MB39C007EVB-06 [FUJITSU]

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support; 2通道DC / DC转换器IC内置开关FET和电压检测功能, PFM / PWM同步整流降压转换支持
MB39C007EVB-06
型号: MB39C007EVB-06
厂家: FUJITSU    FUJITSU
描述:

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
2通道DC / DC转换器IC内置开关FET和电压检测功能, PFM / PWM同步整流降压转换支持

转换器 开关
文件: 总52页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27246-2E  
ASSP for Power Management Applications  
2 ch DC/DC Converter IC Built-in Switching FET &  
voltagedetectionfunction,PFM/PWMSynchronous  
Rectification, and Down Conversion Support  
MB39C007  
DESCRIPTION  
The MB39C007 is a current mode type 2-channel DC/DC converter IC built-in voltage detection, synchronous  
rectifier, and down conversion support. The device is integrated with a switching FET, oscillator, error amplifier,  
PFM/PWM control circuit, reference voltage source, and voltage detection circuit.  
External inductor and decoupling capacitor are needed only for the external component.  
MB39C007 is small, achieve a highly effective DC/DC converter in the full load range, this is suitable as the built-  
in power supply for handheld equipment such as mobile phone/PDA, DVDs, and HDDs.  
FEATURES  
• High efficiency  
• Low current consumption  
• Output current  
: 96% (Max)  
: 30 μA (At PFM/ch)  
: 800 mA/ch (Max)  
: 2.5 V to 5.5 V  
: 2.0 MHz (Typ)  
• Input voltage range  
• Operating frequency  
• Built-in PWM operation fixed function  
• No flyback diode needed  
• Low dropout operation  
• Built-in high-precision reference voltage generator : 1.30 V 2%  
• Consumption current in shutdown mode  
• Built-in switching FET  
: For 100% on duty  
: 1 μA or less  
: P-ch MOS 0.3 Ω (Typ) , N-ch MOS 0.2 Ω (Typ)  
• High speed for input and load transient response in the current mode  
• Over temperature protection  
• Packaged in a compact package  
: QFN-24  
APPLICATIONS  
• Flash ROMs  
• MP3 players  
• Electronic dictionary devices  
• Surveillance cameras  
• Portable GPS navigators  
• DVD drives  
• IP phones  
• Network hubs  
• Mobile phones  
etc.  
Copyright©2008-2009 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2009.9  
MB39C007  
PIN ASSIGNMENT  
(Top View)  
LX2 DGND2 DGND2 DGND1 DGND1 LX1  
18  
17  
16  
15  
14  
13  
DVDD2  
DVDD1  
DVDD1  
OUT1  
12  
11  
10  
9
19  
20  
21  
22  
23  
24  
DVDD2  
OUT2  
MODE2  
MODE1  
VREFIN2  
VREFIN1  
8
7
XPOR  
VDET  
1
2
3
4
5
6
CTLP CTL2 CTL1 AGND AVDD VREF  
(LCC-24P-M09)  
2
DS04-27246-2E  
MB39C007  
PIN DESCRIPTIONS  
Pin No.  
Pin Name  
I/O  
Description  
Voltage detection circuit block control input pin.  
(L : Voltage detection function stop / H : Normal operation)  
1
CTLP  
I
DC/DC converter block control input pins.  
(L : Shut down / H : Normal operation)  
2, 3  
CTL2, CTL1  
I
4
5
AGND  
AVDD  
O
I
Control block ground pin.  
Control block power supply pin.  
Reference voltage output pin.  
6
VREF  
7
VDET  
Voltage detection input pin.  
8, 23  
VREFIN1, VREFIN2  
I
Error amplifier (Error Amp) non-inverted input pins.  
Operation mode switch pins.  
(L : PFM/PWM mode / OPEN : PWM mode)  
9, 22  
MODE1, MODE2  
I
I
10, 21  
11, 12  
19, 20  
OUT1, OUT2  
DVDD1  
Output voltage feedback pins.  
O
Drive block power supply pins.  
DVDD2  
Inductor connection output pins.  
High impedance during shut down.  
13, 18  
LX1, LX2  
14, 15  
16, 17  
DGND1  
DGND2  
O
Drive block ground pins.  
VDET circuit output pin.  
Connected to an N-ch MOS open drain circuit.  
24  
XPOR  
DS04-27246-2E  
3
MB39C007  
I/O PIN EQUIVALENT CIRCUIT DIAGRAM  
VDD  
VDD  
LX1, LX2  
VREF  
GND  
VDD  
GND  
VREFIN1  
VREFIN2  
VDET  
,
,
OUT1  
,
OUT2  
GND  
VDD  
CTL1, CTL2, CTLP  
GND  
VDD  
XPOR  
MODE1  
MODE2  
,
GND  
* : ESD Protection device  
GND  
4
DS04-27246-2E  
MB39C007  
BLOCK DIAGRAM  
VIN  
AVDD  
DVDD1  
DVDD2  
5
11, 12 19, 20  
CTL1  
3
ON/OFF  
OUT1  
10  
×3  
Error Amp  
DVDD1  
+
IOUT  
Comp.  
VREFIN1  
8
9
DAC  
PFM/PWM  
Logic  
LX1  
L:PFM/PWM  
OPEN:PWM  
VOUT1  
13  
Control  
MODE1  
Mode  
Control  
VIN  
VIN  
CTLP  
VDET  
1
7
ON/OFF  
24  
+
XPOR  
1.30 V  
VREF  
VREF  
CTL2  
6
2
ON/OFF  
OUT2  
×3  
DVDD2  
Error Amp  
21  
+
I
OUT  
Comp.  
VREFIN2  
23  
PFM/PWM  
Logic  
L:PFM/PWM  
OPEN:PWM  
LX2  
VOUT2  
18  
Control  
MODE2  
22  
Mode  
Control  
4
16, 17  
DGND2  
14, 15  
DGND1  
AGND  
DS04-27246-2E  
5
MB39C007  
Current mode  
• Original voltage mode type :  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Reference triangular wave (VTRI)  
• Current mode type :  
Instead of the triangular wave (VTRI), the voltage (VIDET) obtained through I-V conversion of the sum of currents  
that flow in the oscillator (rectangular wave generation circuit) and SW FET is used.  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Voltage (VIDET) obtained through I-V conversion of the sum of current that flow in the oscillator (rectangular  
wave generation circuit) and SW FET  
Voltage mode type model  
Current mode type model  
VIN  
VIN  
Oscillator  
S
Vc  
+
Vc  
Q
R
+
VTRI  
VIDET  
SR-FF  
Vc  
VIDET  
Vc  
VTRI  
ton  
toff  
toff  
ton  
Note : The above models illustrate the general operation and an actual operation will be preferred in the IC.  
6
DS04-27246-2E  
MB39C007  
FUNCTION OF EACH BLOCK  
• PFM/PWM Logic control circuit  
In normal operation, frequency (2.0 MHz) which is set by the built-in oscillator (square wave oscillation circuit)  
controls the built-in P-ch MOS FET and N-ch MOS FET for the synchronous rectification operation. In the light  
load mode, the intermittent (PFM) operation is executed.  
This circuit protects against pass-through current caused by synchronous rectification and against reverse  
current caused in a non-successive operation mode.  
• IOUT Comparator circuit  
This circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET.  
By comparing VIDET obtained through I-V conversion of peak current IPK of ILX with the Error Amp output, the built-  
in P-ch MOS FET is turned off via the PFM/PWM Logic Control circuit.  
• Error Amp phase compensation circuit  
This circuit compares the output voltage to reference voltages such as VREF. This IC has a built-in phase  
compensation circuit that is designed to optimize the operation of this IC.  
This needs neither to be considered nor addition of a phase compensation circuit and an external phase  
compensation device.  
• VREF circuit  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit. The output voltage is  
1.30 V (Typ).  
• Voltage Detection (VDET) circuit  
The voltage detection circuit monitors the VDET pin voltage. Normally, use the XPOR pin through pull-up with  
an external resistor. When the VDET pin voltage reaches 0.6 V, it reaches the H level.  
