MB88111 [FUJITSU]

A/D Converter (With 24-Channel Input at 10-bit Resolution); A / D转换器(带24路输入10位分辨率)
MB88111
型号: MB88111
厂家: FUJITSU    FUJITSU
描述:

A/D Converter (With 24-Channel Input at 10-bit Resolution)
A / D转换器(带24路输入10位分辨率)

转换器
文件: 总26页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-13106-2E  
Linear IC Converter  
CMOS  
A/D Converter  
(With 24-Channel Input at 10-bit Resolution)  
MB88111  
DESCRIPTION  
The MB88111 is an analog-to-digital converter that converts its analog input to a 10-bit digital value and outputs it  
as serial data.  
The MB88111 employs a successive approximation method for A/D conversion. It has 24 input channels to be A/  
D converted selectively by setting in an internal register.  
Since the MB88111 can input and output 16-bit serial data in synchronization with the clock, it can be easily  
connected to the serial I/O port in a 16-bit microcontroller.  
FEATURES  
• 24-channel analog input  
• RC-type successive approximation system with a sample-and-hole circuit  
• 10-bit resolution  
• Conversion speed within 50 µs (at a system clock rate of 1 MHz)  
• Digitally converted data output from the MSB  
• Digitally converted data output as 16-bit serial data  
• Clock-synchronous serial transfer system  
• Internal extended serial interface  
• Capable of triggering A/D conversion through an external pin  
• Capable of input through an 8-channel port  
• Serial data output format selectable using an external pin  
• 10-bit monotonicity  
• No missing code  
• Power supply voltage ranging from 3.5 to 5.5 V  
(Continued)  
PACKAGES  
44-pin, Plastic QFP  
(FPT-44P-M11)  
48 pin, Plastic SH-DIP  
(DIP-48P-M01)  
MB88111  
(Continued)  
• Operating temperature ranging from –40 to +50°C  
• CMOS process  
• Package options of 44-pin QFP and 48-pin SH-DIP  
PIN ASSIGNMENT  
(Top view)  
33  
32  
31  
30  
29  
28 27  
26  
25  
24  
23  
AN7  
AN6  
AN5  
AN4  
AN3  
34  
35  
36  
37  
38  
22  
21  
20  
19  
18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN2  
AN1  
39  
40  
17  
16  
AGND  
AVRL  
AN0  
AVRH  
AV CC  
V CC  
41  
42  
43  
44  
15  
14  
13  
12  
V SS  
TESTI  
N.C.  
INDEX  
MOD  
1
2
3
4
5
6
7
8
9
10  
11  
(FPT-44P-M11)  
(Continued)  
2
MB88111  
(Continued)  
(Top view)  
AN1  
AN0  
1
2
3
4
5
6
48  
47  
46  
45  
44  
43  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
INDEX  
AVRH  
AV CC  
V CC  
N.C.  
RSTX  
SCK  
7
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
N.C.  
8
AN8  
CCLK  
SIN  
9
AN9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
N.C.  
ESIN  
SOT  
ENDC  
IRQX  
ATGX  
CS2X  
CS1  
N.C.  
MOD  
N.C.  
AN19  
AN20  
AN21  
AN22  
AN23  
TESTI  
V SS  
AVRL  
AGND  
(DIP-48P-M01)  
3
MB88111  
PIN DESCRIPTION  
Pin no.  
Symbol  
I/O Circuit type  
Descriptions  
QFP  
DIP  
41 to 26 2 to 1, AN0 to AN15  
I
F
Analog input pins. The pin to be subject to conversion  
is selected by the command input through the SIN pin.  
Also, a series of pins from AN16 to AN23 can be used  
as a port input.  
48 to 43,  
41 to 34  
25 to 18 33 to 31, AN16 to  
29 to 25 AN23  
G
A
12  
19  
MOD  
I
I
Pin for selecting a serial data output mode:  
“L”: Mode A for output from the SOT pin in  
synchronization with the fall of the SCK signal.  
“H”: Mode B for output from the SOT pin in  
synchronization with the rise of the SCK signal.  
11  
10  
17  
16  
CS1  
CS2X  
A
Input pins for selecting an extended serial interface  
mode.  
Setting the CS1 level to “H” and the CS2X level to “L”  
enables A/D converted data transfer. Setting the CS1  
level to “L” or the CS2X level to “H” clears the register  
command without affecting A/D conversion. Serial  
data input to the external extended serial input pin  
ESIN is output to the SOT pin as it is. (See Section 7  
“Extended Serial Interface” in “OPERATION.”)  
4
10  
SIN  
I
B
Serial data input pin  
This pin is a hysteresis input with a filter.  
6
3
12  
9
SOT  
O
I
H
B
Serial data output pin  
CCLK  
System clock input pin  
This pin is a hysteresis input.  
2
9
8
SCK  
I
I
B
C
Serial data transfer clock input pin  
This pin is a hysteresis input with a filter.  
15  
ATGX  
External trigger input pin. This pin incorporates a pull-  
up resistor. The ATC command initiates A/D conversion  
at the rise of the signal at this pin.  
The pin is a hysteresis input.  
8
7
14  
13  
IRQX  
O
O
H
H
A/D conversion interrupt signal input pin. The signal  
level becomes “L” upon completion of A/D conversion;  
it becomes “H” upon reception of data to be converted.  
ENDC  
A/D conversion completion signal output pin. The  
signal level becomes “H” upon completion of A/D  
conversion; it becomes “L” upon reception of data to be  
converted.  
5
1
11  
7
ESIN  
I
I
A
D
Serial input extension input pin. When the CS1 level is  
“L” or the CS2X level is “H,” data input to the ESIN pin  
is output to the SOT pin as it is.  
RSTX  
Reset signal input pin. This pin incorporates a pull-up  
resistor. Setting the signal level to “L” initializes the  
internal circuit of the device.  
This pin is a hysteresis input with a filter.  
(Continued)  
4
MB88111  
(Continued)  
Pin no.  
Symbol  
TESTI  
I/O Circuit type  
Descriptions  
QFP  
DIP  
14  
21  
I
E
Test input pin. This pin incorporates a pull-down  
resistor. Maintain the pin at “L” level during normal  
use.  
44  
15  
43  
17  
42  
16  
13  
5
22  
4
VCC  
Digital circuit power supply pin  
Digital circuit ground pin  
VSS  
AVCC  
AGND  
AVRH  
AVRL  
Analog circuit power supply pin  
Analog circuit ground pin  
24  
3
Reference (high) voltage input pin  
Reference (low) voltage input pin  
Non-connection pin  
23  
6, 18, N.C.  
20, 30,  
42  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• CMOS input  
B
• Hysteresis input  
• CMOS input  
C
• Input with pull-up resistor  
• CMOS input  
(Continued)  
5
MB88111  
(Continued)  
Type  
Circuit  
Remarks  
• Input with pull-up resistor  
D
• Hysteresis input  
• CMOS input  
E
• Input with pull-down resistor  
• CMOS input  
F
• Analog input  
G
• Analog input  
• Hysteresis input  
• CMOS input  
H
• CMOS output  
6
MB88111  
BLOCK DIAGRAM  
AV CC  
AGND  
AVRH  
AVRL  
10-bit D/A converter  
AN0  
Sample-and-hold  
circuit  
AN15  
AN16  
Successive  
approximation register  
Comparator  
AN23  
ENDC  
IRQX  
Control circuit  
ATGX  
SCK  
ESIN  
SIN  
Command register  
Data register  
MOD  
CS2X  
CS1  
Output  
select  
circuit  
SOT  
RSTX  
TESTI  
CCLK  
V
CC  
V
SS  
7
MB88111  
FUNCTIONAL DESCRIPTION  
1. SC (Serial Command) Register (Reset status: 0000H)  
The SC register contains an A/D converter command and an input channel identification. Accessing this register  
after releasing it from the reset status activates the A/D converter.  
Note that this register accepts setting even during A/D conversion.  
Note also that input of a command to the register must take an interval of at least 4 CCLKs after input of the  
previous command.  
MSB  
bf  
LSB  
be bd bc bb ba b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
Command  
Channel  
Don't care  
(1) Command bits  
A string of command bitsselects an A/D converter command such as STOP. Setting a command during execution  
of another command cancels the command currently being executed.  
bf  
be  
bd  
Command name  
Function  
Stops A/D conversion (if it is being executed) and  
initializes the A/D converter. This command has the same  
effect as RSTX.  
0
0
0
STOP  
Executes A/D conversion of the specified channel once.  
(See Section 3 “STC (Standard Conversion) Command.”)  
0
0
1
STC  
0
0
1
1
0
1
Unused (*)  
Unused (*)  
No-op command. Input of this command during A/D  
conversion does not affect operation. If followed by this  
command, the ATC command can transfer converted data  
while holding the NOP command.  
1
1
0
0
0
1
NOP  
ATC  
The basic operation of this command is the same as that  
of the STC command. The ATC command can leave the  
A/D conversion start timing to the external trigger pin  
ATGX. (See Section 4 “ATC (Auto Trigger Conversion)  
Command.”)  
1
1
1
1
0
1
Unused (*)  
Unused (*)  
* : These command settings cause the STOP command to be executed.  
8
MB88111  
(2) Channel select bits  
A string of channel select bits selects the pin to be subject to A/D conversion. This bit string is enabled only for  
the STC or ATC command.  
bc  
bb  
ba  
b9  
b8  
Pin to be selected  
bc  
bb  
ba  
b9  
b8  
Pin to be selected  
0
0
0
0
0
AN0  
1
0
0
0
0
AN16  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
0
0
0
1
AN1  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
AN2  
AN3  
AN4  
1
1
1
0
1
1
1
0
0
1
0
0
1
0
1
AN23  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
0
1
0
Undefined (*1)  
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
1
1
0
1
0
AN11  
AN12  
AN13  
AN14  
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
1
1
0
1
0
Port input AN16 to  
AN23 (*2)  
0
1
1
1
1
AN15  
1
1
1
1
1
*1: These settings of the bit string cause the STOP command to be executed.  
*2: This setting is enabled only for the STC command. (See Section 5 “Port Input Command.”)  
If this setting is made for the ATC command, the STOP command is executed.  
2. Data Output Format  
Upon completion of A/D conversion, the ENDC pin level becomes “H” and the IRQX pin level becomes “L.”  
Execution of serial transfer at this time outputs data in the format illustrated below. The data output timing can  
be selected by the MOD pin between the falling edge (mode A) or rising edge (mode B) of the SCK signal.  
When the ENDC pin level is “L,” 0000H is output.  
MSB  
Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
Converted data A/D converted pin  
LSB  
ENDC  
ENDC (A/D conversion completion flag): This bit is set to “1” upon completion of A/D conversion. It is set to  
“0” upon completion of serial transfer.  
Note: SCK input upon low-to-high transition of the ENDC pin level should be avoided. Otherwise, data may not  
be output correctly.  
9
MB88111  
3. STC (Standard Conversion) Command  
Input of the STC command executes A/D conversion of the specified channel once.  
Impletion of A/D conversion, the ENDC signal rises while the IRQX signal falls. Clock input to the SCK pin after  
A/D conversion outputs data to the SOT pin. Upon completion of data output, the ENDC signal falls while the  
IRQX signal rises. If the next command is STOP or NOP, the A/D conversion is terminated. If the STC command  
is input during A/D conversion, the command currently being executed is cancelled and the STC command is  
executed.  
• Example of STC command execution (1)  
STC command input during A/D conversion cancels the current command and executes A/D conversion of the  
new specified channel. Output data at this time is 0000H.  
16 Cycle  
SCK  
AN0  
AN1  
AN2  
SIN  
STOP  
Data 2  
0000H  
Data 0  
0000H  
SOT  
ENDC  
IRQX  
A/D  
AN0 conversion  
AN1 conversion  
AN2 conversion  
• Example of STC command execution (2)  
NOP command input during A/D conversion does not affect operation. Output data at this time is 0000H. If A/  
