MB39C006AEVB-06 [FUJITSU]

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support; 1通道DC / DC转换器IC内置开关FET和电源良好功能, PFM / PWM同步整流降压转换支持
MB39C006AEVB-06
型号: MB39C006AEVB-06
厂家: FUJITSU    FUJITSU
描述:

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
1通道DC / DC转换器IC内置开关FET和电源良好功能, PFM / PWM同步整流降压转换支持

转换器 开关
文件: 总48页 (文件大小:635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27245-2E  
ASSP for Power Management Applications  
1 ch DC/DC Converter IC Built-in Switching FET &  
POWERGOOD function, PFM/PWM Synchronous  
Rectification, and Down Conversion Support  
MB39C006A  
DESCRIPTION  
The MB39C006A is a current mode type 1-channel DC/DC converter IC built-in switching FET, synchronous  
rectification, and down conversion support. The device is integrated with a switching FET, oscillator, error amplifier,  
PFM/PWM control circuit, reference voltage source, and POWERGOOD circuit.  
External inductor and decoupling capacitor are needed only for the external component.  
MB39C006A is small, achieve a highly effective DC/DC converter in the full load range, this is suitable as the  
built-in power supply for handheld equipment such as mobile phone/PDA, DVDs, and HDDs.  
FEATURES  
• High efficiency  
: 96% (Max)  
• Low current consumption  
• Output current (DC/DC)  
• Input voltage range  
: 30 μA (at PFM)  
: 800 mA (Max)  
: 2.5 V to 5.5 V  
: 2.0/3.2 MHz (Typ)  
• Operating frequency  
• Built-in PWM operation fixed function  
• No flyback diode needed  
• Low dropout operation  
: For 100% on duty  
• Built-in high-precision reference voltage generator : 1.20 V 2%  
• Consumption current in shutdown mode  
: 1 μA or less  
• Built-in switching FET  
: P-ch MOS 0.3 Ω (Typ) N-ch MOS 0.2 Ω (Typ)  
• High speed for input and load transient response in the current mode  
• Over temperature protection  
• Packaged in a compact package  
: SON10  
APPLICATIONS  
• Flash ROMs  
• MP3 players  
• Electronic dictionary devices  
• Surveillance cameras  
• Portable GPS navigators  
• Mobile phones  
etc.  
Copyright©2008-2009 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2009.8  
MB39C006A  
PIN ASSIGNMENT  
(Top View)  
VDD  
10  
OUT  
9
MODE  
VREFIN  
7
FSEL  
6
8
1
2
3
4
5
LX  
GND  
CTL  
VREF  
POWERGOOD  
(LCC-10P-M04)  
PIN DESCRIPTIONS  
Pin No  
Pin name  
LX  
I/O  
O
I
Description  
1
2
3
4
Inductor connection output pin. High impedance during shut down.  
Ground pin.  
GND  
CTL  
Control input pin. (L : Shut down / H : Normal operation)  
Reference voltage output pin.  
VREF  
O
POWERGOOD circuit output pin. Internally connected to an N-ch MOS open  
drain circuit.  
5
POWERGOOD  
O
Frequency switch pin.  
(L (open) : 2.0 MHz, H : 3.2 MHz)  
6
7
8
FSEL  
VREFIN  
MODE  
I
I
I
Error amplifier (Error Amp) non-inverted input pin.  
Operation mode switch pin.  
(L : PFM/PWM mode, OPEN : PWM mode)  
9
OUT  
VDD  
I
Output voltage feedback pin.  
Power supply pin.  
10  
2
DS04-27245-2E  
MB39C006A  
I/O PIN EQUIVALENT CIRCUIT DIAGRAM  
VDD  
VDD  
LX  
VREF  
GND  
VDD  
GND  
OUT  
VREFIN  
GND  
VDD  
VDD  
CTL  
FSEL  
GND  
GND  
VDD  
POWER  
GOOD  
*
MODE  
GND  
*
GND  
* : ESD Protection device  
DS04-27245-2E  
3
MB39C006A  
BLOCK DIAGRAM  
VIN  
VDD  
10  
CTL  
3
ON/OFF  
OUT  
9
×3  
VDD  
Error Amp  
+
5
POWERGOOD  
POWER-  
GOOD  
I
OUT  
Comparator  
VREF  
4
1.20 V  
VREF  
PFM/PWM  
Logic  
LX  
VOUT  
1
VREFIN  
Control  
7
8
DAC  
Lo : PFM/PWM  
OPEN : PWM  
Mode  
Control  
MODE  
6
2
GND  
FSEL  
4
DS04-27245-2E  
MB39C006A  
Current mode  
• Original voltage mode type:  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Reference triangular wave (VTRI)  
• Current mode type:  
Instead of the triangular wave (VTRI), the voltage (VIDET) obtained through I-V conversion of the sum of currents  
that flow in the oscillator (rectangular wave generation circuit) and SW FET is used.  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Voltage (VIDET) obtained through I-V conversion of the sum of current that flow in the oscillator (rectangular  
wave generation circuit) and SW FET  
Voltage mode type model  
Current mode type model  
VIN  
VIN  
Oscillator  
S
Vc  
Vc  
Q
R
VTRI  
VIDET  
SR-FF  
Vc  
VTRI  
VIDET  
Vc  
ton  
toff  
toff  
ton  
Note : The above models illustrate the general operation and an actual operation will be preferred in the IC.  
DS04-27245-2E  
5
MB39C006A  
FUNCTION OF EACH BLOCK  
PFM/PWM Logic control circuit  
In normal operation, frequency (2.0 MHz/3.2 MHz) which is set by the built-in oscillator (square wave oscillation  
circuit) controls the built-in P-ch MOS FET and N-ch MOS FET for the synchronous rectification operation. In  
the light load mode, the intermittent (PFM) operation is executed.  
This circuit protects against pass-through current caused by synchronous rectification and against reverse  
current caused in a non-successive operation mode.  
IOUT comparator circuit  
This circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET.  
By comparing VIDET obtained through I-V conversion of peak current IPK of ILX with the Error Amp output, the built-  
in P-ch MOS FET is turned off via the PFM/PWM Logic Control circuit.  
Error Amp phase compensation circuit  
This circuit compares the output voltage to reference voltages such as VREF. The MB39C006A has a built-in  
phase compensation circuit that is designed to optimize the operation of the MB39C006A. This needs neither  
to be considered nor addition of a phase compensation circuit and an external phase compensation device.  
VREF circuit  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit. The output voltage is  
1.20 V (Typ).  
POWERGOOD circuit  
The POWERGOOD circuit monitors the voltage at the OUT pin. The POWERGOOD pin is open drain output.  
Use the pin with pull-up using the external resistor in the normal operation.  
When the CTL is at the H level, the POWERGOOD pin becomes the H level. However, if the output voltage drops  
because of over current and etc, the POWERGOOD pin becomes the L level.  
Timing chart example : (POWERGOOD pin pulled up to VIN)  
VIN  
VUVLO  
CTL  
VOUT×97  
%
VOUT  
POWERGOOD  
(pull up to VIN)  
tDLYPG  
tDLYPG  
tDLYPG or less  
VUVLO : UVLO threshold voltage  
tDLYPG : POWERGOOD delay time  
6
DS04-27245-2E  
MB39C006A  
Protection circuit  
The MB39C006A has a built-in over-temperature protection circuit.  
The over-temperature protection circuit turns off both N-ch and P-ch switching FETs when the junction  
temperature reaches +135 °C. When the junction temperature drops to + 110 °C, the switching FET returns to  
the normal operation.  
Since the PFM/PWM control circuit of the MB39C006A is in the control method in current mode, the current  
peak value is also monitored and controlled as required.  
• FUNCTION TABLE  
Input  
Output  
VREF  
MODE  
Switching  
frequency  
OUTPUT pin  
voltage  
CTL  
L
MODE  
FSEL  
POWERGOOD  
Function stop  
Operation  
Shutdown  
mode  
Output  
stop  
*
L
*
Output stop  
PFM/PWM  
mode  
VOUT voltage  
output  
2.0 MHz  
2.0 MHz  
3.2 MHz  
3.2 MHz  
H
L
1.2 V  
1.2 V  
1.2 V  
1.2 V  
PWM fixed  
mode  
VOUT voltage  
output  
H
OPEN  
L
L
Operation  
PFM/PWM  
mode  
VOUT voltage  
output  
H
H
H
Operation  
PWM fixed  
mode  
VOUT voltage  
output  
H
OPEN  
Operation  
* : Don't care  
DS04-27245-2E  
7
MB39C006A  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Max  
+ 6.0  
Power supply voltage  
VDD  
VDD pin  
OUT pin  
V
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
+ 6.0  
Signal input voltage  
VISIG  
CTL, MODE, FSEL pins  
VREFIN pin  
V
POWERGOOD pull-up voltage  
LX voltage  
VIPG  
POWERGOOD pin  
LX pin  
V
V
A
VLX  
IPK  
VDD + 0.3  
1.8  
LX peak current  
The upper limit value of ILX  
2632*1, *2, *3  
980*1, *2, *4  
1053*1, *2, *3  
392*1, *2, *4  
+ 85  
Ta ≤ + 25 °C  
Ta = + 85 °C  
mW  
mW  
Power dissipation  
PD  
Operating ambient temperature  
Storage temperature  
Ta  
40  
55  
°C  
°C  
TSTG  
+ 125  
*1 : See “EXAMPLE OF STANDARD OPERATION CHARACTERISTICS Power dissipation vs. Operating  
ambient temperature” for the package power dissipation of Ta from + 25 °C to + 85 °C.  
*2 : When mounted on a four- layer epoxy board of 11.7 cm × 8.4 cm  
*3 : IC is mounted on a four-layer epoxy board, which has thermal via, and the IC's thermal pad is connected to  
the epoxy board (Thermal via is 4 holes).  
*4 : IC is mounted on a four-layer epoxy board, which has no thermal via, and the IC's thermal pad is connected  
to the epoxy board.  
Notes The use of negative voltages below 0.3 V to the GND pin may create parasitic transistors on LSI lines,  
which can cause abnormal operation.  
This device can be damaged if the LX pin is short-circuited to VDD pin or GND pin.  
Take measures not to keep the FSEL pin falling below the GND pin potential of the MB39C006A as much as  
possible.  
In addition to erroneous operation, the IC may latch up and destroy itself if 110 mA or more current flows  
from this pin.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
8
DS04-27245-2E  
MB39C006A  
RECOMMENDED OPERATING CONDITIONS  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min  
2.5  
0.15  
0
Typ  
3.7  
Max  
5.5  
1.20  
5.0  
800  
1
Power supply voltage  
VREFIN voltage  
CTL voltage  
VDD  
VREFIN  
VCTL  
ILX  
V
V
V
LX current  
mA  
mA  
POWERGOOD current  
IPG  
2.5 V VDD 3.0 V  
3.0 V VDD 5.5 V  
fOSC1 = 2.0 MHz (FSEL = L)  
fOSC2 = 3.2 MHz (FSEL = H)  
0.5  
1
VREF output current  
Inductor value  
IROUT  
mA  
2.2  
1.5  
L
μH  
Note : Theoutputcurrentfromthisdevicehasasituationtodecreaseifthepowersupplyvoltage(VIN)andtheDC/DC  
converter output voltage (VOUT) differ only by a small amount. This is a result of slope compensation and will  
not damage this device.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
on the data sheet. Users considering application outside the listed conditions are advised to contact  
their representatives beforehand.  
DS04-27245-2E  
9
MB39C006A  
ELECTRICAL CHARACTERISTICS  
(Ta = + 25 °C, VDD = 3.7 V, VOUT setting value = 2.5 V, MODE = 0 V)  
Value  
Pin  
No.  
Parameter  
Symbol  
Condition  
Unit  
Min  
100  
100  
100  
Typ  
0
Max  
IREFINM  
IREFINL  
IREFINH  
VREFIN = 0.833 V  
+ 100  
+ 100  
+ 100  
nA  
nA  
nA  
Input current  
7
9
VREFIN = 0.15 V  
VREFIN = 1.20 V  
0
0
VREFIN = 0.833 V,  
OUT = −100 mA  
2.5 V VDD 5.5 V *1  
Output voltage  
Input stability  
Load stability  
VOUT  
LINE  
LOAD  
2.45  
2.50  
10  
2.55  
V
mV  
mV  
100 mA OUT ≥  
800 mA  
10  
Out pin input  
impedance  
ROUT  
IPK  
OUT = 2.0 V  
0.6  
0.9  
1.0  
1.2  
30  
1.5  
1.7  
MΩ  
A
LX peak current  
Output shorted to GND  
FSEL = 0 V, L = 2.2 μH  
DC/DC  
PFM/PWM switch  
IMSW  
mA  
converter current  
block  
1
fOSC1  
fOSC2  
FSEL = 0 V  
1.6  
2.0  
2.4  
MHz  
MHz  
Oscillation  
frequency  
FSEL = 3.7 V  
2.56  
3.20  
3.84  
C1 = 4.7 μF, OUT = 0 A,  
VOUT = 90%  
Rise delay time  
tPG  
3, 9  
45  
80  
μs  
mV  
Ω
SW NMOS FET  
OFF voltage  
VNOFF  
RONP  
RONN  
20*  
0.30  
0.20  
SW PMOS FET  
ON resistance  
LX = −100 mA  
0.47  
1
SW NMOS FET  
ON resistance  
LX = −100 mA  
0 LX VDD*2  
VDD = 5.5 V, 0 LX VDD*2 2.0  
0.36  
Ω
ILEAKM  
ILEAKH  
TOTPH  
1.0  
+ 8.0  
μA  
LX leak current  
+ 16.0 μA  
Over temperature  
protection  
(Junction Temp.)  
+ 120* + 135* + 155*  
+ 95* + 110* + 130*  
°C  
°C  
TOTPL  
Protection  
circuit block  
VTHH  
VTHL  
2.07  
1.92  
2.20  
2.05  
2.33  
2.18  
V
V
UVLO threshold  
voltage  
10  
UVLO hysteresis  
width  
VHYS  
0.08  
0.15  
0.25  
V
* : This value isn't be specified. This should be used as a reference to support designing the circuits.  
(Continued)  
10  
DS04-27245-2E  
MB39C006A  
(Continued)  
(Ta = + 25 °C, VDD = 3.7 V, VOUT setting value = 2.5 V, MODE = 0 V)  
Value  
Typ  
Pin  
No.  
Parameter  
POWERGOOD  
Symbol  
Condition  
Unit  
Min  
Max  
VREFIN  
× 3  
VREFIN  
× 3  
VREFIN  
× 3  
VTHPG  
*3  
V
threshold voltage  
× 0.93 × 0.97 × 0.99  
tDLYPG1  
tDLYPG2  
FSEL = 0 V  
FSEL = 3.7 V  
250  
μs  
μs  
POWERGOOD  
delay time  
POWER-  
GOOD  
block  
5
3
170  
POWERGOOD  
output voltage  
VOL  
IOH  
POWERGOOD = 250 μA  
POWERGOOD = 5.5 V  
0.1  
V
POWERGOOD  
output current  
1.0  
μA  
VTHHCT  
VTHLCT  
0.55  
0.40  
0.95  
0.80  
1.45  
1.30  
V
V
CTL threshold  
voltage  
CTL pin  
input current  
IICTL  
CTL = 3.7 V  
1.0  
μA  
VTHMMD  
VTHLMD  
OPEN setting  
1.5  
0.4  
V
V
Control  
block  
MODE threshold  
voltage  
8
6
4
MODE pin input  
current  
ILMD  
MODE = 0 V  
0.8  
0.4  
μA  
VTHHFS  
VTHLFS  
2.96  
0.74  
V
V
FSEL threshold  
voltage  
VREF = −2.7 μA,  
OUT = −100 mA  
VREF voltage  
VREF  
1.176  
1.200  
1.224  
20  
V
Reference  
voltage  
block  
VREF load  
stability  
LOADREF  
VREF = −1.0 mA  
mV  
CTL = 0 V,  
Shut down  
power supply  
current  
IVDD1  
1.0  
1.0  
μA  
μA  
All circuits in OFF state  
IVDD1H  
CTL = 0 V, VDD = 5.5 V  
Power supply  
current at  
DC/DC operation  
(PFM mode)  
CTL = 3.7 V,  
MODE = 0 V,  
OUT = 0 A  
IVDD2  
30  
48  
μA  
General  
10  
Power supply  
current at  
DC/DC operation  
(PWM fixed  
mode)  
CTL = 3.7 V,  
MODE = OPEN,  
OUT = 0 A,  
IVDD2  
4.8  
8.0  
mA  
FSEL = 0 V  
Power-on  
invalid current  
CTL = 3.7 V,  
IVDD  
800  
1500  
μA  
VOUT = 90%*4  
*1 : The minimum value of VDD is the 2.5 V or VOUT setting value + 0.6 V, whichever is higher.  
*2 : The + leak at the LX pin includes the current of the internal circuit.  
*3 : Detected with respect to the output voltage setting value of VREFIN  
*4 : Current consumption based on 100% ON-duty (High side FET in full ON state). The SW FET gate drive current  
is not included because the device is in full ON state (no switching operation). Also the load current is not  
included.  
DS04-27245-2E  
11  
MB39C006A  
TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS  
VDD  
MB39C006A  
VDD  
SW  
SW  
VIN  
CTL  
3
10  
VDD  
C2  
4.7 µF  
R5  
1 MΩ  
L1  
1.5 µH/2.2 µH  
8
4
MODE  
1
9
VOUT  
GND  
LX  
OUT  
VREF  
FSEL  
IOUT  
C1  
4.7 µF  
R3-1  
R1  
7.5 kΩ  
SW  
1 MΩ  
POWER-  
GOOD  
5
2
6
7
R3-2  
120 kΩ  
GND  
VREFIN  
R4  
300 kΩ  
C6  
0.1 µF  
VOUT = VREFIN × 2.97  
Component  
Specification  
Vendor  
Part Number  
Remark  
R1  
1 MΩ  
KOA  
RK73G1JTTD D 1 MΩ  
R3-1  
R3-2  
7.5 kΩ  
120 kΩ  
SSM  
SSM  
RR0816-752-D  
RR0816-124-D  
At VOUT = 2.5 V setting  
R4  
R5  
C1  
C2  
300 kΩ  
1 MΩ  
SSM  
KOA  
TDK  
TDK  
RR0816-304-D  
RK73G1JTTD D 1 MΩ  
C2012JB1A475K  
C2012JB1A475K  
4.7 μF  
4.7 μF  
For adjusting slow start  
time  
C6  
L1  
0.1 μF  
TDK  
C1608JB1H104K  
2.2 μH  
1.5 μH  
TDK  
TDK  
VLF4012AT-2R2M  
VLF4012AT-1R5M  
2.0 MHz operation  
3.2 MHz operation  
Note : These components are recommended based on the operating tests authorized.  
TDK : TDK Corporation  
SSM : SUSUMU Co., Ltd  
KOA : KOA Corporation  
12  
DS04-27245-2E  
MB39C006A  
APPLICATION NOTES  
[1] Selection of components  
• Selection of an external inductor  
Basically it dose not need to design inductor. The MB39C006A is designed to operate efficiently with a 2.2 μH  
(2.0 MHz operation) or 1.5 μH (3.2 MHz operation) external inductor.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal  
operating conditions, and should have a minimal DC resistance. (100 mΩ or less is recommended.)  
The LX peak current value IPK is obtained by the following formula.  
VIN VOUT  
D
1
2
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
IPK = IOUT +  
×
×
= IOUT +  
L
fosc  
L
: External inductor value  
IOUT : Load current  
VIN  
: Power supply voltage  
VOUT : Output setting voltage  
D
: ON- duty to be switched( = VOUT/VIN)  
fosc : Switching frequency (2.0 MHz or 3.2 MHz)  
ex) At VIN = 3.7 V, VOUT = 2.5 V, IOUT = 0.8 A, L = 2.2 μH, fosc = 2.0 MHz  
The maximum peak current value IPK;  
(VIN VOUT) × VOUT  
(3.7 V 2.5 V) × 2.5 V  
2 × 2.2 μH × 2.0 MHz × 3.7 V  
IPK = IOUT +  
= 0.8 A +  
=: 0.89 A  
2 × L × fosc × VIN  
• I/O capacitor selection  
• Select a low equivalent series resistance (ESR) for the VDD input capacitor to suppress dissipation from ripple  
currents.  
• Also select a low equivalent series resistance (ESR) for the output capacitor. The variation in the inductor  
current causes ripple currents on the output capacitor which, in turn, causes ripple voltages an output equal  
to the amount of variation multiplied by the ESR value. The output capacitor value has a significant impact on  
the operating stability of the device when used as a DC/DC converter. Therefore, FUJITSU MICROELEC-  
TRONICS generally recommends a 4.7 μF capacitor, or a larger capacitor value can be used if ripple voltages  
are not suitable. If the VIN/VOUT voltage difference is within 0.6 V, the use of a 10 μF output capacitor value is  
recommended.  