Timing chart example : (XPOR pin pulled up to VIN)  
VIN  
VUVLO  
CTLP  
VTHHPR  
VTHLPR  
VDET  
XPOR  
VUVLO : UVLO threshold voltage  
VTHHPR, VTHLPR : XPOR threshold voltage  
• Protection circuit  
This IC has a built-in over-temperature protection circuit.  
The over-temperature protection circuit turns off both N-ch and P-ch switching FETs when the junction  
temperature reaches + 135 °C. When the junction temperature comes down to + 110 °C, the switching FET is  
returned to the normal operation. Since the PFM/PWM control circuit of this IC is in the control method in current  
mode, the current peak value is also monitored and controlled as required.  
DS04-27246-2E  
7
MB39C007  
• Function table  
Input  
Output  
VDET  
CH1  
function  
CH2  
function  
VREF  
CTL1  
CTL2  
CTLP MODE  
Switching operation  
function  
function  
L
L
*
Stopped  
H
L
Operation  
Stopped  
Stopped  
H
L
Operation  
Stopped  
H
L
Operation  
Stopped  
L
PFM/PWM mode  
H
L
L
H
H
L
H
Operation  
Stopped  
Operation  
Operation  
Stopped  
Operation  
Stopped  
1.3 V  
output  
H
L
Operation  
Stopped  
H
L
Operation  
Stopped  
H
L
Operation  
Stopped  
Open  
H
PWM fixed mode  
H
L
L
H
H
Operation  
Stopped  
Stopped  
Operation  
Operation  
Operation  
* : Don't care  
8
DS04-27246-2E  
MB39C007  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Max  
Min  
0.3  
0.3  
Power supply voltage  
VDD  
AVDD = DVDD1 = DVDD2  
+6.0  
V
OUT1, OUT2 pins  
VDD + 0.3  
CTLP, CTL1, CTL2,  
MODE1, MODE2 pins  
0.3  
VDD + 0.3  
Signal input voltage  
VISIG  
V
VREFIN1, VREFIN2 pins  
VDET pin  
0.3  
0.3  
0.3  
0.3  
VDD + 0.3  
VDD + 0.3  
+6.0  
XPOR pull-up voltage  
LX voltage  
VIXPOR  
VLX  
XPOR pin  
V
V
LX1, LX2 pins  
VDD + 0.3  
The upper limit value of ILX1  
and ILX2  
LX Peak current  
IPK  
1.8  
A
3125*1, *2, *3  
1563*1, *2, *4  
1250*1, *2, *3  
625*1, *2, *4  
Ta ≤ +25 °C  
Ta = +85 °C  
mW  
Power dissipation  
PD  
mW  
Operating ambient  
temperature  
Ta  
40  
55  
+85  
°C  
°C  
Storage temperature  
TSTG  
+125  
*1 : See the diagram of “EXAMPLE OF STANDARD OPERATION CHARACTERISTICS. Power dissipation vs.  
Operating ambient temperature” for the package power dissipation of Ta from + 25 °C to + 85 °C.  
*2 : When mounted on a four-layer epoxy board of 11.7 cm × 8.4 cm  
*3 : IC is mounted on a four-layer epoxy board, which has thermal via, and the IC's thermal pad is connected to the  
epoxy board (Thermal via is 9 holes).  
*4 : IC is mounted on a four-layer epoxy board, which has no thermal via, and the IC's thermal pad is connected  
to the epoxy board.  
Notes: The use of negative voltages below 0.3 V to the AGND, DGND1, and DGND2 pin may create parasitic  
transistors on LSI lines, which can cause abnormal operation.  
This device can be damaged if the LX pins are short-circuited to AVDD and DVDD1/DVDD2, or AGND and  
DGND1/DGND2.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
DS04-27246-2E  
9
MB39C007  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ  
3.7  
Parameter  
Symbol  
Condition  
Unit  
Min  
2.5  
0.15  
0
Max  
5.5  
Power supply voltage  
VREFIN voltage  
CTL voltage  
VDD  
VREFIN  
VCTL  
ILX  
AVDD = DVDD1 = DVDD2  
V
V
CTLP, CTL1, CTL2 pins  
ILX1, ILX2  
1.30  
5.0  
V
LX current  
800  
mA  
2.5 V AVDD = DVDD1 =  
0.5  
1
DVDD2 < 3.0 V  
VREF output current  
IROUT  
mA  
3.0 V AVDD = DVDD1 =  
DVDD2 5.5 V  
XPOR current  
Inductor value  
IPOR  
L
1
mA  
2.2  
μH  
Note : Theoutputcurrentfromthisdevicehasasituationtodecreaseifthepowersupplyvoltage(VIN)andtheDC/DC  
converter output voltage (VOUT) differ only by a small amount. This is a result of slope compensation and will  
not damage this device.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
on the data sheet. Users considering application outside the listed conditions are advised to contact  
their representatives beforehand.  
10  
DS04-27246-2E  
MB39C007  
ELECTRICAL CHARACTERISTICS  
(Ta = +25 °C, AVDD = DVDD1 = DVDD2 = 3.7 V, VOUT1/VOUT2 setting value = 2.5 V, MODE1/MODE2 = 0 V)  
Value  
Typ  
0
Sym-  
bol  
Parameter  
Input current  
Pin No.  
Condition  
Unit  
Min  
Max  
+ 100 nA  
IREFIN  
VOUT  
8, 23 VREFIN = 0.15 V to 1.3 V  
100  
VREFIN = 0.833 V,  
OUT = −100 mA  
Output voltage  
2.45  
2.50  
2.55  
V
2.5 V AVDD = DVDD1 =  
Input stability  
Load stability  
LINE  
LOAD  
ROUT  
IPK  
10  
10  
mV  
mV  
MΩ  
A
DVDD2 5.5 V*1  
10, 21  
100 mA OUT ≥ −800 mA  
OUT pin input  
impedance  
OUT = 2.0 V  
0.6  
0.9  
1.0  
1.2  
30  
1.5  
1.7  
LX Peak current  
Output shorted to GND  
PFM/PWM  
switch current  
IMSW  
mA  
13, 18  
DC/DC  
converter  
block  
Oscillation  
frequency  
fosc  
tPG  
1.6  
2.0  
45  
2.4  
80  
MHz  
μs  
2, 3, C1/C2 = 4.7 μF, OUT = 0 A,  
10, 21 OUT1/OUT2 : 0 90% VOUT  
Rise delay time  
SW NMOS-FET  
OFF voltage  
VNOFF  
RONP  
RONN  
10*  
0.30  
0.20  
mV  
Ω
SW PMOS-FET  
ON resistance  
LX1/LX2 = −100 mA  
0.48  
13, 18  
SW NMOS-FET  
ON resistance  
LX1/LX2 = −100 mA  
0.42  
Ω
ILEAKM  
ILEAKH  
TOTPH  
TOTPL  
0 LX VDD*2  
VDD = 5.5 V, 0 LX VDD*2  
1.0  
2.0  
+ 8.0  
μA  
LX leak current  
+ 16.0 μA  
Overheating  
protection  
(Junction Temp.)  
+ 120* + 135* + 160* °C  
+ 95*  
+ 110* + 125* °C  
Protection  
circuit  
block  
VTHHUV  
VTHLUV  
2.17  
2.03  
2.30  
2.15  
2.43  
2.27  
V
V
UVLO threshold  
voltage  
5, 11,  
12, 19,  
20  
UVLO  
hysteresis width  
VHYSUV  
0.08  
0.15  
0.25  
V
VTHHPR  
VTHLPR  
575  
558  
600  
583  
625  
608  
mV  
mV  
XPOR threshold  
voltage  
7
Voltage  
XPOR  
VHYSPR  
VOL  
17  
mV  
V
detection hysteresis width  
circuit  
block  
XPOR output  
voltage  
XPOR = 25 μA  
XPOR = 5.5 V  
0.1  
1.0  
24  
XPOR output  
current  
IOH  
μA  
* : This value is not be specified. This should be used as a reference to support designing the circuits.  
(Continued)  
DS04-27246-2E  
11  
MB39C007  
(Continued)  
(Ta = +25 °C, AVDD = DVDD1 = DVDD2 = 3.7 V, VOUT1/VOUT2 setting value = 2.5 V, MODE1/MODE2 = 0 V)  
Value  
Parameter  
Symbol Pin No.  
Condition  
Unit  
Min  
0.55  
0.40  
Typ  
0.95  
0.80  
Max  
1.45  
1.30  
VTHHCT  
V
V
CTL threshold  
voltage  
Control  
block  
VTHLCT  
1, 2, 3  
CTL pin  
input current  
0 V CTLP/CTL1/CTL2 ≤  
IICTL  
1.0  
μA  
V
3.7 V  
VREF voltage  
VREF  
VREF = 0 A  
1.274 1.300 1.326  
Reference  
voltage  
block  
6
VREF Load  
stability  
LOADREF  
VREF = −1.0 mA  
20  
mV  
CTLP/CTL1/CTL2 = 0 V,  
IVDD1  
1.0  
μA  
μA  
State of all circuits OFF*3  
Shut down  
power supply  
current  
CTLP/CTL1/CTL2 = 0 V,  
VDD = 5.5 V,  
IVDD1H  
1.0  
State of all circuits OFF*3  
1. CTLP = 0 V,CTL1 = 3.7 V,  
CTL2 = 0 V  
2. CTLP = 0 V, CTL1 = 0 V,  
CTL2 = 3.7 V, OUT = 0 A  
Power supply  
current at DC/DC  
operation 1  
IVDD21  
30  
50  
48  
