
or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU 2/fosc : e.g. tWU 156.3 ns when fosc = 12.8 MHz  
tWU 4/fosc : e.g. tWL 312.5 ns when fosc = 12.8 MHz  
DS04–21367–2E  
13  
MB15F72UL  
TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
fout  
Oscilloscope  
1000 pF  
VCCIF  
VpIF  
1000 pF  
S.G.  
50 Ω  
0.1 μF  
0.1 μF  
1000 pF  
S.G.  
LD/  
fout  
50 Ω  
DoIF  
9
VpIF  
8
PSIF  
VCCIF  
GNDIF XfinIF  
finIF  
3
GND  
2
OSCIN  
10  
7
6
5
4
1
11  
12  
13  
14  
15  
16  
17  
18  
LE  
19  
20  
XfinRF  
finRF  
VpRF  
PSRF  
VCCRF  
DoRF  
GNDRF  
Data  
Clock  
1000 pF  
Controller  
(divide ratio setting)  
1000 pF  
VpRF  
VCCRF  
S.G.  
50 Ω  
0.1 μF  
0.1 μF  
Note : Terminal number shows that of TSSOP-20.  
14  
DS04–21367–2E  
MB15F72UL  
TYPICAL CHARACTERISTICS  
1. fin input sensitivity  
RF-PLL input sensitivity vs. Input frequency  
10  
0
SPEC  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000 2200 2400  
finRF (MHz)  
IF-PLL input sensitivity vs. Input frequency  
10  
0
SPEC  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
100  
200  
300  
400  
500  
600  
700  
800  
finIF (MHz)  
DS04–21367–2E  
15  
MB15F72UL  
2. OSCIN input sensitivity  
Input sensitivity vs. Input frequency  
10  
SPEC  
0
10  
20  
30  
40  
50  
60  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
50  
100  
150  
200  
250  
300  
Input frequency fOSC (MHz)  
16  
DS04–21367–2E  
MB15F72UL  
3. RF-PLL Do output current  
• 1.5 mA mode  
IDO - VDO  
10.0  
V
CC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO - VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
DS04–21367–2E  
17  
MB15F72UL  
4. IF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
10.0  
VCC = VP = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
1.0  
2.0  
3.0  
Charge pump output voltage VDO (V)  
18  
DS04–21367–2E  
MB15F72UL  
5. fin input impedance  
finRF input impedance  
4 : 8.252 Ω  
58.291 Ω  
2.1 pF  
1 300.140 000 MHz  
1 : 332.28 Ω  
811.72 Ω  
100 MHz  
2 : 21.805 Ω  
182.83 Ω  
500 MHz  
3 : 9.6133 Ω  
83.98  
Ω
1 GHz  
1
2
4
3
STOP 1 500.000 000 MHz  
START 100.000 000 MHz  
finIF input impedance  
4 : 21.344 Ω  
181.55 Ω  
1.7532 pF  
500.000 000 MHz  
1 : 939.62 Ω  
1.135 Ω  
50 MHz  
2 : 332.03 Ω  
802.69 Ω  
100 MHz  
3 : 45.953 Ω  
303.47 Ω  
300 MHz  
1
2
3
4
START 50.000 000 MHz  
STOP 500.000 000 MHz  
DS04–21367–2E  
19  
MB15F72UL  
6. OSCIN input impedance  
OSCIN input impedance  
4 : 25.125 Ω  
686.59 Ω  
2.318 pF  
100.000 000 MHz  
1 :10.781 kΩ  
13.358 kΩ  
3 MHz  
2 : 1.534 kΩ  
6.5593 kΩ  
10 MHz  
3 : 119.25 Ω  
1.7281 kΩ  
40 MHz  
2
4
1
3
START 3.000 000 MHz  
STOP 100.000 000 MHz  
20  
DS04–21367–2E  
MB15F72UL  
REFERENCE INFORMATION  
(for Lock-up Time, Phase Noise and Reference Leakage)  
fVCO = 720.5 MHz VCC = 3.0 V  
Test Circuit  
KV = 31  
VVCO = 3.0 V  
Ta = +25 °C  
S.G.  
OSCIN  
fr = 12.5 kHz  
LPF  
DO  
fOSC = 19.2 MHz CP : 6 mA mode  
fin  
LPF  
Spectrum  
Analyzer  
VCO  
• PLL Reference Leakage  
ATTEN 10 dB  
RL 0 dBm  
VAVG 24  
10 dBm  
MKR -70.33 dB  
12.7 kHz  
MKR  
12.7 kHz  
D
-70.33 dB  
S
CENTER 720.5000 MHz  
SPAN 200.0 kHz  
SWP 500 ms  
RBW 1.0 kHz  
VBW 1.0 kHz  
• PLL Phase Noise  
ATTEN 10 dB  
RL 0 dBm  
VAVG 34  
10 dBm  
MKR -50.16 dB  
3.07 kHz  
MKR  
3.07 kHz  
-50.16 dB  
D
S
CENTER 720.5000 MHz  
RBW 100 Hz VBW 100 Hz  
SPAN 20.0 kHz  
SWP 1.60 s  
(Continued)  
DS04–21367–2E  
21  
MB15F72UL  
(Continued)  
• PLL Lock Up time  
• PLL Lock Up time  
720.5 MHz757.5 MHz within 1 kHz  
LchHch 2.533 ms  
757.5 MHz720.5 MHz within 1 kHz  
HchLch 2.511 ms  
757.504500 MHz  
720.504250 MHz  
757.500500 MHz  
720.500250 MHz  
757.496500 MHz  
720.496250 MHz  
5.000 ms  
0.00 s  
1.000 ms/div  
5.000 ms  
5.000 ms  
0.00 s  
1.000 ms/div  
5.000 ms  
22  
DS04–21367–2E  
MB15F72UL  
APPLICATION EXAMPLE  
OUTPUT  
VCO  
2.7 V  
LPF  
2.7 V  
1000 pF  
from controller  
1000 pF  
0.1 μF  
0.1 μF  
Clock  
20  
Data  
19  
LE  
18  
XfinRF GNDRF  
16 15  
PSRF  
13  
VpRF  
12  
DoRF  
11  
finRF  
17  
V
CCRF  
14  
MB15F72UL  
1
2
3
4
5
6
7
8
9
10  
finIF  
XfinIF  
V
CCIF  
GNDIF  
DoIF  
LD/fout  
PSIF  
VpIF  
GND  
OSCIN  
Lock Det.  
2.7 V  
2.7 V  
1000 pF  
1000 pF  
1000 pF  
0.1 μF  
0.1 μF  
TCXO  
OUTPUT  
VCO  
LPF  
Notes : Clock, Data, LE : The schmitt trigger circuit is provided (insert a pull-down or pull-up  
register to prevent oscillation when open-circuit in the input) .  
The terminal number shows that of TSSOP-20.  
DS04–21367–2E  
23  
MB15F72UL  
USAGE PRECAUTIONS  
(1) VCCRF, VpRF, VCCIF and VpIF must be equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, VpRF, VCCIF and VpIF to  
keep them equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions :  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting or removing this device into or from a socket.  
-Protect leads with conductive sheet, when transporting a board mounted device.  
24  
DS04–21367–2E  
MB15F72UL  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
20-pin, plastic TSSOP  
(FPT-20P-M06)  
MB15F72ULPFT  
MB15F72ULWQN  
20-pin, Plastic QFN  
(LCC-20P-M63)  
DS04–21367–2E  
25  
MB15F72UL  
PACKAGE DIMENSIONS  
20-pin plastic TSSOP  
Lead pitch  
0.65 mm  
4.40 × 6.50 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.10 mm MAX  
0.08g  
Code  
(Reference)  
P-TSSOP20-4.4×6.5-0.65  
(FPT-20P-M06)  
20-pin plastic TSSOP  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
(FPT-20P-M06)  
1 6.50±0.10(.256±.004)  
*
0.17±0.05  
(.007±.002)  
20  
11  
24.40±0.10 6.40±0.20  
*
(.173±.004) (.252±.008)  
INDEX  
Details of "A" part  
1.05±0.05  
(Mounting height)  
(.041±.002)  
1
10  
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
0~8°  
M
0.13(.005)  
0.07 +00..0073 .003 +..000031  
(0.50(.020))  
(Stand off)  
0.25(.010)  
0.60±0.15  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED F20026S-c-3-5  
(Continued)  
26  
DS04–21367–2E  
MB15F72UL  
(Continued)  
20-pin plastic QFN  
Lead pitch  
0.50 mm  
4.00 mm × 4.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.80 mm MAX  
0.04 g  
(LCC-20P-M63)  
20-pin plastic QFN  
(LCC-20P-M63)  
2.00±0.10  
4.00±0.10  
(.0.79±.004)  
(.157±.004)  
0.25 +00..0075  
2.00±0.10  
(.0.79±.004)  
4.00±0.10  
(.157±.004)  
+.002  
(.010  
)
–.003  
INDEX AREA  
1PIN ID  
(C0.35(C.014))  
0.40±0.05  
(.016±.002)  
0.50(.020)  
(TYP)  
0.75±0.05  
(.030±.002)  
0.02 +00..0023  
(.001  
0.20(.008)  
+.001  
–.001  
)
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED HMbC20-63Sc-1-1  
Please check the latest package dimension at the following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS04–21367–2E  
27  
MB15F72UL  
MAJOR CHANGES IN THIS EDITION  
A change on a page is indicated by a vertical line drawn on the left side of that page.  
Page  
Section  
DESCRIPTION  
Change Results  
Deleted the description.  
1
FEATURES  
Deleted the following description.  
Small package BCC20 (3.4 mm × 3.6 mm × 0.6 mm)  
2
3
PIN ASSIGNMENTS  
Revised the package code.  
LCC-20P-M05 LCC-20P-M63  
PIN DESCRIPTION  
25  
ORDERING INFORMATION  
PACKAGE DIMENSIONS  
Revised the ordering information.  
Revised the package code.  
LCC-20P-M05 LCC-20P-M63  
27  
28  
DS04–21367–2E  
MB15F72UL  
MEMO  
DS04–21367–2E  
29  
MB15F72UL  
MEMO  
30  
DS04–21367–2E  
MB15F72UL  
MEMO  
DS04–21367–2E  
31  
MB15F72UL  
FUJITSU SEMICONDUCTOR LIMITED  
Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,  
Kohoku-ku Yokohama Kanagawa 222-0033, Japan  
Tel: +81-45-415-5858  
http://jp.fujitsu.com/fsl/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU SEMICONDUCTOR AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://us.fujitsu.com/micro/  
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://sg.fujitsu.com/semiconductor/  
Europe  
FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.  
30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District,  
Shanghai 201204, China  
Tel : +86-21-6146-3688 Fax : +86-21-6146-3660  
http://cn.fujitsu.com/fss/  
FUJITSU SEMICONDUCTOR EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/semiconductor/  
Korea  
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.  
2/F, Green 18 Building, Hong Kong Science Park,  
Shatin, N.T., Hong Kong  
Tel : +852-2736-3232 Fax : +852-2314-4207  
http://cn.fujitsu.com/fsp/  
FUJITSU SEMICONDUCTOR KOREA LTD.  
902 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fsk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does  
not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any  
third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right  
by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or  
other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages aris-  
ing in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB15F72UV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F72UVPVB

暂无描述
FUJITSU

MB15F73SP

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73SPPFT

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73SPPV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73UL

ASSP Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULPFT

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULPFT

PLL Frequency Synthesizer
SPANSION

MB15F73ULPV

PLL Frequency Synthesizer, BICMOS, PBCC20, PLASTIC, BCC-20
CYPRESS

MB15F73ULPVA

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULWQN

PLL Frequency Synthesizer
SPANSION

MB15F73UL_01

Dual Serial Input PLL Frequency Synthesizer
FUJITSU