D conversion is completed during NOP command input, the ENDC and IRQX pin levels become “H” and “L”  
respectively upon completion of the NOP command input.  
16 Cycle  
SCK  
SIN  
AN3  
NOP  
NOP  
AN4  
NOP  
STOP  
Data 4  
SOT  
ENDC  
IRQX  
A/D  
0000H  
0000H  
Data 3  
0000H  
0000H  
AN3 conversion  
AN4 conversion  
10  
MB88111  
4. ATC (Auto Trigger Conversion) Command  
The ATC command is the same as the STC command in basic operation. This command can initiates A/D  
conversion using the external trigger pin ATGX. The external trigger signal is sampled by 1 µs clock and filtered  
by 1 clock. The external trigger signal input during A/D conversion is ignored. If the next command is the STOP  
command, A/D conversion is terminated. If it is the NOP command, the ATC command is executed continuously.  
The channel cannot be changed at this time. To change the channel, input the ATC command to that effect.  
• Example of ATC command execution (1)  
NOP command input during A/D conversion enables the same channel to be A/D converted.  
An attempt to set the ATGX signal low during A/D conversion is ignored.  
NOP command input during A/D conversion does not affect operation. Output data at this time is 0000H.  
16 Cycle  
SCK  
SIN  
AN5  
NOP  
AN6  
NOP  
STOP  
Data 6  
0000H  
Data 5  
Data 5  
0000H  
SOT  
ENDC  
IRQX  
ATGX  
AN5 conversion  
AN5 conversion  
AN6 conversion  
A/D  
• Example of ATC command execution (2)  
Setting the ATGX signal low again after A/D conversion restarts A/D conversion.  
In data output mode B, however, do not use the ATC command in this way, or data will not be output correctly.  
If A/D conversion is completed during NOP command input, the ENDC and IRQX pin levels become “H” and  
“L” respectively upon completion of the NOP command input.  
16 Cycle  
SCK  
SIN  
AN7  
AN8  
NOP  
STOP  
Data 8  
SOT  
ENDC  
0000H  
Data 7  
0000H  
IRQX  
ATGX  
AN7  
AN7 conversion  
AN7 conversion  
AN8 conversion  
conversion  
A/D  
11  
MB88111  
5. Port Input Command  
The port input command executes I/O evaluation of 8-channel inputs from the AN16 to AN23 pins at a prescribed  
threshold in 10 clock cycles and outputs the results as port input data. The processing sequence is activated  
each time port input is selected by the STC command. Port input data is output in the following format:  
MSB  
Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
Evaluation data “0” “1”  
LSB  
ENDC  
Evaluation data:  
The evaluation values of AN23 to AN16 are output to bits Bf to B8.  
Evaluation value  
“H”: Vin 0.8 x Vcc  
“L”: Vin 0.2 x Vcc  
ENDC (A/D completion flag):  
This bit is set to “1” upon completion of A/D conversion. It is set to “0” upon completion of serial transfer.  
• Example of STC command execution (3) (Port input command)  
16 Cycle  
10 Cycle  
16 Cycle  
SCK  
SIN  
CH9  
STOP  
Data 9  
SOT  
ENDC  
IRQX  
0000H  
AN16  
to  
AN23  
Evaluation  
A/D  
12  
MB88111  
6. Serial Output Select Function  
The MB88111 can select the serial data output timing between the rising edge or falling edge of the clock signal  
according to the setting of the MOD pin.  
Mode A (MOD = “L”)  
SCK  
MSB  
MSB  
LSB  
Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
SOT  
SIN  
LSB  
b4 b3 b2 b1 b0  
bf  
be bd bc bb ba b9 b8 b7 b6 b5  
Serial data is output at the falling edge of the SCK signal.  
Note: A/D converted data is not guaranteed if the MOD pin is switched when the ENDC signal is active. Before  
changing the output mode, make the ENDC inactive or set the RSTX pin level to “L” after switching the  
MOD pin.  
Mode B (MOD = “H”)  
SCK  
MSB  
LSB  
Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
SOT  
SIN  
MSB  
LSB  