80  
μA  
μA  
(PFM mode)  
CTLP = 0 V, CTL1/CTL2 =  
3.7 V, OUT = 0 A  
IVDD22  
1. CTLP = 0 V, CTL1 = 3.7 V,  
CTL2 = 0 V, MODE1/  
MODE2 = OPEN  
5, 11,  
12, 19,  
20  
IVDD31  
2. CTLP = 0 V, CTL1 = 0 V,  
CTL2 = 3.7 V, MODE1/  
MODE2 = OPEN,  
3.5  
10.0 mA  
General  
Power supply  
current at DC/DC  
operation 2  
OUT = 0 A  
(PWM mode)  
CTLP = 0 V, CTL1/CTL2 =  
3.7 V,  
IVDD32  
IVDD5  
IVDD  
7.0  
15  
20.0 mA  
MODE1/MODE2 = OPEN,  
OUT = 0 A  
Power supply  
current  
(voltagedetection  
mode)  
CTLP = 3.7 V,  
CTL1/CTL2 = 0 V  
24  
μA  
1. CTL1 = 3.7 V, CTL2 = 0 V  
2. CTL1 = 0 V, CTL2 = 3.7 V,  
VOUT1/VOUT2 = 90%,  
OUT = 0 A*4  
Power-on  
invalid current  
1000 2000 μA  
*1 : The minimum value of AVDD = DVDD1 = DVDD2 is the 2.5 V or VOUT setting value + 0.6 V, whichever is higher.  
*2 : The + leak at the LX pin includes the current of the internal circuit.  
*3 : Sum of the current flowing into the AVDD, the DVDD1, and the DVDD2 pins.  
*4 : Currentconsumptionbasedon100%ON-duty(HighsideFETinfullONstate). TheSWFETgatedrivecurrentis  
not included because the device is in full ON state (no switching operation). Also the load current is not included.  
12  
DS04-27246-2E  
MB39C007  
TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS  
MB39C007  
VDD  
VDD  
SW  
DVDD1/DVDD2  
CTL1/CTL2  
VIN  
R1  
1 MΩ  
C2  
4.7 µF  
SW  
AVDD  
C3  
0.1 µF  
MODE1/MODE2  
L1  
2.2 µH  
VOUT1/  
VOUT2  
LX1/LX2  
VREF  
VDET  
R5  
R3-1  
20 kΩ  
510 kΩ  
OUT1/OUT2  
R6  
100 kΩ  
IOUT  
C1  
R3-2  
150 kΩ  
DGND1/DGND2  
VREFIN1/VREFIN2  
4.7µF  
AGND  
GND  
R4  
300 kΩ  
C6  
0.1 µF  
VOUT = 2.97 × VREFIN  
Component  
Specification  
Vendor  
Part Number  
Remarks  
R1  
1 MΩ  
KOA  
RK73G1JTTD D 1 MΩ  
R3-1  
R3-2  
20 kΩ  
SSM  
SSM  
RR0816-203-D  
RR0816-154-D  
VOUT1/VOUT2 = 2.5 V  
150 kΩ  
Setting  
R4  
R5  
R6  
C1  
C2  
C3  
C6  
L1  
300 kΩ  
510 kΩ  
100 kΩ  
4.7 μF  
4.7 μF  
0.1 μF  
0.1 μF  
2.2 μH  
SSM  
KOA  
SSM  
TDK  
TDK  
TDK  
TDK  
TDK  
RR0816-304-D  
RK73G1JTTD D 510 kΩ  
RR0816-104-D  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
C1608JB1H104K  
VLF4012AT-2R2M  
For adjusting slow start time  
Note : These components are recommended based on the operating tests authorized.  
TDK : TDK Corporation  
SSM : SUSUMU Co., Ltd  
KOA : KOA Corporation  
DS04-27246-2E  
13  
MB39C007  
APPLICATION NOTES  
[1] Selection of components  
• Selection of an external inductor  
Basically it dose not need to design inductor. This IC is designed to operate efficiently with a 2.2 μH external  
inductor.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal  
operating conditions, and should have a minimal DC resistance. (100 mΩ or less is recommended.)  
LX peak current value IPK is obtained by the following formula.  
VIN VOUT  
D
1
2
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
IPK = IOUT +  
×
×
= IOUT +  
L
fosc  
L
: External inductor value  
: Load current  
IOUT  
VIN  
: Power supply voltage  
VOUT : Output setting voltage  
: ON-duty to be switched ( = VOUT/VIN)  
fosc : Switching frequency (2 MHz)  
D
ex) When VIN = 3.7 V, VOUT = 2.5 V, IOUT = 0.8 A, L = 2.2 μH, fosc = 2.0 MHz  
The maximum peak current value IPK is obtained by the following formula.  
(VIN VOUT) × VOUT  
(3.7 V 2.5 V) × 2.5 V  
IPK = IOUT +  
= 0.8 A +  
=: 0.89 A  
2 × L × fosc × VIN  
2 × 2.2 μH × 2.0 MHz × 3.7 V  
• I/O capacitor selection  
• Select a low equivalent series resistance (ESR) for the VDD input capacitor to suppress dissipation from ripple  
currents.  
• Also select a low equivalent series resistance (ESR) for the output capacitor. The variation in the inductor  
current causes ripple currents on the output capacitor which, in turn, causes ripple voltages an output equal  
to the amount of variation multiplied by the ESR value. The output capacitor value has a significant impact on  
the operating stability of the device when used as a DC/DC converter. Therefore, FUJITSU MICROELEC-  
TRONICS generally recommends a 4.7 μF capacitor, or a larger capacitor value can be used if ripple voltages  
are not suitable. If the VIN/VOUT voltage difference is within 0.6 V, the use of a 10 μF output capacitor value is  
recommended.  
Types of capacitors  
Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However,  
power supply functions as a heat generator, therefore avoid to use capacitor with the F-temperature rating  
( 80% to + 20%) . FUJITSU MICROELECTRONICS recommends capacitors with the B-temperature rating  
(
10% to 20%).  
Normal electrolytic capacitors are not recommended due to their high ESR.  
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when  
damaged. If you insist on using a tantalum capacitor, FUJITSU MICROELECTRONICS recommends the type  
with an internal fuse.  
14  
DS04-27246-2E  
MB39C007  
[2] Output voltage setting  
The output voltage VOUT (VOUT1 or VOUT2) of this IC is defined by the voltage input to VREFIN (VREFIN1 or  
VREFIN2) . Supply the voltage for inputting to VREFIN from an external power supply, or set the VREF output  
by dividing it with resistors.  
The output voltage when the VREFIN voltage is set by dividing the VREF voltage with resistors is obtained by  
the following formula.  
R2  
VOUT = 2.97 × VREFIN, VREFIN =  
× VREF  
R1 + R2  
(VREF = 1.30 V)  
MB39C007  
VREF  
VREF  
R1  
VREFIN  
VREFIN  
R2  
Note : Refer to “APPLICATION CIRCUIT EXAMPLES” for the an example of this circuit.  
Although the output voltage is defined according to the dividing ratio of resistance, select the resistance value  
so that the current flowing through the resistance does not exceed the VREF current rating (1 mA) .  
DS04-27246-2E  
15  
MB39C007  
[3] About conversion efficiency  
The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit.  
The total loss (PLOSS) of the DC/DC converter is roughly divided as follows :  
PLOSS = PCONT + PSW + PC  
PCONT : Control system circuit loss (The power used for this IC to operate, including the gate driving power for  
internal SW FETs)  
PSW  
PC  
: Switching loss (The loss caused during switching of the IC's internal SW FETs)  
: Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and external  
circuits )  
The IC's control circuit loss (PCONT) is extremely small, less than 100 mW* (with no load).  
As the IC contains FETs which can switch faster with less power, the continuity loss (PC) is more predominant  
as the loss during heavy-load operation than the control circuit loss (PCONT) and switching loss (PSW) .  
Furthermore, the continuity loss (PC) is divided roughly into the loss by internal SW FET ON-resistance and by  
external inductor series resistance.  
2
PC = IOUT × (RDC + D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: External inductor series resistance  