Types of capacitors  
Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However,  
power supply functions as a heat generator, therefore avoid to use capacitor with the F-temperature rating  
( 80% to + 20%). FUJITSU MICROELECTRONICS recommends capacitors with the B-temperature rating  
(
10% to 20%).  
Normal electrolytic capacitors are not recommended due to their high ESR.  
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when  
damaged. If you insist on using a tantalum capacitor, FUJITSU MICROELECTRONICS recommends the type  
with an internal fuse.  
DS04-27245-2E  
13  
MB39C006A  
[2] Output voltage setting  
The output voltage VOUT of the MB39C006A is defined by the voltage input to VREFIN. Supply the voltage for  
inputting to VREFIN from an external power supply, or set the VREF output by dividing it with resistors.  
The output voltage when the VREFIN voltage is set by dividing the VREF voltage with resistors is shown in the  
following formula.  
R4  
VOUT = 2.97 × VREFIN,  
(VREF = 1.20 V)  
VREFIN =  
× VREF  
R3 + R4  
MB39C006A  
VREF  
VREF  
4
7
R3  
R4  
VREFIN  
VREFIN  
Note : See “APPLICATIN CIRCUIT EXAMPLES” for an example of this circuit.  
Although the output voltage is defined according to the dividing ratio of resistance, select the resistance value  
so that the current flowing through the resistance does not exceed the VREF current rating (1 mA) .  
[3] About conversion efficiency  
The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit.  
The total loss (PLOSS) of the DC/DC converter is roughly divided as follows :  
PLOSS = PCONT + PSW + PC  
PCONT  
: Control system circuit loss (The power to operate the MB39C006A, including the gate driving  
power for internal SW FETs)  
PSW  
PC  
: Switching loss (The loss caused during the switch of the IC's internal SW FETs)  
: Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and external  
circuits )  
The IC's control circuit loss (PCONT) is extremely small, several tens of mW* with no load.  
As the IC contains FETs which can switch faster with less power, the continuity loss (PC) is more predominant  
as the loss during heavy-load operation than the control circuit loss (PCONT) and switching loss (PSW) .  
* : The loss in the successive operation mode. This IC suppresses the loss in order to execute the PFM operation  
in the low load mode (less than 100 μA in no load mode). Mode is changed by the current peak value IPK which  
flows into switching FET. The threshold value is about 30 mA.  
14  
DS04-27245-2E  
MB39C006A  
Furthermore, the continuity loss (PC) is divided roughly into the loss by internal SW FET ON-resistance and by  
external inductor series resistance.  
2
PC = IOUT × (RDC + D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: External inductor series resistance  
: Load current  
RONP  
RONN  
RDC  
IOUT  
The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency by  
selecting components.  
[4] Power dissipation and heat considerations  
The IC is so efficient that no consideration is required in most of the cases. However, if the IC is used at a low  
power supply voltage, heavy load, high output voltage, or high temperature, it requires further consideration for  
higher efficiency.  
The internal loss (P) is roughly obtained from the following formula :  
2
P = IOUT × (D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: Output current  
RONP  
RONN  
IOUT  
The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching loss  
and the control circuit loss as well but they are so small compared to the continuity loss they can be ignored.  
In the MB39C006A with RONP greater than RONN, the larger the on-duty cycle, the greater the loss.  
When assuming VIN = 3.7 V, Ta = + 70 °C for example, RONP = 0.42 Ω and RONN = 0.36 Ω according to the graph  
“MOS FET ON resistance vs. Operating ambient temperature”. The IC's internal loss P is 144 mW at VOUT = 2.5  
V and IOUT = 0.6 A. According to the graph “Power dissipation vs. Operating ambient temperature”, the power  
dissipation at an operating ambient temperature Ta of + 70 °C is 539 mW and the internal loss is smaller than  
the power dissipation.  
DS04-27245-2E  
15  
MB39C006A  
[5] Transient response  
Normally, IOUT is suddenly changed while VIN and VOUT are maintained constant, responsiveness including the  
response time and overshoot/undershoot voltage is checked. As the MB39C006A has built-in Error Amp with  
an optimized design, it shows good transient response characteristics. However, if ringing upon sudden change  
of the load is high due to the operating conditions, add capacitor C6 (e.g. 0.1 μF). (Since this capacitor C6  
changes the start time, check the start waveform as well.) This action is not required for DAC input.  
MB39C006A  
VREF  
4
7
VREF  
R3  
VREFIN  
VREFIN  
C6  
R4  
[6] Board layout, design example  
The board layout needs to be designed to ensure the stable operation of the MB39C006A.  
Follow the procedure below for designing the layout.  
• Arrange the input capacitor (Cin) as close as possible to both the VDD and GND pins. Make a through hole  
(TH) near the pins of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between the MB39C006A and the input capacitor (Cin), output capacitor (CO), and  
external inductor (L). Group these components as close as possible to the MB39C006A to reduce the overall  
loop area occupied by this group. Also try to mount these components on the same surface and arrange  
wiring without through hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes  
is recommended.).  
• The feedback wiring to the OUT should be wired from the voltage output pin closest to the output capacitor  
(CO). The OUT pin is extremely sensitive and should thus be kept wired away from the LX pin of the MB39C006A  
as far as possible.  
• If applying voltage to the VREFIN pin through dividing resistors, arrange the resistors so that the wiring can  
be kept as short as possible. Also arrange them so that the GND pin of the VREFIN resistor is close to the  
IC's GND pin. Further, provide a GND exclusively for the control line so that the resistor can be connected via  
a path that does not carry current. If installing a bypass capacitor for the VREFIN, put it close to the VREFIN pin.  
Try to make a GND plane on the surface to which the MB39C006A will be mounted. For efficient heat dissipation  
when using the SON 10 package, FUJITSU MICROELECTRONICS recommends providing a thermal via in  
the footprint of the thermal pad.  
Layout Example of IC SW components  
1 Pin  
VIN  
GND  
Co  
Vo  
Cin  
L
Feedback line  
16  
DS04-27245-2E  
MB39C006A  
Notes for Circuit Design  
• The switching operation of the MB39C006A works by monitoring and controlling the peak current which,  
incidentally, serves as form of short-circuit protection. However, do not leave the output short-circuited for long  
periods of time. If the output is short-circuited where VIN < 2.9 V, the current limit value (peak current to the  
inductor) tends to rise. Leaving in the short-circuit state, the temperature of the MB39C006A will continue  
rising and activate the thermal protection.  
Once the thermal protection stops the output, the temperature of the IC will go down and operation will resume,  
after which the output will repeat the starting and stopping.  
Although this effect will not destroy the IC, the thermal exposure to the IC over prolonged hours may affect the  
peripherals surrounding it.  
DS04-27245-2E  
17  
MB39C006A  
EXAMPLE OF STANDARD OPERATION CHARACTERISTICS  
(Shown below is an example of characteristics for connection according to“TEST CIRCUIT FOR MEASURING  
TYPICAL OPERATING CHARACTERISTICS”.)  
Conversion efficiency vs. Load current  
(2.0 MHz:PFM/PWM mode)  
Conversion efficiency vs. Load current  
(2.0 MHz:PFM/PWM mode)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 4.2 V  
Ta = +25°C  
OUT = 1.2 V  
FSEL = L  
Ta = +25°C  
OUT = 2.5 V  
FSEL = L  
V
V
V
IN = 5.0V  
MODE = L  
MODE = L  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(2.0 MHz:PFM/PWM mode)  
Conversion efficiency vs. Load current  
(2.0 MHz:PFM/PWM mode)  
100  
100  
90  
80  
70  
60  
50  
V
IN = 3.7 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
Ta = +25°C  
Ta = +25°C  
OUT = 1.8 V  
FSEL = L  
V
OUT = 3.3 V  
V
FSEL = L  
MODE = L  
V
IN = 5.0 V  
MODE = L  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
18  
DS04-27245-2E  
MB39C006A  
Conversion efficiency vs. Load current  
(2.0 MHz:PWM fixed mode)  
Conversion efficiency vs. Load current  
(2.0 MHz:PWM fixed mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0V  
Ta = +25°C  
Ta = +25°C  
OUT = 1.2 V  
V
OUT = 2.5 V  
V
FSEL = L  
FSEL = L  
MODE = OPEN  
MODE = OPEN  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(2.0 MHz:PWM fixed mode)  
Conversion efficiency vs. Load current  
(2.0 MHz:PWM fixed mode)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
OUT = 3.3 V  
Ta = +25°C  
OUT = 1.8 V  
V
V
FSEL = L  
FSEL = L  
MODE = OPEN  
MODE = OPEN  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
DS04-27245-2E  
19  
MB39C006A  
Conversion efficiency vs. Load current  
(3.2 MHz: PFM/PWM mode)  
Conversion efficiency vs. Load current  
(3.2 MHz: PFM/PWM mode)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 4.2 V  
Ta = +25°C  
OUT = 2.5 V  
Ta = +25°C  
VOUT = 1.2 V  
V
IN = 5.0 V  
V
FSEL = H  
FSEL = H  
MODE = L  
MODE = L  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(3.2 MHz:PFM/PWM mode)  
Conversion efficiency vs. Load current  
(3.2 MHz:PFM/PWM mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
Ta = +25°C  
Ta = +25°C  
OUT = 1.8 V  
V
OUT = 3.3 V  
V
V
IN = 5.0 V  
10  
FSEL = H  
FSEL = H  
MODE = L  
MODE = L  
1
10  
100  
1000  
1
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
20  
DS04-27245-2E  
MB39C006A  
Conversion efficiency vs. Load current  
(3.2 MHz:PWM fixed mode)  
Conversion efficiency vs. Load current  
(3.2 MHz:PWM fixed mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
OUT = 2.5 V  
Ta = +25°C  
OUT = 1.2 V  
V
V
FSEL = H  
FSEL = H  
MODE = OPEN  
MODE = OPEN  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(3.2 MHz:PWM fixed mode)  
Conversion efficiency vs. Load current  
(3.2 MHz:PWM fixed mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 4.2 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
OUT = 3.3 V  
Ta = +25°C  
OUT = 1.8 V  
V
V
FSEL = H  
FSEL = H  
MODE = OPEN  
MODE = OPEN  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
DS04-27245-2E  
21  
MB39C006A  
Output voltage vs. Input voltage  
(2.0 MHz: PFM/PWM mode)  
Output voltage vs. Input voltage  
(3.2 MHz: PFM/PWM mode)  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
OUT = 0 A  
OUT = 0 A  
Ta = +25°C  
Ta = +25°C  
V
OUT = 2.5 V  
V
OUT = 2.5 V  
OUT = -100 mA  
OUT = -100 mA  
FSEL = H  
FSEL = L  
MODE = L  
MODE = L  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Output voltage vs. Input voltage  
(3.2 MHz: PWM fixed mode)  
Output voltage vs. Input voltage  
(2.0 MHz: PWM fixed mode)  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
OUT = 0 A  
OUT = 0 A  
Ta = +25°C  
Ta = +25°C  
V
OUT = 2.5 V  
V
OUT = 2.5 V  
FSEL = H  
FSEL = L  
OUT = -100 mA  
MODE = OPEN  
OUT = -100 mA  
MODE = OPEN  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
(Continued)  
22  
DS04-27245-2E  
MB39C006A  
Output voltage vs. Load current  
(2.0 MHz)  
Output voltage vs. Load current  
(3.2 MHz)  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
PFM/PWM mode  
PFM/PWM mode  
PWM fixed mode  
Ta = +25°C  
PWM fixed mode  
Ta = +25°C  
V
V
IN = 3.7 V  
V
V
IN = 3.7 V  
OUT = 2.5 V  
OUT = 2.5 V  
FSEL = H  
FSEL = L  
0
200  
400  
600  
800  
0
200  
400  
600  
800  
Load current IOUT (mA)  
Load current IOUT (mA)  
Reference voltage vs.  
Operating ambient temperature  
(2.0 MHz: PFM/PWM mode)  
Reference voltage vs. Input voltage  
(2.0 MHz: PFM/PWM mode)  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
V
V
IN = 3.7 V  
OUT = 2.5 V  
OUT = 0 A  
FSEL = L  
MODE = L  
OUT = 0 A  
Ta = +25°C  
OUT = -100 mA  
V
OUT = 2.5 V  
FSEL = L  
MODE = L  
-50  
0
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
Operating ambient temperature Ta ( °C)  
Input voltage VIN (V)  
(Continued)  
DS04-27245-2E  
23  
MB39C006A  
Input current vs. Input voltage  
(PWM fixed mode)  
Input current vs. Input voltage  
(PFM/PWM mode)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
Ta = +25°C  
OUT = 2.5 V  
Ta = +25°C  
V
V
OUT = 2.5 V  
MODE = L  
MODE = OPEN  
0
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Input current vs.  
Operating ambient temperature  
(PWM fixed mode)  
Input current vs.  
Operating ambient temperature  
(PFM/PWM mode)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
V
V
IN = 3.7 V  
V
V
IN = 3.7 V  
OUT = 2.5 V  
OUT = 2.5 V  
MODE = L  
MODE = OPEN  
0
-50  
0
+50  
+100  
-50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
(Continued)  
24  
DS04-27245-2E  
MB39C006A  
Oscillation frequency vs. Input voltage  
(3.2 MHz)  
Oscillation frequency vs. Input voltage  
(2.0 MHz)  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
Ta = +25°C  
Ta = +25°C  
OUT = 1.8 V  
V
OUT = 1.8 V  
V
OUT = -200 mA  
OUT = -200 mA  
FSEL = L  
FSEL = H  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Oscillation frequency vs.  
Oscillation frequency vs.  
Operating ambient temperature  
(2.0 MHz)  
Operating ambient temperature  
(3.2 MHz)  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
3.6  
V
V
IN = 3.7 V  
V
V
IN = 3.7 V  
OUT = 2.5 V  
OUT = 2.5 V  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
OUT = -200 mA  
OUT = -200 mA  
FSEL = L  
FSEL = H  
-50  
0
+50  
+100  
-50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
(Continued)  
DS04-27245-2E  
25  
MB39C006A  
MOS FET  
P-ch MOS FET  
ON resistance vs. Input voltage  
ON resistance vs. Operating ambient temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
VIN = 3.7 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
P-ch  
V
IN = 5.5 V  
N-ch  
Ta = +25°C  
50  
0
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
Operating ambient temperature Ta ( °C)  
Input voltage VIN (V)  
N-ch MOS FET  
ON resistance vs. Operating ambient temperature  
0.6  
0.5  
VIN = 3.7 V  
0.4  
0.3  
0.2  
VIN = 5.5 V  
0.1  
0.0  
50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
(Continued)  
26  
DS04-27245-2E  
MB39C006A  
(Continued)  
MODE VTH vs. Input voltage  
CTL VTH vs. Input voltage  
4.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
THHCT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
THLCT  
V
THMMD  
Ta = +25°C  
V
OUT = 2.5 V  
VTHHCT: circuit OFF ON  
VTHLCT: circuit ON OFF  
Ta = +25°C  
V
THLMD  
V
OUT = 2.5 V  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Power dissipation vs.  
Power dissipation vs.  
Operating ambient temperature  
(with thermal via)  
Operating ambient temperature  
(without thermal via)  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
2632  
1053  
980  
392  
0
0
85  
85  
50  
0
+50  
+100  
50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
DS04-27245-2E  
27  
MB39C006A  
• Switching waveforms  
PFM/PWM operation  
1 μs/div  
V
OUT :  
20 mV/div (AC)  
1
V
LX : 2.0 V/div  
2
I
LX : 500 mA/div  
4
VIN = 3.7 V, IOUT = −20 mA, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
PWM operation  
1 μs/div  
V
OUT:  
20 mV/div (AC)  
1
VLX : 2.0 V/div  
2
I
LX : 500 mA/div  
4
V
IN = 3.7 V, IOUT = −800 mA, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
28  
DS04-27245-2E  
MB39C006A  
• Output waveforms at sudden load changes (0 A  
800 mA)  
100 μs/div  
V
OUT :  
200 mV/div  
1
V
LX : 2.0 V/div  
2
4
800 mA  
I
OUT : 1 A/div  
0 A  
V
IN = 3.7 V, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
• Output waveforms at sudden load changes ( 20 mA  
800 mA)  
100 μs/div  
V
OUT :  
200 mV/div  
1
V
LX : 2.0 V/div  
2
800 mA  
I
OUT : 1 A/div  
4
20 mA  
V
IN = 3.7 V, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
• Output waveforms at sudden load changes ( 100 mA ↔ − 800 mA)  
100 μs/div  
V
OUT :  
200 mV/div  
1
V
LX : 2.0 V/div  
2
800 mA  
I
OUT : 1 A/div  
4
100 mA  
IN = 3.7 V, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
V
DS04-27245-2E  
29  
MB39C006A  
• CTL start-up waveform  
(No load, No VREFIN capacitor)  
(Maximum load, No VREFIN capacitor)  
10 μs/div  
10 μs/div  
CTL : 5 V/div  
CTL : 5 V/div  
3
3
V
OUT : 1 V/div  
V
OUT : 1 V/div  
1
1
V
LX : 5 V/div  
VLX : 5 V/div  
2
4
2
4
ILX :1 A/div  
ILX :1 A/div  
V
IN = 3.7 V, IOUT = −800 mA, (3.125 Ω) VOUT = 2.5 V,  
V
IN = 3.7 V, IOUT = 0 A, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
MODE = L, Ta = +25 °C  
(No load, VREFIN capacitor = 0.1 μF)  
(Maximum load, VREFIN capacitor = 0.1 μF)  
10 ms/div  
10 ms/div  
CTL : 5 V/div  
CTL : 5 V/div  
3
3
V
OUT : 1 V/div  
V
OUT : 1 V/div  
1
1
V
LX : 5 V/div  
V
LX : 5 V/div  
2
4
2
4
ILX :1 A/div  
ILX :1 A/div  
V
IN = 3.7 V, IOUT = −800 mA, (3.125 Ω) VOUT = 2.5 V,  
V
IN = 3.7 V, IOUT = 0 A, VOUT = 2.5 V, MODE = L, Ta = +25 °C  
MODE = L, Ta = +25 °C  
30  
DS04-27245-2E  
MB39C006A  
• CTL stop waveform (No load, VREFIN capacitor = 0.1 μF)  
10 μs/div  
CTL : 5 V/div  
3
V
OUT : 1 V/div  
1
V
LX : 5 V/div  
2
4
ILX :1 A/div  
V
IN = 3.7 V, IOUT = −800 mA, (3.125 Ω) VOUT = 2.5 V,  
MODE = L, Ta = +25 °C  
• Current limitation waveform  
2.5 V  
OUT : 1 V/div  
10 μs/div  
V
V
1.5 V  
POWERGOOD : 1 V/div  
1
2
4
1.2 A  
lLX : 1 A/div  
600 mA  
Current limitation  
operation  
IOUT = 1.2 A (2.1 Ω) VOUT = 2.5 V, MODE = L,Ta = +25 °C  
Normal operation  
Normal operation  
V
IN = 3.7 V, IOUT = 600 mA (4.2 Ω)  
DS04-27245-2E  
31  
MB39C006A  
• Waveform of dynamic output voltage transition (VO1 1.8 V 2.5 V)  
VOUT : 200 mV/div  
2.5 V  
10 μs/div  
1.8 V  
1
840 mV  
VVRFFIN : 200 mV/div  
3
610 mV  
VIN = 3.7 V, IO1 = 800 mA, 576 mA (3.125 Ω), MODE = L, Ta = +25 °C, No VREFIN Capacitor  
32  
DS04-27245-2E  
MB39C006A  
APPLICATION CIRCUIT EXAMPLES  
• APPLICATION CIRCUIT EXAMPLE 1  
• An external voltage is input to the reference voltage external input (VREFIN) , and the VOUT voltage is set to  
2.97 times as much as the VOUT setting gain.  
C2  
4.7 μF  
VIN  
10  
VDD  
V
OUT  
CPU  
CTL  
LX  
1
3
8
R5  
1 MΩ  
L1  
2.2 μH  
C1  
4.7 μF  
OUT  
9
5
L=PFM/PWM mode  
OPEN=PWM fixed mode  
MODE  
POWER-  
GOOD  
APLI  
L (OPEN) = 2.0 MHz  
H = 3.2 MHz  
6
4
FSEL  
VREF  
V
OUT = 2.97 × VREFIN  
VREFIN  
7
DAC  
GND  
2
• APPLICATION CIRCUIT EXAMPLE 2  
• The voltage of VREF pin is input to the reference voltage external input (VREFIN) by the dividing resistors.  
The VOUT voltage is set to 2.5 V.  
C2  
4.7 μF  
VIN  
10  
VDD  
VOUT  
3
CPU  
1
CTL  
LX  
R5  
1 MΩ  
L1  
2.2 μH  
C1  
4.7 μF  
OUT  
9
5
L=PFM/PWM mode  
OPEN=PWM fixed mode  
8
6
MODE  
FSEL  
POWER-  
GOOD  
APLI  
L (OPEN) = 2.0 MHz  
H = 3.2 MHz  
R3 127.5 kΩ  
R3(120 kΩ + 7.5 kΩ)  
VOUT = 2.97 × VREFIN  
4
7
VREF  
R4  
R3 + R4  
VREFIN =  
× VREF  
VREFIN  
(VREF = 1.20 V)  
R4  
300 kΩ  
GND  
2
300 kΩ  
127.5 kΩ + 300 kΩ  
VOUT = 2.97 ×  
× 1.20 V = 2.5 V  
DS04-27245-2E  
33  
MB39C006A  
Application Circuit Example Components List  
Component  
Item  
Part Number  
VLF4012AT-2R2M  
MIPW3226D2R2M  
Specification  
2.2 μH, RDC = 76 mΩ  
2.2 μH, RDC = 100 mΩ  
Package  
SMD  
Vendor  
TDK  
L1  
Inductor  
SMD  
FDK  
Ceramic  
capacitor  
C1  
C2  
R3  
C2012JB1A475K  
4.7 μF (10 V)  
2012  
2012  
TDK  
TDK  
KOA  
Ceramic  
capacitor  
C2012JB1A475K  
4.7 μF (10 V)  
7.5 kΩ  
RK73G1JTTD D 7.5 kΩ  
RK73G1JTTD D 120 kΩ 120 kΩ  
1608  
1608  
Resistor  
R4  
R5  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ 300 kΩ  
1608  
1608  
KOA  
KOA  
RK73G1JTTD D  
1 MΩ 0.5%  
TDK : TDK Corporation  
FDK : FDK Corporation  
KOA : KOA Corporation  
34  
DS04-27245-2E  
MB39C006A  
USAGE PRECAUTIONS  
1. Do not configure the IC over the maximum ratings  
If the lC is used over the maximum ratings, the LSl may be permanently damaged.  
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of  
these conditions can adversely affect reliability of the LSI.  
2. Use the devices within recommended operating conditions  
The recommended operating conditions are the conditions under which the LSl is guaranteed to operate.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions  
and under the conditions stated for each item.  
3. Printed circuit board ground lines should be set up with consideration for common  
impedance  
4. Take appropriate static electricity measures.  
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.  
5. Do not apply negative voltages.  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
10-pin plastic SON  
(LCC-10P-M04)  
MB39C006APN  
RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION  
The LSI products of FUJITSU MICROELECTRONICS with “E1” are compliant with RoHS Directive, and has  
observed the standard of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBB), and  
polybrominated diphenylethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
DS04-27245-2E  
35  
MB39C006A  
LABELING SAMPLE (LEAD FREE VERSION)  
Lead-free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
“ASSEMBLED IN CHINA” is printed on the label  
of a product assembled in China.  
The part number of a lead-free product has  
the trailing characters “E1”.  
MARKING FORMAT  
Lead-free version  
INDEX  
36  
DS04-27245-2E  
MB39C006A  
RECOMMENDED MOUNTING CONDITIONS of MB39C006APN  
[FUJITSU MICROELECTRONICS Recommended Mounting Conditions]  
Item  
Condition  
Mounting Method  
Mounting times  
IR (infrared reflow), warm air reflow  
2 times  
Before opening  
Please use it within two years after  
manufacture.  
Storage period  
From opening to the 2nd  
reflow  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Parameters for Each Mounting Method]  
IR (infrared reflow)  
260°C  
255°C  
170 °C  
~
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
H rank : 260 °C Max  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
: Temperature 260 °C Max; 255 °C or more, 10s or less  
(d’)  
: Temperature 230 °C or more, 40s or less  
or  
Temperature 225 °C or more, 60s or less  
or  
Temperature 220 °C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
DS04-27245-2E  
37  
MB39C006A  
EVALUATION BOARD SPECIFICATION  
The MB39C006A Evaluation Board provides the proper environment for evaluating the efficiency and other  
characteristics of the MB39C006A.  
Terminal information  
Symbol  
Functions  
Power supply terminal.  
In standard condition 3.1 V to 5.5 V*.  
VIN  
* When the VIN/VOUT difference is to be held within 0.6 V or less, such as for devices  
with a standard output voltage (VOUT = 2.5 V) and VIN < 3.1 V, FUJITSU MICRO-  
ELECTRONICS recommends to change the output capacity (C1) to 10 μF.  
VOUT  
VCTL  
Output terminal.  
Power supply terminal for setting the CTL terminal.  
Use this terminal by connecting with VIN (When SW is mounted).  
Direct supply terminal of CTL.  
CTL  
CTL = 0 V to 0.80 V (Typ) : Shutdown  
CTL = 0.95 V (Typ) to VIN : Normal operation  
Direct supply terminal of MODE.  
MODE  
MODE = 0 V to 0.4 V (Max)  
: PFM/PWM mode  
MODE = OPEN (Remove R6) : PWM mode  
Reference voltage output terminal.  
VREF = 1.20 V (Typ)  
VREF  
External reference voltage input terminal.  
When an external reference voltage is supplied, connect to this terminal.  
VREFIN  
Operating frequency range setting terminal.  
FSEL = 0 V : 2.0 MHz operation  
FSEL = VIN : 3.2 MHz operation*  
FSEL  
* FUJITSU MICROELECTRONICS recommends to change the inductor to 1.5 μH.  
POWERGOOD output terminal.  
“High” level output when OUT voltage reaches 97% or more of output setting voltage.  
POWERGOOD  
Ground terminal.  
PGND  
AGND  
Connect power supply GND to the PGND terminal next to the VOUT terminal.  
Ground terminal.  
• Startup terminal information  
Terminal name  
Condition  
Functions  
ON/OFF switch for the IC.  
L : Shutdown  
L : Open  
H : Connect to VIN  
CTL  
H : Normal operation  
Setting switch of FSEL terminal.  
L : 2.0 MHz operation  
H : 3.2 MHz operation  
L : Open  
H : Connect to VIN  
FSEL  
• Jumper information  
JP  
Functions  
JP1  
JP2  
Normally used shorted (0 Ω)  
Not mounted  
38  
DS04-27245-2E  
MB39C006A  
• Setup and checkup  
(1) Setup  
(1) -1. Connect the CTL terminal to the VIN terminal.  
(1) -2. Connect the power supply terminal to the VIN terminal, and the power supply GND terminal to the  
PGND terminal. (Example of setting power supply voltage : 3.7 V)  
(2) Checkup  
Supply power to VIN. The IC is operating normally if VOUT = 2.5 V (Typ).  
• Component layout on the evaluation board (Top View)  
MODE  
VCTL  
JP2  
SW1  
R8  
VIN  
CTL  
FSEL  
C3  
R4  
JP1  
C2  
FSEL  
R6  
R3-2  
R3-1  
PGND  
VOUT  
M1  
L1  
C1  
R1  
CTL  
AGND  
POWER_GOOD VREF  
VREFIN  
MB39C006AEVB-06 Rev.2.0  
DS04-27245-2E  
39  
MB39C006A  
• Evaluation board layout (Top View)  
Top Side (Layer1)  
Inner Side (Layer2)  
Inner Side(Layer 3)  
Bottom Side(Layer 4)  
40  
DS04-27245-2E  
MB39C006A  
• Connection diagram  
I
IN  
VIN  
C2  
4.7 µF  
L1  
JP2  
10  
VDD  
IOUT  
2.2 µH  
SW1-1  
VOUT  
LX 1  
VCTL  
CTL  
CTL  
3
8
R5  
C1  
4.7 µF  
MB39C006A  
1MΩ  
JP1  
9
5
OUT  
R1  
1MΩ  
MODE  
MODE  
POWER-  
GOOD  
POWER-  
GOOD  
R6  
SW1-2  
FSEL  
6
4
FSEL  
VREF  
VREF  
PGND  
R3-1  
7.5 kΩ  
AGND  
R3-2  
120 kΩ  
VREFIN  
VREFIN  
7
GND  
2
*
Not mounted  
R4  
300 kΩ  
C6  
0.1 µF  
DS04-27245-2E  
41  
MB39C006A  
• Component list  
Component  
Part Name  
Model Number  
Specification  
Package  
Vendor  
Remark  
M1  
IC  
MB39C006APN  
SON10  
FML  
2.2 μH,  
RDC=76 mΩ  
L1  
Inductor  
VLF4012AT-2R2M  
SMD  
TDK  
C1  
C2  
C6  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1H104K  
4.7 μF (10 V)  
4.7 μF (10 V)  
0.1 μF (50 V)  
2012  
2012  
1608  
TDK  
TDK  
TDK  
RK73G1JTTD D  
R1  
Resister  
1 MΩ 0.5%  
1608  
KOA  
1 MΩ  
R3-1  
R3-2  
R4  
Resister  
Resister  
Resister  
RR0816P-752-D  
RR0816P-124-D  
RR0816P-304-D  
7.5 kΩ 0.5%  
120 kΩ 0.5%  
300 kΩ 0.5%  
1608  
1608  
1608  
SSM  
SSM  
SSM  
RK73G1JTTD D  
R5  
R6  
Resister  
Resister  
DIP switch  
Jumper  
1 MΩ 0.5%  
0 Ω, 1A  
1608  
1608  
KOA  
KOA  
1 MΩ  
RK73Z1J  
Not  
mounted  
SW1  
JP1  
JP2  
RK73Z1J  
0 Ω, 1A  
1608  
KOA  
Not  
mounted  
Jumper  
Note : These components are recommended based on the operating tests authorized.  
FML  
TDK  
KOA  
SSM  
: FUJITSU MICROELECTRONICS LIMITED  
: TDK Corporation  
: KOA Corporation  
: SUSUMU Co., Ltd  
EV BOARD ORDERING INFORMATION  
EV Board Part No.  
EV Board Version No.  
MB39C006AEVB-06 Rev.2.0  
Remarks  
SON10  
MB39C006AEVB-06  
42  
DS04-27245-2E  
MB39C006A  
PACKAGE DIMENSION  
10-pin plastic SON  
Lead pitch  
0.50 mm  
3.00 mm × 3.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.75 mm MAX  
0.018 g  
(LCC-10P-M04)  
10-pin plastic SON  
(LCC-10P-M04)  
3.00±0.10  
(.118±.004)  
2.40±0.10  
(.094±.004)  
10  
6
INDEX AREA  
1.70±0.10  
(.067±.004)  
3.00±0.10  
(.118±.004)  
0.40±0.10  
(.016±.004)  
1
5
1PIN CORNER  
(C0.30(C.012))  
0.50(.020)  
TYP  
0.25±0.03  
(.010±.001)  
0.75(.030)  
MAX  
0.15(.006)  
0.05(.002)  
0.00 +00..0005  
+.002  
(.000  
)
–.000  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2008 FUJITSU MICROELECTRONICS LIMITED C10004S-c-1-2  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS04-27245-2E  
43  
MB39C006A  
CONTENTS  
page  
- DESCRIPTION ................................................................................................................................................ 1  
- FEATURES ...................................................................................................................................................... 1  
- APPLICATIONS .............................................................................................................................................. 1  
- PIN ASSIGNMENT ......................................................................................................................................... 2  
- PIN DESCRIPTIONS ...................................................................................................................................... 2  
- I/O PIN EQUIVALENT CIRCUIT DIAGRAM ............................................................................................... 3  
- BLOCK DIAGRAM .......................................................................................................................................... 4  
- FUNCTION OF EACH BLOCK ..................................................................................................................... 6  
- ABSOLUTE MAXIMUM RATINGS ............................................................................................................... 8  
- RECOMMENDED OPERATING CONDITIONS ........................................................................................ 9  
- ELECTRICAL CHARACTERISTICS ............................................................................................................ 10  
- TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS ............................ 12  
- APPLICATION NOTES .................................................................................................................................. 13  
- EXAMPLE OF STANDARD OPERATION CHARACTERISTICS ........................................................... 18  
- APPLICATION CIRCUIT EXAMPLES ......................................................................................................... 33  
- USAGE PRECAUTIONS ............................................................................................................................... 35  
- ORDERING INFORMATION ......................................................................................................................... 35  
- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION .............................................. 35  
- LABELING SAMPLE (LEAD FREE VERSION) ......................................................................................... 36  
- MARKING FORMAT ....................................................................................................................................... 36  
- RECOMMENDED MOUNTING CONDITIONS of MB39C006APN ........................................................ 37  
- EVALUATION BOARD SPECIFICATION ................................................................................................... 38  
- EV BOARD ORDERING INFORMATION ................................................................................................... 42  
- PACKAGE DIMENSION ................................................................................................................................ 43  
44  
DS04-27245-2E  
MB39C006A  
MEMO  
DS04-27245-2E  
45  
MB39C006A  
MEMO  
46  
DS04-27245-2E  
MB39C006A  
MEMO  
DS04-27245-2E  
47  
MB39C006A  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,  
Shinjuku-ku, Tokyo 163-0722, Japan  
Tel: +81-3-5322-3329  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fmal.fujitsu.com/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
Korea  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fmc/en/  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to  
the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear  
facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon  
system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB39C006APN

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006APN-XXXE1

Switching Regulator, Current-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator, Voltage-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator,
CYPRESS

MB39C007

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C007EVB-06

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C007QN

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C011A

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011AEVB-01

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011APFT

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-G-BND-ERE1

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-XXXE1

Dual Switching Controller, 0.7A, 2000kHz Switching Freq-Max, PDSO16, 4.40 X 5 MM, 1.10 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, TSSOP-16
FUJITSU