b4 b3 b2 b1 b0  
bf  
be bd bc bb ba b9 b8 b7 b6 b5  
Serial data is output at the rising edge of the SCK signal.  
Note: A/D converted data is not guaranteed if the MOD pin is switched when the ENDC signal is active. Before  
changing the output mode, make the ENDC inactive or set the RSTX pin level to “L” after switching the MOD  
pin. The first bit is output when the ENDC signal becomes “H.”  
7. Extended Serial Interface  
The MB88111 can select whether to output A/D converted data or to output data input to the ESIN pin by  
controlling the CS1 and CS2X pins.  
CS1  
H
CS2X  
SOT pin  
L
L
A/D converted data  
L
L
H
H
Connection to the ESIN pin  
H
Note: A/D converted data is not guaranteed if the CS1 or CS2X setting is changed during SCK input.  
13  
MB88111  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = AGND = 0 V)  
Ratings  
Max.  
+7.0  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
VCC  
AVCC  
AVRH  
VIN  
V
V
Power supply voltage  
+7.0*  
+7.0*  
Based on VSS  
(Ta = +25°C)  
V
Input voltage  
VCC + 0.3  
VCC + 0.3  
150  
V
Output voltage  
VOUT  
PD  
V
Power consumption  
Storage temperature  
mW  
°C  
Tstg  
–55  
+150  
* : VCC AVCC AVRH  
2. Recommended Operating Conditions  
Values  
Parameter  
Symbol  
Unit  
Min.  
Max.  
VCC  
AVCC  
3.5*  
5.5*  
0
V
V
VCC  
AGND  
0
Power supply voltage  
AVRH  
AVRL  
Ta  
AVCC × 0.8  
AVCC  
AVCC × 0.2  
+105  
V
V
0
Operation temperature  
–40  
°C  
* : VCC AVCC AVRH  
14  
MB88111  
3. DC Characteristics  
(1) Digital section  
(VCC = +3.5 V to +5.5 V, VSS = AGND = 0 V, Ta = –40°C to +105°C)  
Value  
Parameter  
Pin name  
Symbol  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Power supply voltage  
VCC  
3.5  
5.0  
5.5  
V
Operation at  
CLK = 1 MHz  
(with no load)  
VCC  
Power supply current  
ICC  
0.5  
1.5  
mA  
MOD, CCLK  
CS1, CS2X  
SCK, ESIN  
SIN  
IIZL1  
VIN = VSS  
–2  
2
µA  
µA  
Low-level input leakage  
current  
ATGX  
RSTX  
VIN = VSS  
VCC = 5.0 V  
IIZL2  
–200  
–100  
–50  
MOD, CCLK  
CS1, CS2X  
SCK, ESIN  
SIN, ATGX  
RSTX  
High-level input leakage  
current  
IIZL1  
VIN = VCC  
–2  
2
µA  
MOD, ESIN  
CS1, CS2X  
VIL  
VILS  
VIH  
VSS 0.3  
VSS 0.3  
0.7 VCC  
0.3 VCC  
0.2 VCC  
V
V
V
V
Low-level input voltage  
SCK, CCLK  
SIN, ATGX  
RSTX, *  
MOD, ESIN  
CS1, CS2X  
VCC + 0.3  
VCC + 0.3  
High-level input voltage  
Hysteresis width  
SCK, CCLK  
SIN, ATGX  
RSTX, *  
VIHS  
0.8 VCC  
SCK, CCLK  
SIN, ATGX  
RSTX, *  
VHYS  
0.02 VCC  
0.3 VCC  
V
Low-level output voltage SOT  
IRQX  
VOL  
VOH  
IOL = 2.5 mA  
0.4  
V
V
High-level output voltage  
IOH = –400 µA  
VCC 0.4  
ENDC  
* : AN16 to AN23 (port input mode)  
15  
MB88111  
(2) Analog section  
(AVCC, VCC = +3.5 V to +5.5 V (VCC AVCC), VSS = AGND = 0 V, Ta = –40°C to +105°C)  
Value  
Parameter  
Pin name  
Symbol  
Conditions  
Unit  
Min.  
Typ.  
10  
Max.  
Resolution  
IA  
bits  
bits  
Monotonic increase  
Linearity error  
10  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
µs  
Differential linearity error  
Full-scale transition error  
Zero-transition error  
Total error  
AN0 to AN23  
±1  
±1/2  
±1/2  
±2  
Conversion time  
Input clock frequency  
Supply current  
CCLK  
AVCC  
CCLK = 1 MHz  
50  
800  
1000  
3.0  
1200  
6.0  
KHz  
mA  
Reference voltage supply  
current  
AVRH  
IR  
150  
300  
µA  
AVRH  
AVRL  
0.8 AVCC  
0
AVCC  
0.2 AVCC  
AVRH  
V
V
V
Analog reference voltage  
Analog input voltage  
AVRL  
AN0 to AN23  
Multiplexer OFF-leakage  
current  
–200  
200  
nA  
• No missing code is guaranteed.  
Notes:If the output impedance of the external input is too high, the analog voltage sampling time may be  
insufficient.  
In the power-on sequence, turn the power supply for the digital system first before turning that for the  
analog system on.  
Analog input equivalent circuit  
Analog input  
Comparator  
R ON1  
R ON2  
C 0  
RON1 =About 1.5 kΩ  
RON2 =About 1.5 kΩ  
C0 =About 15 pF  
Note: The above values are reference values.  
16  
MB88111  
4. AC Characteristics  
Parameter  
(AVCC, VCC = +3.5 V to +5.5 V (VCC AVCC), VSS = AGND = 0 V, Ta = –40°C to +105°C)  
Values  
Symbol  
Conditions  
Unit  
Min.  
800  
400  
400  
Max.  
1200  
CCLK clock cycle time  
Low-level CCLK clock pulse width  
High-level CCLK clock pulse width  
CCLK clock rise time  
CCLK clock fall time  
fCLK  
tCKL  
tCKH  
tCr  
fCLK = 1/fCLK  
KHz  
ns  
ns  
10  
ns  
tCf  
SCK clock cycle time  
Low-level SCK clock pulse width  
High-level SCK clock pulse width  
SCK clock rise time  
fSCK  
tSKL  
tSKH  
tSr  
tSCK = 1/fSCK  
400  
400  
400  
1200  
KHz  
ns  
ns  
10  
ns  
SCK clock fall time  
tSf  
SIN setup time  
tSIS  
tSIH  
tCOM  
tENR  
tRSH  
tRSS  
50  
250  
4
1
ns  
ns  
µs  
µs  
ns  
µs  
SIN hold time  
Command interval  
CCLK = 1 MHz  
ENDC reset time  
See “Load conditions.”  
RSTX pulse width  
100  
1
RSTX ↑ → SCK time  
SCK ↑ → CS1 time  
SCK ↑ → CS2X time  
tCSS  
tCSH  
500  
500  
ns  
ns  
CS1 ↑ → SCK time  
CS2X ↓ → SCK time  
SOT output delay time (mode A)  
SOT output delay time (mode B)  
ENDC ↑ → SOT output (mode B)  
STC command A/D conversion time  
ATC command A/D conversion time  
ATGX setup time  
tSODA  
tSODB  
tSOHB  
tSTC  
See “Load conditions.”  
See “Load conditions.”  
See “Load conditions.”  
CCLK = 1 MHz  
CCLK = 1 MHz  
CCLK = 1 MHz  
CCLK = 1 MHz  
CCLK = 1 MHz  
4
300  
300  
200  
50  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
tSATC  
tSATS  
tSATH  
tPOT  
tPTS  
50  
ATGX hold time  
2
Port input evaluation time  
Port input setup time  
0
10  
Port input hold time  
tPTH  
0
Extended serial HL propagation delay  
Extended serial LH propagation delay  
Noise filter width  
tSHL  
See “Load conditions.”  
See “Load conditions.”  
15  
100  
100  
tSLH  
tINF  
17  
MB88111  
AC Test Condition  
Measurement point  
C L = 50 pF  
TIMING DIAGRAM  
1. Input Clock Timing  
t CLK  
t CKH  
CCLK  
t Cf  
t CKL  
t Cr  
t SCK  
t SKH  
SCK  
t Sf  
t SKL  
t Sr  
Evaluation levels are 80% and 20% of the VCC.  
18  
MB88111  
2. Serial Data Input Timing  
t RSH  
RSTX  
SCK  
t RSS  
t COM  
t CSS  
t CSH  
CS1  
(CS2X)  
t SIS  
t SIH  
b0  
bf  
be  
SIN  
t ENR  
ENDC  
Evaluation levels are 80% and 20% of the VCC.  
3. Serial Data Output Timing  
Mode A  
SCK  
t SODA  
SOT  
Bf  
Be  
Evaluation levels are 80% and 20% of the VCC.  
SCK  
SOT  
Mode B  
t SODB  
Bf  
Be  
t SOHB  
ENDC  
Evaluation levels are 80% and 20% of the VCC.  
19  
MB88111  
4. A/D Conversion and Port Input Evaluation  
STC command (normal mode)  
SCK  
SIN  
b0  
t STC  
ENDC  
Evaluation levels are 80% and 20% of the VCC.  
ATC command  
SCK  
b0  
SIN  
t ATS  
t ATH  
ATGX  
t ATC  
ENDC  
Evaluation levels are 80% and 20% of the VCC.  
20  
MB88111  
STC command (port input mode)  
SCK  
SOT  
b0  
t PTS  
AN16  
to  
AN23  
t POT  
t PTH  
ENDC  
Evaluation levels are 80% and 20% of the VCC.  
5. Extended Serial Interface  
ESIN  
SOT  
t SHL  
t SLH  
Evaluation levels are 80% and 20% of the VCC.  
6. Noise Filter  
t INF  
t INF  
Evaluation levels are 80% and 20% of the VCC.  
21  
MB88111  
DEFINITIONS OF A/D CONVERTER TERMS  
• Resolution  
Analog transition identifiable by the A/D converter  
• Linearity error  
Deviation of the straight line drawn between the zero transition point (00 0000 0000 00 0000 0001) and  
the full-scale transition point (11 1111 1110 11 1111 1111) of the device from actual conversion charac-  
teristics  
• Differential linearity error  
Deviation from the ideal input voltage required to shift output code by one LSB  
Total error  
Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition  
error, linearity error, quantum error, and by noise.  
Ideal I/O characteristics  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
Actual conversion  
characteristics  
1.5 LSB  
{1 LSB×(N–1) +0.5 LSB}  
VFST  
(Ideal value)  
VOT  
(Ideal value)  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
'
(Measured value)  
Actual conversion  
characteristics  
1 LSB  
Ideal characteristics  
(Ideal value)  
0.5 LSB  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
Analog input  
VNT'– {1 LSB × (N–1) +0.5 LSB}  
AVRH–AVRL  
1024  
Total error of  
digital output N  
=
1 LSB (Ideal value) =  
[v]  
[v]  
1 LSB  
V OT (Ideal value) = 0.5 LSB  
[v]  
V FST (Ideal value) = AVRH - 1.5 LSB  
(Continued)  
22  
MB88111  
(Continued)  
Zero transition error  
Full-scale transition error  
Ideal characteristics  
004  
Actual conversion  
characteristics  
3FF  
3FE  
Actual conversion  
characteristics  
003  
002  
001  
VFST  
'
(Measured value)  
Actual conversion  
characteristics  
3FD  
3FC  
Actual conversion  
characteristics  
VOT'(Measured value)  
AVRL  
AVRH  
Analog input  
Analog input  
VOT'–0.5 LSB  
1 LSB  
VFST' – (AVRH–1.5 LSB)  
1 LSB  
Zero transition error =  
Full scale transition error =  
Linearity error  
Differential linearity error  
Ideal characteristics  
3FF  
3FE  
3FD  
Actual conversion  
characteristics  
N+1  
{1 LSB× (N–1)+VOT'}  
Actual conversion  
characteristics  
VFST  
'
N
N - 1  
N - 2  
(Measured  
value)  
VNT  
'
004  
003  
002  
001  
(Measured  
value)  
Actual conversion  
characteristics  
V(N + 1)T  
(Measured  
value)  
'
VNT  
'
(Measured  
value)  
Ideal characteristics  
Actual conversion  
characteristics  
VOT'(Measured value)  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
Analog input  
V(N+1)T'–VNT  
'
VNT'– {1 LSB'× (N–1)+V OT'}  
Linearity error of  
digital output N  
Differential linearity  
error of digital output N  
=
=
–1  
1 LSB'  
1 LSB'  
VFST'– VOT  
1022  
'
1 LSB' =  
[V]  
23  
MB88111  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
44-pin, Plastic QFP  
(FPT-44P-M11)  
MB88111PFQ  
48-pin, Plastic SH-DIP  
(DIP-48P-M01)  
MB88111P-SH  
24  
MB88111  
PACKAGE DIMENSIONS  
44-pin, Plastic QFP  
(FPT-44P-M11)  
14.40±0.40SQ  
(.567±.016)  
2.35(.093)MAX  
(Mounting height)  
10.00±0.20SQ  
(.394±.008)  
0.05(.002)MIN  
(STAND OFF)  
33  
23  
Details of "A" part  
34  
22  
0.15(.006)  
8.00  
(.315)  
REF  
0.20(.008)  
11.60±0.30  
(.457±.012)  
INDEX  
0.18(.007)MAX  
0.53(.021)MAX  
"A"  
44  
12  
Details of "B" part  
1
11  
LEAD No.  
0.80(.0315)TYP  
0.15±0.05  
(.006±.002)  
0.30±0.10  
(.012±.004)  
M
0.16(.006)  
0~10°  
"B"  
1.40±0.30  
(.055±.012)  
0.10(.004)  
C
Dimensions in mm (inches).  
1994 FUJITSU LIMITED F44018S-1C-1  
48-pin, Plastic SH-DIP  
(DIP-48P-M01)  
+0.20  
43.69–0.30  
+.008  
1.720–.012  
INDEX-1  
INDEX-2  
13.80±0.25  
(.543±.010)  
0.51(.020)MIN  
5.25(.207)  
MAX  
0.25±0.05  
(.010±.002)  
3.00(.118)  
MIN  
+0.50  
1.00 –0  
0.45±0.10  
(.018±.004)  
15.24(.600)  
+.020  
TYP  
15°MAX  
.039–0  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
40.894(1.610)REF  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED D48002S-3C-3  
25  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-88, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: (408) 432-9044/9045  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
F9703  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB88111P-SH

A/D Converter (With 24-Channel Input at 10-bit Resolution)
FUJITSU

MB88111PFQ

A/D Converter (With 24-Channel Input at 10-bit Resolution)
FUJITSU

MB88121C

The Ultimate Automotive Network
FUJITSU

MB88141

D/A Converter for Digital Tuning (With Built-in OP Amp and I/O Expander)
FUJITSU

MB88141A

D/A Converter for Digital Tuning (Compatible with I2C Bus)
FUJITSU

MB88141AP

D/A Converter for Digital Tuning (Compatible with I2C Bus)
FUJITSU

MB88141APF

D/A Converter for Digital Tuning (Compatible with I2C Bus)
FUJITSU

MB88141APFV

D/A Converter for Digital Tuning (Compatible with I2C Bus)
FUJITSU

MB88141P

D/A Converter for Digital Tuning (With Built-in OP Amp and I/O Expander)
FUJITSU

MB88141PF

D/A Converter for Digital Tuning (With Built-in OP Amp and I/O Expander)
FUJITSU

MB88141PFV

D/A Converter for Digital Tuning (With Built-in OP Amp and I/O Expander)
FUJITSU

MB88146A

D/A Converter for Digital Tuning (12-channel, 8-bit, on-chip OP amp., low-voltage)
FUJITSU