: Load current  
RONP  
RONN  
RDC  
IOUT  
The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency by  
selecting components.  
* : The loss in the successive operation mode. This IC suppresses the loss in order to execute the PFM operation  
in the low load mode (less than 100 μA in no load mode). Mode is changed by the current peak value IPK which  
flows into switching FET. The threshold value is about 30 mA.  
16  
DS04-27246-2E  
MB39C007  
[4] Power dissipation and heat considerations  
The IC is so efficient that no consideration is required in most cases. However, if the IC is used at a low power  
supply voltage, heavy load, high output voltage, or high temperature, it requires further consideration for higher  
efficiency.  
The internal loss (P) is roughly obtained from the following formula :  
2
P = IOUT × (D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: Output current  
RONP  
RONN  
IOUT  
The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching loss  
and the control circuit loss as well but they are so small compared to the continuity loss they can be ignored.  
In this IC with RONP greater than RONN, the larger the on-duty cycle, the greater the loss.  
When assuming VIN = 3.7 V, Ta = + 70 °C, for example, RONP = 0.36 Ω and RONN = 0.30 Ω according to the  
graph “MOS FET ON resistance vs. Operating ambient temperature”. The IC's internal loss P is 123 mW at  
VOUT = 2.5 V and IOUT = 0.6 A. According to the graph “Power dissipation vs. Operating ambient temperature”,  
the power dissipation at an operating ambient temperature Ta of + 70 °C is 300 mW and the internal loss is  
smaller than the power dissipation.  
DS04-27246-2E  
17  
MB39C007  
[5] XPOR threshold voltage setting [VPORH, VPORL]  
Set the detection voltage by applying voltage to the VDET pin via an external resistor calculated according to  
this formula.  
R3 + R4  
VPORH =  
× VTHHPR  
× VTHLPR  
R4  
R3 + R4  
R4  
VPORL =  
VTHHPR = 0.600 V  
VTHLPR = 0.583 V  
Example for setting detection voltage to 3.7 V  
R3 = 510 kΩ  
R4 = 100 kΩ  
510 kΩ + 100 kΩ  
VPORH =  
× 0.600 = 3.66=: 3.7 [V]  
100 kΩ  
510 kΩ + 100 kΩ  
100 kΩ  
VPORL =  
× 0.583 = 3.56=: 3.6 [V]  
VIN  
MB39C007  
AVDD  
R3  
1 MΩ  
VDET  
XPOR  
R4  
XPOR  
18  
DS04-27246-2E  
MB39C007  
[6] Transient response  
Normally, IOUT is suddenly changed while VIN and VOUT are maintained constant, responsiveness including the  
response time and overshoot/undershoot voltage is checked. As this IC has built-in Error Amp with an optimized  
design, it shows good transient response characteristics. However, if ringing upon sudden change of the load  
is high due to the operating conditions, add capacitor C6 (e.g. 0.1 μF). (Since this capacitor C6 changes the  
start time, check the start waveform as well.) This action is not required for DAC input.  
MB39C007  
VREF  
VREF  
R1  
VREFIN  
VREFIN1/  
VREFIN2  
R2  
C6  
DS04-27246-2E  
19  
MB39C007  
[7] Board layout, design example  
The board layout needs to be designed to ensure the stable operation of this IC.  
Follow the procedure below for designing the layout.  
• Arrange the input capacitor (Cin) as close as possible to both the VDD and GND pins. Make a through-hole  
(TH) near the pins of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between this IC and the input capacitor (Cin), output capacitor (Co), and external  
inductor (L). Group these components as close as possible to this IC to reduce the overall loop area occupied  
by this group. Also try to mount these components on the same surface and arrange wiring without through-  
hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes is recommended.).  
• Arrange a bypass capacitor for AVDD as close as possible to both the ADVV and AGND pins. Make a  
through-hole (TH) near the pins of this capacitor if the board has planes for power and GND.  
• The feedback wiring to the OUT should be wired from the voltage output pin closest to the output capacitor  
(Co). The OUT pin is extremely sensitive and should thus be kept wired away from the LX pin of this IC as far  
as possible.  
• If applying voltage to the VREFIN1/VREFIN2 pins through dividing resistors, arrange the resistors so that the  
wiring can be kept as short as possible. Also arrange them so that the GND pin of VREFIN1/VREFIN2 resistor  
is close to the IC's AGND pin. Further, provide a GND exclusively for the control line so that the resistor can  
be connected via a path that does not carry current. If installing a bypass capacitor for the VREFIN, put it close  
to the VREFIN pin.  
• If applying voltage to the VDET pin through dividing resistors, arrange the resistors so that the wiring can be  
kept as short as possible. Also arrange so that the GND pin of the VDET resistor is close to the IC's AGND  
pin. Further, provide a GND exclusively for the control line so that the resistor can be connected via a path  
that does not carry current.  
Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when  
using the QFN-24 package, FUJITSU MICROELECTRONICS recommends providing a thermal via in the  
footprint of the thermal pad.  
Example of arranging IC SW system parts  
Co  
Co  
L
L
GND  
Cin  
Cin  
VIN  
VIN  
Feedback line  
Feedback line  
1pin  
GND  
VIN  
AVDD bypass capacitor  
20  
DS04-27246-2E  
MB39C007  
• Notes for circuit design  
The switching operation of this IC works by monitoring and controlling the peak current which, incidentally,  
serves as a form of short-circuit protection. However, do not leave the output short-circuited for long periods of  
time. If the output is short-circuited where VIN < 2.9 V, the current limit value (peak current to the inductor) tends  
to rise. Leaving in the short-circuit state, the temperature of this IC will continue rising and activate the thermal  
protection.  
Once the thermal protection stops the output, the temperature of the IC will go down and operation will be  
restarted, after which the output will repeat the starting and stopping.  
Although this effect will not destroy the IC, the thermal exposure to the IC over prolonged hours may affect the  
peripherals surrounding it.  
DS04-27246-2E  
21  
MB39C007  
EXAMPLE OF STANDARD OPERATION CHARACTERISTICS  
(Shown below is an example of characteristics for connection according to “TEST CIRCUIT FOR MEASURING  
TYPICAL OPERATING CHARACTERISTICS”.)  
• Characteristics CH1  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
(PFM/PWM mode)  
(PFM/PWM mode)  
100  
100  
90  
80  
70  
60  
50  
VIN = 3.7 V  
VIN = 3.7 V  
VIN = 3.0 V  
90  
VIN = 3.0 V  
80  
VIN = 4.2 V  
VIN = 5.0 V  
70  
60  
50  
V
IN = 4.2 V  
Ta = +25°C  
Ta = +25°C  
OUT = 1.2 V  
VOUT = 2.5 V  
MODE = L  
V
VIN = 5.0 V  
MODE = L  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(PFM/PWM mode)  
Conversion efficiency vs. Load current  
(PFM/PWM mode)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
IN = 3.7 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 4.2 V  
V
V
IN = 4.2 V  
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
Ta = +25°C  
OUT = 3.3 V  
MODE = L  
V
OUT = 1.8 V  
V
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
22  
DS04-27246-2E  
MB39C007  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
(PWM fixed mode)  
(PWM fixed mode)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.0 V  
V
IN = 3.7 V  
V
IN = 3.0 V  
V
IN = 3.7 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
OUT = 1.2 V  
Ta = +25°C  
OUT = 2.5 V  
MODE = OPEN  
V
V
MODE = OPEN  
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
(PWM fixed mode)  
Conversion efficiency vs. Load current  
(PWM fixed mode)  
100  
100  
V
IN = 3.7 V  
V
IN = 3.7 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.0 V  
V
IN = 4.2 V  
V
IN = 4.2 V  
V
IN = 5.0 V  
V
IN = 5.0 V  
Ta = +25°C  
VOUT = 3.3 V  
MODE = OPEN  
Ta = +25°C  
OUT = 1.8 V  
MODE = OPEN  
V
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
DS04-27246-2E  
23  
MB39C007  
Output voltage vs. Input voltage  
(PFM/PWM mode)  
Output voltage vs. Input voltage  
(PWM fixed mode)  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
Ta = +25°C  
Ta = +25°C  
OUT = 2.5 V  
MODE = L  
V
OUT = 2.5 V  
V
MODE = OPEN  
I
OUT = 0 A  
I
OUT = 0 A  
I
OUT = -100 mA  
I
OUT = -100 mA  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Output voltage vs. Load current  
(PWM fixed mode)  
Output voltage vs. Load current  
(PFM/PWM mode)  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
Ta = +25°C  
VIN = 3.7 V  
VOUT = 2.5 V  
MODE = OPEN  
Ta = +25°C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
MODE = L  
0
200  
400  
600  
800  
0
200  
400  
600  
800  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
24  
DS04-27246-2E  
MB39C007  
Reference voltage vs.  
Operating ambient temperature  
Reference voltage vs. Input voltage  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
Ta = +25°C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
V
OUT = 2.5 V  
I
OUT = 0 A  
I
I
OUT = 0 A  
OUT = -100 mA  
2.0  
3.0  
4.0  
5.0  
6.0  
-50  
0
+50  
+100  
Input voltage VIN (V)  
Operating ambient temperature Ta ( °C)  
Input current vs. Input voltage  
(PWM fixed mode)  
Input current vs. Input voltage  
(PFM/PWM mode)  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
9
8
7
6
5
4
3
2
1
0
Ta = +25°C  
Ta = +25°C  
OUT = 2.5 V  
MODE = OPEN  
V
OUT = 2.5 V  
V
MODE = L  
0
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
(Continued)  
DS04-27246-2E  
25  
MB39C007  
Input current vs. Operating ambient temperature  
(PFM/PWM mode)  
Input current vs. Operating ambient temperature  
(PWM fixed mode)  
50  
45  
40  
35  
30  
25  
20  
10  
9
8
7
6
5
4
V
IN = 3.7 V  
15  
10  
5
3
2
1
0
V
V
IN = 3.7 V  
OUT = 2.5 V  
VOUT = 2.5 V  
MODE = L  
MODE = OPEN  
0
-50  
0
+50  
+100  
+100  
-50  
0 +50  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
Oscillation frequency vs.  
Operating ambient temperature  
Oscillation frequency vs.  
Power supply voltage  
2.4  
2.4  
V
IN = 3.7 V  
Ta = +25°C  
OUT = 1.8 V  
OUT = -100 mA  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
VOUT = 2.5 V  
V
I
I
OUT = -100 mA  
-50  
0
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
Operating ambient temperature Ta ( °C)  
Power supply voltage VIN (V)  
(Continued)  
26  
DS04-27246-2E  
MB39C007  
P-ch MOS FET ON resistor vs.  
Operating ambient temperature  
MOS FET ON resistor vs. Input voltage  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
IN = 3.7 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
P-ch  
V
IN = 5.5 V  
N-ch  
Ta = +25°C  
5.0  
-50  
0
+50  
+100  
2.0  
3.0  
4.0  
6.0  
Input voltage VIN (V)  
Operating ambient temperature Ta ( °C)  
N-ch MOS FET  
ON resistor vs. Operating ambient temperature  
0.6  
0.5  
V
IN = 3.7 V  
0.4  
0.3  
0.2  
0.1  
0
V
IN = 5.5 V  
-50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
(Continued)  
DS04-27246-2E  
27  
MB39C007  
MODE VTH vs. Input voltage  
CTL VTH vs. Input voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
THHCT  
V
THLCT  
V
THMMD  
Ta = +25°C  
OUT = 2.5 V  
V
Ta = +25°C  
VTHHCT : Circuit OFFON  
VTHLCT : Circuit ONOFF  
VTHLMD  
V
OUT = 2.5 V  
2.0  
3.0  
4.0  
5.0  
6.0  
6.0  
2.0  
3.0  
4.0  
5.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
VXPOR vs. Input voltage  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta = +25°C  
VPORL  
VPORH  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
(Continued)  
28  
DS04-27246-2E  
MB39C007  
(Continued)  
Power dissipation vs.  
Operating ambient temperature  
(with thermal via)  
Power dissipation vs.  
Operating ambient temperature  
(without thermal via)  
3500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3125  
3000  
2500  
2000  
1500  
1000  
500  
1563  
1250  
625  
0
0
+85  
+85  
-50  
0
+50  
+100  
-50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
DS04-27246-2E  
29  
MB39C007  
• Switching waveform  
PFM/PWM operation  
2 μs/div  
2 μs/div  
VO2 : 20 mV/div (AC)  
VO1 : 20 mV/div (AC)  
1
1
V
LX2 : 2.0 V/div  
V
LX1 : 2.0 V/div  
2
2
lLX2 : 500 mA/div  
lLX1 : 500 mA/div  
4
4
VIN = 3.7 V, IO1 = 5 mA, VO1 = 2.5 V, MODE = L ,Ta = +25 °C  
VIN = 3.7 V, IO2 = 5 mA, VO2 = 1.8 V, MODE = L ,Ta = +25 °C  
PWM operation  
2 μs/div  
2 μs/div  
VO1 : 20 mV/div (AC)  
VO2 : 20 mV/div(AC)  
1
1
VLX1 : 2.0 V/div  
VLX2 : 2.0 V/div  
2
2
lLX1 : 500 mA/div  
lLX2 : 500 mA/div  
4
4
V
IN = 3.7 V, VO1 = 2.5 V, IO1 = 800 mA, MODE = L ,Ta = +25 °C  
VIN = 3.7 V, VO2 = 1.8 V, IO2 = 800 mA, MODE = L ,Ta = +25 °C  
30  
DS04-27246-2E  
MB39C007  
• Output waveforms at sudden load changes  
0 A ←→ − 800 mA  
100 μs/div  
100 μs/div  
VO1 : 200 mV/div  
VO2 : 200 mV/div  
1
1
2
V
LX1 : 2.0 V/div  
2
V
LX2 : 2.0 V/div  
800 mA  
800 mA  
lO2 : 1 A/div  
lO1 : 1 A/div  
4
4
0 A  
IN = 3.7 V, VO2 = 1.8 V, MODE = L ,Ta = +25 °C  
0 A  
IN = 3.7 V, VO1 = 2.5 V, MODE = L ,Ta = +25 °C  
V
V
20 mA ←→ − 800 mA  
100 μs/div  
100 μs/div  
V
O1 : 200 mV/div  
V
O2 : 200 mV/div  
1
1
2
V
LX1 : 2.0 V/div  
2
V
LX2 : 2.0 V/div  
800 mA  
800 mA  
lO2 : 1 A/div  
lO1 : 1 A/div  
4
4
20 mA  
IN = 3.7 V, VO2 = 1.8 V, MODE = L ,Ta = +25 °C  
20 mA  
IN = 3.7 V, VO1 = 2.5 V, MODE = L ,Ta = +25 °C  
V
V
100 mA ←→ − 800 mA  
100 μs/div  
V
O1 : 200 mV/div  
100 µs/div  
VO2 : 200 mV/div  
1
1
2
V
LX1 : 2.0 V/div  
2
VLX2 : 2.0 V/div  
lO2 : 1 A/div  
lO1 : 1 A/div  
800 mA  
800 mA  
4
4
100 mA  
100 mA  
VIN = 3.7 V, VO2 = 1.8 V, MODE = L ,Ta = +25 °C  
V
IN = 3.7 V, VO1 = 2.5 V, MODE = L ,Ta = +25 °C  
DS04-27246-2E  
31  
MB39C007  
• CTL start-up waveform  
No load, No VREFIN capacitor  
10 μs/div  
10 μs/div  
1
3
CTL2 : 5 V/div  
CTL1 : 5 V/div  
VO2 : 1 V/div  
VO1 : 1 V/div  
2
3
1
2
VLX2 : 5 V/div  
VLX1 : 5 V/div  
I
LX1 : 1 A/div  
ILX2 : 1 A/div  
4
4
VIN = 3.7 V, VO2 = 1.8 V, MODE = L, Ta = + 25 °C  
V
IN = 3.7 V, VO1 = 2.5 V, MODE = L, Ta = + 25 °C  
Maximum load, No VREFIN capacitor  
10 μs/div  
10 μs/div  
1
3
CTL1 : 5 V/div  
CTL2 : 5 V/div  
VO2 : 1 V/div  
VO1 : 1 V/div  
1
2
3
VLX2 : 5 V/div  
VLX1 : 5 V/div  
2
ILX1 : 1 A/div  
ILX2 : 1 A/div  
4
4
VIN = 3.7 V, VO2 = 1.8 V, IO2 = 800 mA, MODE = L, Ta = + 25 °C  
VIN = 3.7 V, VO1 = 2.5 V, IO1 = 800 mA, MODE = L, Ta = + 25 °C  
(Continued)  
32  
DS04-27246-2E  
MB39C007  
(Continued)  
No load, VREFIN capacitor = 0.1 μF  
1 ms/div  
1 ms/div  
1
1
CTL2 : 5 V/div  
CTL1 : 5 V/div  
V
O2 : 1 V/div  
2
3
VO1 : 1 V/div  
VLX1 : 5 V/div  
V
LX2 : 5 V/div  
2
3
ILX1 : 1 A/div  
I
LX2 : 1 A/div  
4
4
VIN = 3.7 V, VO1 = 2.5 V  
,
MODE = L, Ta = + 25 °C  
V
IN = 3.7 V, VO2 = 1.8 V  
,
MODE = L, Ta = + 25 °C  
Maximum load, VREFIN capacitor = 0.1 μF  
1 ms/div  
1 ms/div  
1
1
CTL2 : 5 V/div  
CTL1 : 5 V/div  
VO1 : 1 V/div  
2
3
4
VLX1 : 5 V/div  
VO2 : 1 V/div  
V
LX2 : 5 V/div  
2
3
I
LX1 : 1 A/div  
I
LX2 : 1 A/div  
4
VIN = 3.7 V, VO1 = 2.5 V, IO1 = 800 mA, MODE = L, Ta = + 25 °C  
V
IN = 3.7 V, VO2 = 1.8 V, IO2 = 800 mA, MODE = L, Ta = + 25 °C  
• CTL stop waveform  
Maximum load, VREFIN capacitor = 0.1 μF  
10 μs/div  
10 μs/div  
CTL2 : 5 V/div  
CTL1 : 5 V/div  
1
1
VO1 : 1 V/div  
V
O2 : 1 V/div  
2
3
2
3
VLX1 : 5 V/div  
V
LX2 : 5 V/div  
ILX1 : 1 A/div  
ILX2 : 1 A/div  
4
4
VIN = 3.7 V, VO1 = 2.5 V, IO1 = 800 mA, MODE = L, Ta = + 25 °C  
V
IN = 3.7 V, VO2 = 1.8 V, IO2 = 800 mA, MODE = L, Ta = + 25 °C  
DS04-27246-2E  
33  
MB39C007  
• Current limitation waveform  
100 μs/div  
100 μs/div  
VO1 : 1 V/div  
VO2 : 1 V/div  
1
1
1.5 A  
1.5 A  
ILX1 : 1 A/div  
ILX2 : 1 A/div  
600 mA  
600 mA  
4
4
V
IN = 3.7 V  
,
V
O1 = 2.5 V  
,
MODE = OPEN  
,
Ta = +25 °C  
V
IN = 3.7 V  
,
V
O2 = 1.8 V  
,
MODE = OPEN  
,
Ta = +25 °C  
• Voltage detection waveform  
1 ms/div  
1
VIN : 3 V/div  
2
VVDET : 1 V/div  
VXPOR : 3 V/div  
3
VIN = 3.7 V  
Pull-up XPOR to VIN at 1 kΩ.  
, CTLP = VIN, Ta = +25 °C  
• Waveform of dynamic output voltage transition (VO1 1.8 V←→2.5 V)  
10 μs/div  
VO1 : 200 mV/div  
2.5 V  
1.8 V  
1
V
VREFIN1 : 200 mV/div  
840 mV  
3
610 mV  
V
IN = 3.7 V  
,
l
O1 = 800 mA  
, 576 mA ( 3.125 Ω),  
MODE = L  
,
Ta = +25 °C No VREFIN capacitor  
,
34  
DS04-27246-2E  
MB39C007  
APPLICATION CIRCUIT EXAMPLES  
• APPLICATION CIRCUIT EXAMPLE 1  
• An external voltage is input to the reference voltage external input (VREFIN1, VREFIN2) , and the VOUT voltage  
is set to 2.97 times the VOUT setting gain.  
MB39C007  
C3  
VIN  
4.7 μF  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
8
2
16  
17  
VREFIN1  
CTL2  
DAC1  
5
4
AVDD  
AGND  
C5  
0.1 μF  
R8  
1 MΩ  
L1  
2.2 μH  
23  
VREFIN2  
DAC2  
VOUT1  
13  
10  
LX1  
C1  
4.7 μF  
OUT1  
APLI1  
9
MODE1  
MODE2  
L = PFM/PWM  
OPEN = PWM  
L2  
2.2 μH  
22  
VOUT2  
18  
21  
LX2  
C2  
6
VREF  
4.7 μF  
OUT2  
APLI2  
7
1
VDET  
CTLP  
24  
XPOR  
VOUT = 2.97 × VREFIN  
DS04-27246-2E  
35  
MB39C007  
• APPLICATION CIRCUIT EXAMPLE 2  
• The voltage of VREF pin is input to the reference voltage external input (VREFIN1, VREFIN2) by dividing  
resistors. The VOUT1 voltage is set to 2.5 V and VOUT2 voltage is set to 1.8 V.  
MB39C0007  
C3  
VIN  
4.7 μF  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
R1 163 kΩ  
( 13 kΩ + 150 kΩ )  
16  
17  
8
2
VREFIN1  
R2  
300 kΩ  
5
4
AVDD  
AGND  
C5  
0.1 μF  
CTL2  
R8  
1 MΩ  
L1  
2.2 μH  
VOUT1  
13  
10  
LX1  
R5 343 kΩ  
( 13 kΩ + 330 kΩ )  
C1  
23  
VREFIN2  
4.7 μF  
OUT1  
R6  
APLI1  
300 kΩ  
6
9
VREF  
L2  
2.2 μH  
VOUT2  
18  
21  
LX2  
MODE1  
L = PFM/PWM  
OPEN = PWM  
C2  
4.7 μF  
22  
7
MODE2  
VDET  
OUT2  
APLI2  
1
CTLP  
XPOR 24  
VOUT1 = 2.97 × VREFIN1  
R2  
VREFIN1 =  
× VREF  
R1 + R2  
(VREF = 1.30 V)  
300 kΩ  
163 kΩ + 300 kΩ  
VOUT1 = 2.97 ×  
× 1.30 V = 2.5 V  
× 1.30 V = 1.8 V  
300 kΩ  
343 kΩ + 300 kΩ  
VOUT2 = 2.97 ×  
36  
DS04-27246-2E  
MB39C007  
• APPLICATION CIRCUIT EXAMPLE COMPONENTS LIST  
Component  
Item  
Part Number  
VLF4012AT-2R2M  
MIPW3226D2R2M  
VLF4012AT-2R2M  
MIPW3226D2R2M  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
Specification  
2.2 μH, RDC = 76 mΩ  
2.2 μH, RDC = 100 mΩ  
2.2 μH, RDC = 76 mΩ  
2.2 μH, RDC = 100 mΩ  
4.7 μF (10 V)  
Package Vendor  
SMD  
SMD  
SMD  
SMD  
2012  
2012  
2012  
2012  
2012  
TDK  
FDK  
TDK  
FDK  
TDK  
TDK  
TDK  
TDK  
TDK  
L1  
Inductor  
Inductor  
L2  
C1  
C2  
C3  
C4  
C5  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
4.7 μF (10 V)  
4.7 μF (10 V)  
4.7 μF (10 V)  
0.1 μF (50 V)  
RK73G1JTTD D 13 kΩ 13 kΩ  
RK73G1JTTD D 150 kΩ 150 kΩ  
1608  
1608  
KOA  
KOA  
R1  
R2  
R5  
Resistor  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ 300 kΩ  
1608  
KOA  
RK73G1JTTD D 13 kΩ 13 kΩ  
RK73G1JTTD D 330 kΩ 330 kΩ  
1608  
1608  
KOA  
KOA  
R6  
R7  
R8  
Resistor  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ 300 kΩ  
1608  
1608  
1608  
KOA  
KOA  
KOA  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
TDK : TDK Corporation  
FDK : FDK Corporation  
KOA : KOA Corporation  
DS04-27246-2E  
37  
MB39C007  
USAGE PRECAUTIONS  
1. Do not configure the IC over the maximum ratings  
If the lC is used over the maximum ratings, the LSl may be permanently damaged.  
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of  
these conditions adversely affect the reliability of the LSI.  
2. Use the devices within recommended operating conditions  
The recommended operating conditions are the conditions under which the LSl is guaranteed to operate.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions  
and under the conditions stated for each item.  
3. Printed circuit board ground lines should be set up with consideration for common  
impedance  
4. Take appropriate static electricity measures  
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.  
5. Do not apply negative voltages  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
24-pin plastic QFN  
(LCC-24P-M09)  
MB39C007QN  
RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION  
The LSI products of FUJITSU MICROELECTRONICS with “E1” are compliant with RoHS Directive, and has  
observed the standard of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBB) , and  
polybrominated diphenyl ethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
38  
DS04-27246-2E  
MB39C007  
MARKING FORMAT (LEAD FREE VERSION)  
Lead-free version  
X
XXXXX  
INDEX  
DS04-27246-2E  
39  
MB39C007  
LABELING SAMPLE (LEAD FREE VERSION)  
Lead-free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
“ASSEMBLED IN CHINA” is printed on the label  
of a product assembled in China.  
The part number of a lead-free product has  
the trailing characters “E1”.  
40  
DS04-27246-2E  
MB39C007  
RECOMMENDED MOUNTING CONDITIONS OF MB39C007QN  
[FUJITSU MICROELECTRONICS Recommended Mounting Conditions]  
Item  
Condition  
IR (infrared reflow), warm air reflow  
2 times  
Mounting Method  
Mounting times  
Before opening  
Please use it within two years after  
manufacture.  
Storage period  
From opening to the 2nd  
reflow  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Parameters for Each Mounting Method]  
IR (infrared reflow)  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
H rank : 260 °C Max  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
: Temperature 260 °C Max; 255 °C or more, 10s or less  
(d’)  
: Temperature 230 °C or more, 40s or less  
or  
Temperature 225 °C or more, 60s or less  
or  
Temperature 220 °C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
DS04-27246-2E  
41  
MB39C007  
EVALUATION BOARD SPECIFICATION  
The MB39C007 Evaluation Board provides the proper for evaluating the efficiency and other characteristics of  
the MB39C007.  
Terminal information  
Symbol  
Functions  
Power supply terminal  
In standard condition 3.1 V to 5.5 V*  
VIN  
* : When the VIN/VOUT difference is to be held within 0.6 V or less, such as for devices  
with a standard output voltage (VOUT1 = 2.5 V) when VIN < 3.1 V, FUJITSU MICRO-  
ELECTRONICS recommends changing the output capacity (C1, C2) to 10 μF.  
Output terminals  
(VOUT1: CH1, VOUT2: CH2)  
VOUT1, VOUT2  
VCTL  
Power supply terminal for setting the CTL1, CTL2 and CTLP terminals.  
Use by connecting with VIN (When SW is mounted).  
Direct supply terminal of CTL (CTL1 : for CH1, CTL2 : for CH2)  
CTL1, CTL2  
CTL1, CTL2 = 0 V to 0.8 V (Typ.)  
: Shutdown  
CTL1, CTL2 = 0.95 V (Typ.) to VIN (5 V Max) : Normal operation  
Direct supply terminal of MODE (CH1 : for MODE1, CH2 : for MODE2)  
MODE1, MODE2  
VREF  
MODE1, MODE2 = 0 V to 0.4 V(Max)  
: PFM/PWM mode  
MODE1, MODE2 = OPEN(Remove R1 and R4) : PWM mode  
Reference voltage output terminal  
VREF = 1.30 V (Typ.)  
External reference voltage input terminals  
(VREFIN1 : for CH1, VREFIN2 : for CH2)  
When an external reference voltage is supplied, connect it to the terminal for each chan-  
nel.  
VREFIN1, VREFIN2  
VDET  
CTLP  
Voltage input terminal for voltage detection  
Voltage detection circuit block control terminal  
CTLP = L : Voltage detection circuit block stop  
CTLP = H : Normal operation  
Voltage detection circuit output terminal  
The N-ch MOS open drain circuit is connected.  
XPOR  
VXPOR  
Pull-up voltage terminal for the XPOR terminal  
Ground terminal  
Connect power supply GND to the PGND terminal next to the VIN terminal.  
Connect output (load) GND to the PGND terminal between the VOUT1 terminal and the  
VOUT2 terminal.  
PGND  
AGND  
Ground terminal  
42  
DS04-27246-2E  
MB39C007  
• Startup terminal information  
Terminal name  
Condition  
Functions  
ON/OFF switch for CH1  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VIN  
CTL1  
ON/OFF switch for CH2  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VIN  
CTL2  
CTLP  
ON/OFF switch for the voltage detection block  
L: Stops the voltage detection circuit  
H: Normal operation.  
L : Open  
H : Connect to VIN  
• Jumper information  
JP  
Functions  
Short-circuited in the layout pattern of the board (normally used shorted).  
Short-circuited in the layout pattern of the board (normally used shorted).  
Not mounted  
JP1  
JP2  
JP3  
JP6  
Normally used shorted (0 Ω)  
Setup and checkup  
(1) Setup  
1. Connect the CTL1 terminal and the CTL2 terminal to the VIN terminal.  
2. Put it into “L” state by connecting the CTLP terminal to the AGND pad.  
3. Connect the power supply terminal to the VIN terminal, and the power supply GND terminal to the PGND  
terminal. Make sure PGND is connected to the PGND terminal next to the VIN terminal.  
(Example of setting power-supply voltage : 3.7 V)  
(2) Checkup  
Supply power to VIN. The IC is operating normally if VOUT1 = 2.5 V (Typ) and VOUT2 = 1.8 V (Typ).  
DS04-27246-2E  
43  
MB39C007  
• Component layout on the evaluation board (Top View)  
MB39C007EVB-06Rev. 2.0  
VOUT2  
VOUT1  
PGMD  
M1  
C2  
C1  
MODE2  
VREFIN2  
XPOR  
MODE1  
VIN  
R1  
L2  
L1  
R4  
R9  
C3  
VREFIN1  
C4  
C6  
C7  
R5  
R2  
C5  
R4-1  
O F F  
R4-2  
R7  
VREF  
R6-2  
R6-1  
R3  
VDET  
JP3  
VXPOR  
1
4
SW1  
VCTL  
AGND  
CTL2  
CTL1  
CTLP  
R8  
R10  
44  
DS04-27246-2E  
MB39C007  
• Evaluation board layout (Top View)  
Top Side (Layer1)  
Inside GND (Layer2)  
Inside VIN & GND  
(Layer3)  
Bottom Side (Layer4)  
DS04-27246-2E  
45  
MB39C007  
• Connection diagram  
IIN  
VIN  
MB39C007  
JP3  
SW1  
11  
12  
DVDD1  
3
VCTL  
CTL1  
CTL1  
R8  
DVDD1  
C3  
4.7 μF  
1 MΩ  
14  
15  
DGND1  
DGND1  
MODE1  
MODE1  
9
PGND  
R1  
0 Ω  
DVDD2 19  
VREF  
20  
DVDD2  
R6-1  
13 kΩ  
R6-2  
C4  
4.7 μF  
150 kΩ  
8
VREFIN1  
VREFIN1  
C6  
0.1 µF  
16  
17  
DGND2  
DGND2  
R7  
300 kΩ  
JP6  
SW1  
5
4
AVDD  
AGND  
2
CTL2  
C5  
0.1 μF  
R9  
1 MΩ  
AGND  
CTL2  
MODE2  
MODE2  
22  
L1  
2.2 μH  
IOUT  
R4  
0 Ω  
13  
VOUT1  
LX1  
VREF  
C1  
4.7 μF  
JP1  
R4-1  
13 kΩ  
R4-2  
10  
OUT1  
330 kΩ  
23  
VREFIN2  
VREFIN2  
VREF  
C7  
0.1 µF  
R5  
300 kΩ  
L2  
2.2 μH  
IOUT  
18  
VOUT2  
LX2  
C2  
4.7 μF  
6
VREF  
JP2  
VREF  
OUT2 21  
R1-1  
0 Ω  
R1-2  
300 kΩ  
VXPOR  
XPOR  
VDET  
CTLP  
7
1
VDET  
CTLP  
R2  
75 kΩ  
R3  
1MΩ  
SW1  
24  
XPOR  
R10  
1 MΩ  
*
Not mounted  
46  
DS04-27246-2E  
MB39C007  
• Component list  
Compo-  
nent  
Part Name  
Model Number  
Specification  
Package Vendor  
Remark  
M1  
IC  
Inductor  
MB39C007QN  
VLF4012AT-2R2M  
VLF4012AT-2R2M  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
C1608JB1H104K  
C1608JB1H104K  
RK73Z1J  
QFN-24  
SMD  
SMD  
2012  
2012  
2012  
2012  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
FML  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
KOA  
KOA  
SSM  
SSM  
KOA  
KOA  
SSM  
SSM  
SSM  
SSM  
SSM  
SSM  
KOA  
KOA  
KOA  
L1  
2.2 μH, RDC=76 mΩ  
2.2 μH, RDC=76 mΩ  
4.7 μF(10 V)  
4.7 μF(10 V)  
4.7 μF(10 V)  
4.7 μF(10 V)  
0.1 μF(50 V)  
0.1 μF(50 V)  
0.1 μF(50 V)  
0 Ω, 1 A  
L2  
Inductor  
C1  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Resistor  
C2  
C3  
C4  
C5  
C6  
C7  
R1  
R1-1  
R1-2  
R2  
Resistor  
RK73Z1J  
0 Ω, 1 A  
Resistor  
RR0816P-304-D  
RR0816P-753-D  
RK73G1JTTD D 1MΩ  
RK73Z1J  
300 kΩ 0.5%  
75 kΩ 0.5%  
1 MΩ 0.5%  
0 Ω, 1 A  
Resistor  
R3  
Resistor  
R4  
Resistor  
R4-1  
R4-2  
R5  
Resistor  
RR0816P-133-D  
RR0816P-334-D  
RR0816P-304-D  
RR0816P-133-D  
RR0816P-154-D  
RR0816P-304-D  
RK73G1JTTD D 1MΩ  
RK73G1JTTD D 1MΩ  
RK73G1JTTD D 1MΩ  
13 kΩ 0.5%  
330 kΩ 0.5%  
300 kΩ 0.5%  
13 kΩ 0.5%  
150 kΩ 0.5%  
300 kΩ 0.5%  
1 MΩ 0.5%  
1 MΩ 0.5%  
1 MΩ 0.5%  
Resistor  
Resistor  
R6-1  
R6-2  
R7  
Resistor  
Resistor  
Resistor  
R8  
Resistor  
R9  
Resistor  
R10  
Resistor  
Not  
mounted  
SW1  
JP1  
JP2  
DIP switch  
Jumper  
Pattern-  
shorted  
Pattern-  
shorted  
Jumper  
Not  
mounted  
JP3  
JP6  
Jumper  
Jumper  
RK73Z1J  
0 Ω, 1A  
1608  
KOA  
Note : These components are recommended based on the operating tests authorized.  
FML : FUJITSU MICROELECTRONICS LIMITED  
TDK : TDK Corporation  
KOA : KOA Corporation  
SSM : SUSUMU Co., Ltd  
DS04-27246-2E  
47  
MB39C007  
EV BOARD ORDERING INFORMATION  
EV Board Part No.  
EV Board Version No.  
MB39C007EVB-06 Rev.2.0  
Remarks  
MB39C007EVB-06  
QFN-24  
48  
DS04-27246-2E  
MB39C007  
PACKAGE DIMENSION  
24-pin plastic QFN  
Lead pitch  
0.50 mm  
Sealing method  
Plastic mold  
(LCC-24P-M09)  
24-pin plastic QFN  
(LCC-24P-M09)  
2.70±0.10  
4.00±0.10  
(.157±.004)  
(.106±.004)  
2.70±0.10  
(.106±.004)  
4.00±0.10  
(.157±.004)  
0.25±0.05  
INDEX AREA  
(.010±.002)  
3-R0.20  
(3-R.008)  
0.40±0.10  
(.016±.004)  
0.50(.020)  
TYP  
1PIN CORNER  
(C0.25(C.010))  
0.85(.033)  
MAX  
0.08(.003)  
0.20(.008)  
0.00(.000)  
MIN  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2006-2008 FUJITSU MICROELECTRONICS LIMITED C24059S-c-2-3  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS04-27246-2E  
49  
MB39C007  
CONTENTS  
page  
- DESCRIPTION .................................................................................................................................................... 1  
- FEATURES .......................................................................................................................................................... 1  
- APPLICATIONS .................................................................................................................................................. 1  
- PIN ASSIGNMENT ............................................................................................................................................. 2  
- PIN DESCRIPTIONS .......................................................................................................................................... 3  
- I/O PIN EQUIVALENT CIRCUIT DIAGRAM ................................................................................................... 4  
- BLOCK DIAGRAM .............................................................................................................................................. 5  
- FUNCTION OF EACH BLOCK ......................................................................................................................... 7  
- ABSOLUTE MAXIMUM RATINGS ................................................................................................................... 9  
- RECOMMENDED OPERATING CONDITIONS ............................................................................................ 10  
- ELECTRICAL CHARACTERISTICS ................................................................................................................ 11  
- TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS ................................ 13  
- APPLICATION NOTES ...................................................................................................................................... 14  
- EXAMPLE OF STANDARD OPERATION CHARACTERISTICS ............................................................... 22  
- APPLICATION CIRCUIT EXAMPLES ............................................................................................................. 35  
- USAGE PRECAUTIONS ................................................................................................................................... 38  
- ORDERING INFORMATION ............................................................................................................................. 38  
- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION .................................................. 38  
- MARKING FORMAT (LEAD FREE VERSION) .............................................................................................. 39  
- LABELING SAMPLE (LEAD FREE VERSION) ............................................................................................. 40  
- RECOMMENDED MOUNTING CONDITIONS OF MB39C007QN ............................................................ 41  
- EVALUATION BOARD SPECIFICATION ....................................................................................................... 42  
- EV BOARD ORDERING INFORMATION ....................................................................................................... 48  
- PACKAGE DIMENSION .................................................................................................................................... 49  
50  
DS04-27246-2E  
MB39C007  
MEMO  
DS04-27246-2E  
51  
MB39C007  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,  
Shinjuku-ku, Tokyo 163-0722, Japan  
Tel: +81-3-5322-3329  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fmal.fujitsu.com/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
Korea  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fmc/en/  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to  
the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear  
facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon  
system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB39C007QN

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C011A

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011AEVB-01

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011APFT

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-G-BND-ERE1

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-XXXE1

Dual Switching Controller, 0.7A, 2000kHz Switching Freq-Max, PDSO16, 4.40 X 5 MM, 1.10 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, TSSOP-16
FUJITSU

MB39C011APFT-XXXE1

Switching Regulator/Controller,
CYPRESS

MB39C014PN-G-K1ERE1

Switching Regulator/Controller, Current-mode, 0.8A, 3200kHz Switching Freq-Max, PDSO10
FUJITSU

MB39C014PN-XXXE1

Switching Regulator, Voltage-mode, 1.7A, 3840kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C015

High efficiency : 96% (Max)
CYPRESS

MB39C015EVB-06

High efficiency : 96% (Max)
CYPRESS

MB39C015WQN

Switching Regulator, Current-mode, 0.8A, 2400kHz Switching Freq-Max, PQCC24
FUJITSU