ICS85357AG-01T [ICSI]

4:1 OR 2:1 DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER; 4 :1或2 : 1差分至3.3V LVPECL / ECL时钟多路复用器
ICS85357AG-01T
型号: ICS85357AG-01T
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

4:1 OR 2:1 DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER
4 :1或2 : 1差分至3.3V LVPECL / ECL时钟多路复用器

复用器 时钟
文件: 总12页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS85357-01 is a 4:1 or 2:1 Differential-to- High speed differential multiplexer. The device can be  
3.3V LVPECL / ECL clock multiplexer which can  
operate up to 750MHz and is a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from ICS. The ICS85357-01 has 4  
configured as either a 4:1 or 2:1 multiplexer  
1 differential 3.3V LVPECLoutput  
4 selectable CLK, nCLK inputs  
HiPerClockS™  
selectable clock inputs. The CLK, nCLK pair can accept most  
standard differential input levels. The device can operate  
using a 3.3V LVPECL (VEE = 0V, VCC = 3.135V to 3.465V) or  
3.3V ECL (VCC = 0V, VEE = -3.135V to -3.465V). The fully dif-  
ferential architecture and low propagation delay make it  
ideal for use in clock distribution circuits. The select pins have  
internal pulldown resistors. Leaving one input unconnected  
(pulled to logic low by the internal resistor) will transform  
the device into a 2:1 multiplexer. The SEL1 pin is the most  
significant bit and the binary number applied to the select pins  
will select the same numbered data input (i.e., 00  
selects CLK0, nCLK0).  
CLK, nCLK pair can accept the following differential input  
levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum output frequency up to 750MHz  
Translates any single ended input signal to 3.3V LVPECL  
levels with resistor bias on nCLKx input  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 1.5ns (maximum)  
LVPECLmode operating voltage supply range:  
VCC = 3.135V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.135V to -3.465V  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCC  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK2  
nCLK2  
CLK3  
nCLK3  
VEE  
1
2
3
4
5
6
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
SEL1  
SEL0  
VCC  
Q0  
CLK0  
00  
nCLK0  
CLK1  
01  
nCLK1  
Q0  
nQ0  
nQ0  
VCC  
nc  
nc  
VEE  
CLK2  
10  
7
8
9
10  
nCLK2  
CLK3  
11  
nCLK3  
ICS85357-01  
20-Lead TSSOP  
4ꢀ40mm x 6ꢀ50mm x 0ꢀ90mm body package  
G Package  
SEL0  
SEL1  
Top View  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
1
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 14,  
17, 20  
VCC  
Power  
Positive supply pins. Connect to 3.3V.  
2
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK2  
nCLK2  
CLK3  
nCLK3  
VEE  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
3
4
Input  
5
Input  
6
7
Input  
Input  
8
Input  
9
Input  
Pullup  
Inverting differential clock input.  
Negative supply pins. Connect to ground.  
No connect.  
10, 11  
12, 13  
15, 16  
18  
Power  
Unused  
Output  
Input  
nc  
nQ0, Q0  
SEL0  
SEL1  
Differential output pairs. LVPECL interface levels.  
Pulldown Clock select input. LVCMOS / LVTTL interface levels.  
Pulldown Clock select input. LVCMOS / LVTTL interface levels.  
19  
Input  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK, nCLK,  
CLK1, nCLK1,  
CLK2, nCLK2,  
CLK3, nCLK3  
4
4
pF  
CIN  
Input Capacitance  
Input Pullup Resistor  
SEL0, SEL1  
pF  
K  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN  
Input Pulldown Resistor  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Clock Out  
CLK  
SEL1  
SEL0  
0
0
1
1
0
1
0
1
CLK0, nCLK0  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
2
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V±5%, TA=0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
35  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V±5%, TA=0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage SEL0, SEL1  
Input Low Voltage SEL0, SEL1  
Input High Current SEL0, SEL1  
Input Low Current SEL0, SEL1  
2
3.765  
0.8  
V
V
-0.3  
VCC = VIN = 3.465V  
150  
µA  
µA  
IIL  
VCC = 3.465V, VIN = 0V  
-5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V±5%, TA=0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK0, CLK1,  
CLK2, CLK3  
VCC = VIN = 3.465V  
150  
5
µA  
IIH  
Input High Current  
nCLK0, nCLK1,  
nCLK2, nCLK3  
VCC = VIN = 3.465V  
µA  
µA  
CLK0, CLK1,  
CLK2, CLK3  
nCLK0, nCLK1,  
nCLK2, nCLK3  
VCC = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
V
CC = 3.465V, VIN = 0V  
-150  
0.15  
µA  
V
VPP  
Peak-to-Peak Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode input voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VCC + 0.3V.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
3
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V±5%, TA=0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC -1.7  
0.85  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V±5%, TA=0°C TO 70°C  
Symbol Parameter Test Conditions  
fMAX Maximum Output Frequency  
tPD  
Minimum  
Typical  
Maximum Units  
750  
1.5  
MHz  
ns  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise Time  
ƒ750MHz  
1
1.2  
tsk(pp)  
tR  
150  
700  
700  
53  
ps  
20% to 80% @50MHz  
20% to 80% @50MHz  
300  
300  
47  
400  
400  
ps  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
%
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
4
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Q0  
LVPECL  
VCC = 2.0V  
nQ0  
VEE = -1.3V ± 0.135V  
FIGURE 1 - OUTPUT LOAD TEST CIRCUIT  
VCC  
CLKx  
VPP  
VCMR  
Cross Points  
nCLKx  
VEE  
FIGURE 2 - DIFFERENTIAL INPUT LEVEL  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
5
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
Q0  
PART1  
nQ0  
Q0  
PART2  
nQ0  
tsk(pp)  
FIGURE 3- PART-TO-PART SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 4 - INPUT AND OUTPUT RISE AND FALL TIME  
CLKx  
nCLKx  
Q0  
nQ0  
tPD  
FIGURE 5 - PROPAGATION DELAY  
CLKx, Q0  
nCLKx, nQ0  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 6 - odc & tPERIOD  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
6
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 7 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 7 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
7
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85357-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85357-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 35mA = 121.3mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 1 * 30.2mW = 30.2mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120.8mW = 151.5mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.151W * 66.6°C/W = 80.06°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6. Thermal Resistance qJA for 20-pin TSSOP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W  
98.0°C/W  
88.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
8
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
Figure 8 - LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
)
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
L
(V  
- 2V))/R ] * (V  
- V  
)
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
L
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
= 2.465V  
= 1.765V  
CC_MAX  
OH_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
OL_MAX  
CC_MAX  
Pd_H = [(2.465V - (3.465V - 2V))/50] * (3.465V - 2.465V) = 20mW  
Pd_L = [(1.765V - (3.465V - 2V))/50] * (3.465V - 1.765V) = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
9
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W  
98.0°C/W  
88.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards 73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85357-01 is: 400  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
10  
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - G SUFFIX  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MIN  
MAX  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
11  
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85357AG-01  
Marking  
Package  
Count  
74 per tube  
2500  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS85357AG-01  
ICS85357AG-01  
20 lead TSSOP  
ICS85357AG-01T  
20 lead TSSOP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A JULY 16, 2001  
12  

相关型号:

ICS85357AG-11

4:1 OR 2:1, CRYSTAL OSCILLATOR-TO-3.3V LVPECL / ECL MULTIPLEXER
ICSI

ICS85357AG-11LF

Clock Generator, 27MHz, PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85357AG-11LFT

Clock Generator, 27MHz, PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85357AG-11T

4:1 OR 2:1, CRYSTAL OSCILLATOR-TO-3.3V LVPECL / ECL MULTIPLEXER
ICSI

ICS85357AGI-01LFT

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85357AGI-01T

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AG-01

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-01LF

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 4 Inverted Output(s), PDSO20, ROHS COMPLIANT, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AG-01LFT

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20
IDT

ICS8535AG-01T

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-11LF

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT