82V2044EPFG8 [IDT]

PCM Transceiver, 1-Func, PQFP128, GREEN, TQFP-128;
82V2044EPFG8
型号: 82V2044EPFG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PCM Transceiver, 1-Func, PQFP128, GREEN, TQFP-128

PC 电信 电信集成电路
文件: 总73页 (文件大小:1349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QUAD CHANNEL T1/E1/J1  
SHORT HAUL LINE INTERFACE UNIT  
IDT82V2044E  
FEATURES:  
Four channel T1/E1/J1 short haul line interfaces  
- High impedance setting for line drivers  
Supports HPS (Hitless Protection Switching) for 1+1 protection  
without external relays  
- PRBS (Pseudo Random Bit Sequence) generation and detection  
15  
with 2 -1 PRBS polynomials for E1  
Programmable T1/E1/J1 switchability allowing one bill of ma-  
terial for any line condition  
- QRSS(QuasiRandomSequenceSignals)generationanddetection  
20  
with 2 -1 QRSS polynomials for T1/J1  
Single 3.3 V power supply with 5 V tolerance on digital interfaces  
Meets or exceeds specifications in  
- 16-bit BPV (Bipolar Pulse Violation)/Excess Zero/PRBS or QRSS  
error counter  
- Analog loopback, Digital loopback, Remote loopback and Inband  
loopback  
Adaptive receive sensitivity up to -20 dB  
Non-intrusive monitoring per ITU G.772 specification  
Short circuit protection for line drivers  
LOS (Loss Of Signal) detection with programmable LOS levels  
AIS (Alarm Indication Signal) detection  
JTAG interface  
- ANSI T1.102, T1.403 and T1.408  
- ITU I.431, G.703,G.736, G.775 and G.823  
- ETSI 300-166, 300-233 and TBR 12/13  
- AT&T Pub 62411  
Per channel software selectable on:  
- Wave-shaping templates  
- Line terminating impedance (T1:100 , J1:110 Ω, E1:75 Ω/120 Ω)  
- Adjustment of arbitrary pulse shape  
- JA (Jitter Attenuator) position (receive path or transmit path)  
- Single rail/dual rail system interfaces  
- B8ZS/HDB3/AMI line encoding/decoding  
- Active edge of transmit clock (TCLK) and receive clock (RCLK)  
Supports serial control interface, Motorola and Intel Non-Multi-  
plexed interfaces  
Package:  
IDT82V2044E: 128-pin TQFP  
- Active level of transmit data (TDATA) and receive data (RDATA)  
- Receiver or transmitter power down  
DESCRIPTION:  
The IDT82V2044E can be configured as a quad T1, quad E1 or quad  
J1 Line Interface Unit. The IDT82V2044E performs clock/data recovery,  
AMI/B8ZS/HDB3 line decoding and detects and reports the LOS condi-  
tions. An integrated Adaptive Equalizer is available to increase the receive  
sensitivity and enable programming of LOS levels. In transmit path, there  
is an AMI/B8ZS/HDB3 encoder and Waveform Shaper. There is one Jitter  
Attenuator for each channel, which can be placed in either the receive path  
or the transmit path. The Jitter Attenuator can also be disabled. The  
IDT82V2044E supports both Single Rail and Dual Rail system interfaces  
and both serial and parallel control interfaces. To facilitate the network  
maintenance, a PRBS/QRSS generation/detection circuit is integrated in  
each channel, and different types of loopbacks can be set on a per channel  
basis. Fourdifferent kinds of line terminatingimpedance, 75, 100 Ω, 110  
and120areselectableona perchannelbasis. The chipalsoprovides  
driver short-circuit protection and supports JTAG boundary scanning.  
The IDT82V2044E can be used in SDH/SONET, LAN, WAN, Routers,  
Wireless Base Stations, IADs, IMAs, IMAPs, Gateways, Frame Relay  
Access Devices, CSU/DSU equipment, etc.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
INDUSTRIAL TEMPERATURE RANGES  
August 2004  
1
2003 Integrated Device Technology, Inc. All rights reserved.  
DSC-6533/-  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
FUNCTIONAL BLOCK DIAGRAM  
TDO  
TDI  
TMS  
TCK  
TRST  
RST  
REF  
THZ  
SCLKE  
INT/MOT  
P/S  
A[7:0]  
D[7:0]  
INT  
SDO  
SDI/R/W/WR  
DS/RD  
SCLK  
CS  
MCLKS  
MCLK  
Figure-1 Block Diagram  
2
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
TABLE OF CONTENTS  
1
2
3
IDT82V2044E PIN CONFIGURATIONS ....................................................................................... 8  
PIN DESCRIPTION ....................................................................................................................... 9  
FUNCTIONAL DESCRIPTION .................................................................................................... 14  
3.1  
3.2  
T1/E1/J1 MODE SELECTION .......................................................................................... 14  
TRANSMIT PATH ............................................................................................................. 14  
3.2.1 TRANSMIT PATH SYSTEM INTERFACE.............................................................. 14  
3.2.2 ENCODER.............................................................................................................. 14  
3.2.3 PULSE SHAPER .................................................................................................... 14  
3.2.3.1 Preset Pulse Templates .......................................................................... 14  
3.2.3.2 User-Programmable Arbitrary Waveform ................................................ 15  
3.2.4 TRANSMIT PATH LINE INTERFACE..................................................................... 18  
3.2.5 TRANSMIT PATH POWER DOWN........................................................................ 18  
3.3  
RECEIVE PATH ............................................................................................................... 19  
3.3.1 RECEIVE INTERNAL TERMINATION.................................................................... 19  
3.3.2 LINE MONITOR...................................................................................................... 20  
3.3.3 ADAPTIVE EQUALIZER......................................................................................... 20  
3.3.4 RECEIVE SENSITIVITY ......................................................................................... 20  
3.3.5 DATA SLICER ........................................................................................................ 20  
3.3.6 CDR (Clock & Data Recovery)................................................................................ 20  
3.3.7 DECODER.............................................................................................................. 20  
3.3.8 RECEIVE PATH SYSTEM INTERFACE ................................................................ 20  
3.3.9 RECEIVE PATH POWER DOWN........................................................................... 20  
3.3.10 G.772 NON-INTRUSIVE MONITORING ................................................................ 21  
JITTER ATTENUATOR .................................................................................................... 22  
3.4.1 JITTER ATTENUATION FUNCTION DESCRIPTION ............................................ 22  
3.4.2 JITTER ATTENUATOR PERFORMANCE ............................................................. 22  
LOS AND AIS DETECTION ............................................................................................. 23  
3.5.1 LOS DETECTION................................................................................................... 23  
3.5.2 AIS DETECTION .................................................................................................... 24  
TRANSMIT AND DETECT INTERNAL PATTERNS ........................................................ 25  
3.6.1 TRANSMIT ALL ONES........................................................................................... 25  
3.6.2 TRANSMIT ALL ZEROS......................................................................................... 25  
3.6.3 PRBS/QRSS GENERATION AND DETECTION.................................................... 25  
3.4  
3.5  
3.6  
3.7  
LOOPBACK ...................................................................................................................... 25  
3.7.1 ANALOG LOOPBACK ............................................................................................ 25  
3.7.2 DIGITAL LOOPBACK ............................................................................................. 25  
3.7.3 REMOTE LOOPBACK............................................................................................ 25  
3.7.4 INBAND LOOPBACK.............................................................................................. 27  
3.7.4.1 Transmit Activate/Deactivate Loopback Code......................................... 27  
3.7.4.2 Receive Activate/Deactivate Loopback Code.......................................... 27  
3.7.4.3 Automatic Remote Loopback .................................................................. 27  
3.8  
ERROR DETECTION/COUNTING AND INSERTION ...................................................... 28  
3
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.8.1 DEFINITION OF LINE CODING ERROR ............................................................... 28  
3.8.2 ERROR DETECTION AND COUNTING ................................................................ 28  
3.8.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION ...................................... 29  
LINE DRIVER FAILURE MONITORING ........................................................................... 29  
3.9  
3.10 MCLK AND TCLK ............................................................................................................. 30  
3.10.1 MASTER CLOCK (MCLK) ...................................................................................... 30  
3.10.2 TRANSMIT CLOCK (TCLK).................................................................................... 30  
3.11 MICROCONTROLLER INTERFACES ............................................................................. 31  
3.11.1 PARALLEL MICROCONTROLLER INTERFACE................................................... 31  
3.11.2 SERIAL MICROCONTROLLER INTERFACE ........................................................ 31  
3.12 INTERRUPT HANDLING .................................................................................................. 32  
3.13 5V TOLERANT I/O PINS .................................................................................................. 32  
3.14 RESET OPERATION ........................................................................................................ 32  
3.15 POWER SUPPLY ............................................................................................................. 32  
4
PROGRAMMING INFORMATION .............................................................................................. 33  
4.1  
4.2  
REGISTER LIST AND MAP ............................................................................................. 33  
REGISTER DESCRIPTION .............................................................................................. 35  
4.2.1 GLOBAL REGISTERS............................................................................................ 35  
4.2.2 JITTER ATTENUATION CONTROL REGISTER ................................................... 37  
4.2.3 TRANSMIT PATH CONTROL REGISTERS........................................................... 38  
4.2.4 RECEIVE PATH CONTROL REGISTERS ............................................................. 40  
4.2.5 NETWORK DIAGNOSTICS CONTROL REGISTERS ........................................... 42  
4.2.6 INTERRUPT CONTROL REGISTERS................................................................... 45  
4.2.7 LINE STATUS REGISTERS................................................................................... 47  
4.2.8 INTERRUPT STATUS REGISTERS ...................................................................... 49  
4.2.9 COUNTER REGISTERS ........................................................................................ 50  
4.2.10 TRANSMIT AND RECEIVE TERMINATION REGISTER....................................... 51  
5
IEEE STD 1149.1 JTAG TEST ACCESS PORT ........................................................................ 52  
5.1  
5.2  
JTAG INSTRUCTIONS AND INSTRUCTION REGISTER ............................................... 53  
JTAG DATA REGISTER ................................................................................................... 53  
5.2.1 DEVICE IDENTIFICATION REGISTER (IDR)........................................................ 53  
5.2.2 BYPASS REGISTER (BR)...................................................................................... 53  
5.2.3 BOUNDARY SCAN REGISTER (BSR) .................................................................. 53  
5.2.4 TEST ACCESS PORT CONTROLLER .................................................................. 54  
6
7
TEST SPECIFICATIONS ............................................................................................................ 56  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS ......................................... 68  
7.1  
7.2  
SERIAL INTERFACE TIMING .......................................................................................... 68  
PARALLEL INTERFACE TIMING ..................................................................................... 69  
4
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
LIST OF TABLES  
Table-1  
Table-2  
Table-3  
Table-4  
Table-5  
Table-6  
Table-7  
Table-8  
Pin Description................................................................................................................ 9  
Transmit Waveform Value For E1 75 ........................................................................ 15  
Transmit Waveform Value For E1 120 ...................................................................... 16  
Transmit Waveform Value For T1 0~133 ft................................................................... 16  
Transmit Waveform Value For T1 133~266 ft............................................................... 16  
Transmit Waveform Value For T1 266~399 ft............................................................... 16  
Transmit Waveform Value For T1 399~533 ft............................................................... 17  
Transmit Waveform Value For T1 533~655 ft............................................................... 17  
Transmit Waveform Value For J1 0~655 ft ................................................................... 17  
Impedance Matching for Transmitter ............................................................................ 18  
Impedance Matching for Receiver ................................................................................ 19  
Criteria of Starting Speed Adjustment........................................................................... 22  
LOS Declare and Clear Criteria, Adaptive Equalizer Disabled ..................................... 23  
LOS Declare and Clear Criteria, Adaptive Equalizer Enabled ...................................... 24  
AIS Condition ................................................................................................................ 24  
Criteria for Setting/Clearing the PRBS_S Bit ................................................................ 25  
EXZ Definition ............................................................................................................... 28  
Interrupt Event............................................................................................................... 32  
Global Register List and Map........................................................................................ 33  
Per Channel Register List and Map .............................................................................. 34  
ID: Chip Revision Register............................................................................................ 35  
RST: Reset Register ..................................................................................................... 35  
GCF0: Global Configuration Register 0 ........................................................................ 35  
GCF1: Global Configuration Register 1 ........................................................................ 36  
INTCH: Interrupt Channel Indication Register............................................................... 36  
JACF: Jitter Attenuator Configuration Register............................................................. 37  
TCF0: Transmitter Configuration Register 0 ................................................................. 38  
TCF1: Transmitter Configuration Register 1 ................................................................. 38  
TCF2: Transmitter Configuration Register 2 ................................................................. 39  
TCF3: Transmitter Configuration Register 3 ................................................................. 39  
TCF4: Transmitter Configuration Register 4 ................................................................. 39  
RCF0: Receiver Configuration Register 0..................................................................... 40  
RCF1: Receiver Configuration Register 1..................................................................... 40  
RCF2: Receiver Configuration Register 2..................................................................... 41  
MAINT0: Maintenance Function Control Register 0...................................................... 42  
MAINT1: Maintenance Function Control Register 1...................................................... 42  
MAINT2: Maintenance Function Control Register 2...................................................... 43  
MAINT3: Maintenance Function Control Register 3...................................................... 43  
MAINT4: Maintenance Function Control Register 4...................................................... 43  
MAINT5: Maintenance Function Control Register 5...................................................... 43  
Table-9  
Table-10  
Table-11  
Table-12  
Table-13  
Table-14  
Table-15  
Table-16  
Table-17  
Table-18  
Table-19  
Table-20  
Table-21  
Table-22  
Table-23  
Table-24  
Table-25  
Table-26  
Table-27  
Table-28  
Table-29  
Table-30  
Table-31  
Table-32  
Table-33  
Table-34  
Table-35  
Table-36  
Table-37  
Table-38  
Table-39  
Table-40  
5
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-41  
Table-42  
Table-43  
Table-44  
Table-45  
Table-46  
Table-47  
Table-48  
Table-49  
Table-50  
Table-51  
Table-52  
Table-53  
Table-54  
Table-55  
Table-56  
Table-57  
Table-58  
Table-59  
Table-60  
Table-61  
Table-62  
Table-63  
Table-64  
Table-65  
Table-66  
Table-67  
Table-68  
Table-69  
Table-70  
Table-71  
MAINT6: Maintenance Function Control Register 6...................................................... 44  
INTM0: Interrupt Mask Register 0................................................................................. 45  
INTM1: Interrupt Mask Register 1................................................................................. 45  
INTES: Interrupt Trigger Edges Select Register ........................................................... 46  
STAT0: Line Status Register 0 (real time status monitor)............................................. 47  
STAT1: Line Status Register 1 (real time status monitor)............................................. 48  
INTS0: Interrupt Status Register 0................................................................................ 49  
INTS1: Interrupt Status Register 1................................................................................ 49  
CNT0: Error Counter L-byte Register 0......................................................................... 50  
CNT1: Error Counter H-byte Register 1........................................................................ 50  
TERM: Transmit and Receive Termination Configuration Register .............................. 51  
Instruction Register Description .................................................................................... 53  
Device Identification Register Description..................................................................... 53  
TAP Controller State Description .................................................................................. 54  
Absolute Maximum Rating ............................................................................................ 56  
Recommended Operation Conditions........................................................................... 56  
Power Consumption...................................................................................................... 57  
DC Characteristics ........................................................................................................ 57  
E1 Receiver Electrical Characteristics .......................................................................... 58  
T1/J1 Receiver Electrical Characteristics...................................................................... 59  
E1 Transmitter Electrical Characteristics ...................................................................... 60  
T1/J1 Transmitter Electrical Characteristics.................................................................. 61  
Transmitter and Receiver Timing Characteristics ......................................................... 62  
Jitter Tolerance ............................................................................................................. 63  
Jitter Attenuator Characteristics.................................................................................... 65  
JTAG Timing Characteristics ........................................................................................ 67  
Serial Interface Timing Characteristics ......................................................................... 68  
Non_multiplexed Motorola Read Timing Characteristics .............................................. 69  
Non_multiplexed Motorola Write Timing Characteristics .............................................. 70  
Non_multiplexed Intel Read Timing Characteristics ..................................................... 71  
Non_multiplexed Intel Write Timing Characteristics...................................................... 72  
6
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
LIST OF FIGURES  
Figure-1  
Figure-2  
Figure-3  
Figure-4  
Figure-5  
Figure-6  
Figure-7  
Figure-8  
Block Diagram ................................................................................................................. 2  
IDT82V2044E TQFP128 Package Pin Assignment ........................................................ 8  
E1 Waveform Template Diagram .................................................................................. 14  
E1 Pulse Template Test Circuit ..................................................................................... 14  
DSX-1 Waveform Template .......................................................................................... 14  
T1 Pulse Template Test Circuit ..................................................................................... 15  
Receive Path Function Block Diagram .......................................................................... 19  
Transmit/Receive Line Circuit ....................................................................................... 19  
Monitoring Receive Line in Another Chip ...................................................................... 20  
Monitor Transmit Line in Another Chip .......................................................................... 20  
G.772 Monitoring Diagram ............................................................................................ 21  
Jitter Attenuator ............................................................................................................. 22  
LOS Declare and Clear ................................................................................................. 23  
Analog Loopback .......................................................................................................... 26  
Digital Loopback ............................................................................................................ 26  
Remote Loopback ......................................................................................................... 26  
Auto Report Mode ......................................................................................................... 28  
Manual Report Mode ..................................................................................................... 29  
TCLK Operation Flowchart ............................................................................................ 30  
Serial Processor Interface Function Timing .................................................................. 31  
JTAG Architecture ......................................................................................................... 52  
JTAG State Diagram ..................................................................................................... 55  
Transmit System Interface Timing ................................................................................ 63  
Receive System Interface Timing ................................................................................. 63  
E1 Jitter Tolerance Performance .................................................................................. 64  
T1/J1 Jitter Tolerance Performance .............................................................................. 64  
E1 Jitter Transfer Performance ..................................................................................... 66  
T1/J1 Jitter Transfer Performance ................................................................................ 66  
JTAG Interface Timing .................................................................................................. 67  
Serial Interface Write Timing ......................................................................................... 68  
Serial Interface Read Timing with SCLKE=1 ................................................................ 68  
Serial Interface Read Timing with SCLKE=0 ................................................................ 68  
Non_multiplexed Motorola Read Timing ....................................................................... 69  
Non_multiplexed Motorola Write Timing ....................................................................... 70  
Non_multiplexed Intel Read Timing .............................................................................. 71  
Non_multiplexed Intel Write Timing .............................................................................. 72  
Figure-9  
Figure-10  
Figure-11  
Figure-12  
Figure-13  
Figure-14  
Figure-15  
Figure-16  
Figure-17  
Figure-18  
Figure-19  
Figure-20  
Figure-21  
Figure-22  
Figure-23  
Figure-24  
Figure-25  
Figure-26  
Figure-27  
Figure-28  
Figure-29  
Figure-30  
Figure-31  
Figure-32  
Figure-33  
Figure-34  
Figure-35  
Figure-36  
7
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
1
IDT82V2044E PIN CONFIGURATIONS  
TRING1  
TTIP1  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
VDDR4  
RTIP4  
RRING4  
GNDR4  
GNDT4  
GNDT4  
TTIP4  
TRING4  
VDDT4  
VDDT4  
VDDR3  
RTIP3  
RRING3  
GNDR3  
GNDT3  
GNDT3  
TTIP3  
GNDT1  
GNDT1  
GNDR1  
RRING1  
RTIP1  
VDDR1  
VDDT2  
VDDT2  
TRING2  
TTIP2  
GNDT2  
GNDT2  
GNDR2  
RRING2  
RTIP2  
VDDR2  
VDDA  
GNDA  
TRST  
IDT82V2044E  
TRING3  
VDDT3  
VDDT3  
VDDA  
REF  
TMS  
TDI  
TDO  
TCK  
IC  
GNDA  
MCLKS  
IC  
LOS1  
Figure-2 IDT82V2044E TQFP128 Package Pin Assignment  
8
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
2
PIN DESCRIPTION  
Table-1 Pin Description  
Name  
Type TQFP128  
Description  
Transmit and Receive Line Interface  
TTIPn1/TRINGn: Transmit Bipolar Tip/Ring for Channel 1~4  
These pins are the differential line driver outputs and can be set to high impedance state globally or individually. A logic high on  
THZ pin turns all these pins into high impedance state. When THZ bit (TCF1, 03H...)2 is set to ‘1’, the TTIPn/TRINGn in the cor-  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
Output  
Analog  
104  
114  
48  
58  
responding channel is set to high impedance state.  
TRING1  
TRING2  
TRING3  
TRING4  
103  
113  
47  
In summary, these pins will become high impedance in the following conditions:  
THZ pin is high: all TTIPn/TRINGn enter high impedance.  
THZn bit is set to 1: the corresponding TTIPn/TRINGn become high impedance;  
Loss of MCLK: all TTIPn/TRINGn pins become high impedance;  
Loss of TCLKn: the corresponding TTIPn/TRINGn become high impedance (exceptions: Remote Loopback; Transmit  
internal pattern by MCLK);  
57  
Transmitter path power down: the corresponding TTIPn/TRINGn become high impedance;  
After software reset; pin reset and power on: all TTIPn/TRINGn enter high impedance.  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
Input  
Analog  
109  
119  
53  
RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 1~4  
These pins are the differential line receiver inputs.  
63  
RRING1  
RRING2  
RRING3  
RRING4  
108  
118  
52  
62  
Transmit and Receive Digital Data Interface  
TD1/TDP1  
TD2/TDP2  
TD3/TDP3  
TD4/TDP4  
Input  
96  
90  
80  
74  
TDn: Transmit Data for Channel 1~4  
In Single Rail Mode, the NRZ data to be transmitted is input on these pins. Data on TDn is sampled into the device on the active  
edge of TCLKn. The active edge of TCLKn is selected by the TCLK_SEL bit (TCF0, 02H...). Data is encoded by AMI, HDB3 or  
B8ZS line code rules before being transmitted to the line. In this mode, TDNn should be connected to ground.  
TDPn/TDNn: Positive/Negative Transmit Data for Channel 1~4  
TDN1  
TDN2  
TDN3  
TDN4  
95  
89  
79  
73  
In Dual Rail Mode, the NRZ data to be transmitted is input on these pins. Data on TDPn/TDNn is sampled into the device on  
the active edge of TCLKn. The active edge of the TCLKn is selected by the TCLK_SEL bit (TCF0, 02H...) The line code in Dual  
Rail Mode is as follows:  
TDPn  
TDNn  
Output Pulse  
Space  
0
0
1
1
0
1
0
1
Positive Pulse  
Negative Pulse  
Space  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
Input  
97  
91  
82  
75  
TCLKn: Transmit Clock for Channel 1~4  
These pins input 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode transmit clock. The transmit data on TDn/TDPn or TDNn  
is sampled into the device on the active edge of TCLKn. If TCLKn is missing3 and the TCLKn missing interrupt is not masked,  
an interrupt will be generated.  
Notes:  
1. The footprint ‘n’ (n = 1~4) represents one of the four channels.  
2. The name and address of the registers that contain the preceding bit. Only the address of channel 1 register is listed, the rest addresses are represented by '...'. Users can find  
these omitted addresses in the Register Description section.  
3. TCLKn missing: the state of TCLKn continues to be high level or low level over 70 clock cycles.  
9
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type TQFP128  
Description  
RD1/RDP1  
RD2/RDP2  
RD3/RDP3  
RD4/RDP4  
Output  
93  
87  
77  
71  
RDn: Receive Data for Channel 1~4  
In Single Rail Mode, the NRZ receive data is output on these pins. Data is decoded according to AMI, HDB3 or B8ZS line code  
rules. The active level on RDn pin is selected by the RD_INV bit (RCF0, 07H...).  
CVn: Code Violation for Channel 1~4  
CV1/RDN1  
CV2/RDN2  
CV3/RDN3  
CV4/RDN4  
92  
86  
76  
70  
In Single Rail Mode, the BPV/CV errors in received data streams will be reported by driving pin CVn to high level for a full clock  
cycle. The B8ZS/HDB3 line code violation can be indicated when the B8ZS/HDB3 decoder is enabled. When AMI decoder is  
selected, the bipolar violation can be indicated.  
RDPn/RDNn: Positive/Negative Receive Data for Channel 1~4  
In Dual Rail Mode with Clock & Data Recovery (CDR), these pins output the NRZ data with the recovered clock. An active level  
on RDPn indicates the receipt of a positive pulse on RTIPn/RRINGn while an active level on RDNn indicates the receipt of a neg-  
ative pulse on RTIPn/RRINGn. The active level on RDPn/RDNn is selected by the RD_INV bit (RCF0, 07H...). When CDR is  
disabled, these pins directly output the raw RZ sliced data. The output data on RDn and RDPn/RDNn is updated on the active  
edge of RCLKn.  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
Output  
94  
88  
78  
72  
RCLKn: Receive Clock for Channel 1~4  
These pins output 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS conditions, if AISE bit  
(MAINT0, 0AH...) is ‘1’, RCLKn is derived from MCLK.  
In clock recovery mode, these pins provide the clock recovered from the signal received on RTIPn/RRINGn. The receive data  
(RDn in Single Rail Mode or RDPn/RDNn in Dual Rail Mode) is updated on the active edge of RCLKn. The active edge is  
selected by the RCLK_SEL bit (RCF0, 07H...).  
If clock recovery is bypassed, RCLKn is the exclusive OR(XOR) output of the Dual Rail sliced data RDPn and RDNn. This signal  
can be used in the applications with external clock recovery circuitry.  
MCLK  
Input  
10  
MCLK: Master Clock  
MCLK is an independent, free-running reference clock. It is a single reference for all operation modes and provides selectable  
1.544 MHz or 37.056 MHz for T1/J1 operating mode, while 2.048 MHz or 49.152 MHz for E1 operating mode.  
The reference clock is used to generate several internal reference signals:  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLKn signal during a loss of signal condition.  
Reference clock during Transmit All Ones (TAO) and all zeros condition. When sending PRBS/QRSS or Inband Loopback  
code, either MCLK or TCLKn can be selected as the reference clock.  
Reference clock for ATAO and AIS.  
The loss of MCLK will turn all the four TTIP/TRING into high impedance status.  
MCLKS  
Input  
40  
MCLKS: Master Clock Select  
If 2.048 MHz (E1) or 1.544 MHz (T1/J1) is selected as the MCLK, this pin should be connected to ground; and if the 49.152 MHz  
(E1) or 37.056 MHz (T1/J1) is selected as the MCLK, this pin should be pulled high.  
LOS1  
LOS2  
LOS3  
LOS4  
Output  
128  
1
2
LOSn: Loss of Signal Output for Channel 1~4  
These pins are used to indicate the loss of received signals. When LOSn pin becomes high, it indicates the loss of received sig-  
nals in channel n. The LOSn pin will become low automatically when valid received signal is detected again. The criteria of loss  
of signal are described in 3.5 LOS AND AIS DETECTION.  
3
Control Interface  
P/S  
Input  
8
P/S: Parallel or Serial Control Interface Select  
Level on this pin determines which control mode is selected to control the device as follows:  
P/S  
High  
Low  
Control Interface  
Parallel Microcontroller Interface  
Serial Microcontroller Interface  
The serial microcontroller interface consists of CS, SCLK, SDI, SDO and SCLKE pins. Parallel microcontroller interface consists  
of CS, A[7:0], D[7:0], DS/RD and R/W/WR pins. The device supports non-multiplexed parallel interface as follows:  
P/S, INT/MOT  
Microcontroller Interface  
Motorola non-multiplexed  
Intel non-multiplexed  
10  
11  
10  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type TQFP128  
Description  
INT/MOT  
Input  
Input  
Input  
6
INT/MOT: Intel or Motorola Microcontroller Interface Select  
In microcontroller mode, the parallel microcontroller interface is configured for Motorola compatible microcontrollers when this  
pin is low, or for Intel compatible microcontrollers when this pin is high.  
CS  
32  
33  
CS: Chip Select  
In microcontroller mode, this pin is asserted low by the microcontroller to enable microcontroller interface. For each read or write  
operation, this pin must be changed from high to low, and will remain low until the operation is over.  
SCLK  
SCLK: Shift Clock  
In serial microcontroller mode, signal on this pin is the shift clock for the serial interface. Configuration data on pin SDI is sampled  
on the rising edges of SCLK. Configuration and status data on pin SDO is clocked out of the device on the rising edges of SCLK  
if pin SCLKE is low, or on the falling edges of SCLK if pin SCLKE is high.  
DS/RD  
Input  
34  
DS: Data Strobe  
In parallel Motorola microcontroller interface mode, signal on this pin is the data strobe of the parallel interface. During a write  
operation (R/W =0), data on D[7:0] is sampled into the device. During a read operation (R/W =1), data is output to D[7:0] from  
the device.  
RD: Read Operation  
In parallel Intel microcontroller interface mode, this pin is asserted low by the microcontroller to initiate a read cycle. Data is out-  
put to D[7:0] from the device during a read operation.  
SDI/R/W/WR  
Input  
35  
SDI: Serial Data Input  
In serial microcontroller mode, data is input on this pin. Input data is sampled on the rising edges of SCLK.  
R/W: Read/Write Select  
In parallel Motorola microcontroller interface mode, this pin is low for write operation and high for read operation.  
WR: Write Operation  
In parallel Intel microcontroller interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. Data on  
D[7:0] is sampled into the device during a write operation.  
SDO  
Output  
Output  
36  
37  
SDO: Serial Data Output  
In serial microcontroller mode, signal on this pin is the output data of the serial interface. Configuration and status data on pin  
SDO is clocked out of the device on the active edge of SCLK.  
INT  
INT: Interrupt Request  
This pin outputs the general interrupt request for all interrupt sources. If INTM_GLB bit (GCF0, 40H) is set to ‘1’ all the interrupt  
sources will be masked. And these interrupt sources also can be masked individually via registers (INTM0, 11H) and (INTM1,  
12H). Interrupt status is reported via byte INT_CH (INTCH, 80H), registers (INTS0, 16H) and (INTS1, 17H).  
Output characteristics of this pin can be defined to be push-pull (active high or low) or be open-drain (active low) by bits  
INT_PIN[1:0] (GCF0, 40H).  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I / O  
Tri-state  
14  
15  
16  
17  
18  
19  
20  
21  
Dn: Data Bus 7~0  
These pins function as a bi-directional data bus of the microcontroller interface.  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Input  
Input  
24  
25  
26  
27  
28  
29  
30  
31  
An: Address Bus 7~0  
These pins function as an address bus of the microcontroller interface.  
RST  
38  
RST: Hardware Reset  
The chip is reset if a low signal is applied on this pin for more than 100ns. All the drivers output are in high-impedance state,  
all the internal flip-flops are reset and all the registers are initialized to their default values.  
11  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
THZ  
Type TQFP128  
Description  
Input  
4
THZ: Transmit Driver Enable  
This pin enables or disables all transmitter drivers on a global basis. A low level on this pin enables the drivers while a high level  
turns all drivers into high impedance state. Note that functionality of internal circuits is not affected by signal on this pin.  
REF  
Input  
Input  
43  
5
REF: Reference Resistor  
An external resistor (3 KΩ, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit.  
SCLKE  
SCLKE: Serial Clock Edge Select  
Signal on this pin determines the active edge of SCLK to output SDO. The active clock edge is selected as shown below:  
SCLKE  
Low  
SCLK  
Rising edge is active edge  
Falling edge is active edge  
High  
JTAG Signals  
TRST  
Input  
123  
TRST: JTAG Test Port Reset  
Pullup  
This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor. To ensure deterministic  
operation of the test logic, TMS should be held high while the signal applied to TRST changes from low to high.  
For normal signal processing, this pin should be connected to ground.  
TMS  
TCK  
Input  
Pullup  
124  
127  
TMS: JTAG Test Mode Select  
This pin is used to control the test logic state machine and is sampled on the rising edges of TCK. TMS has an internal pull-up  
resistor.  
Input  
TCK: JTAG Test Clock  
This pin is the input clock for JTAG. The data on TDI and TMS is clocked into the device on the rising edges of TCK while the  
data on TDO is clocked out of the device on the falling edges of TCK. When TCK is idle at a low level, all stored-state devices  
contained in the test logic will retain their state indefinitely.  
TDO  
TDI  
Output  
Tri-state  
126  
125  
TDO: JTAG Test Data Output  
This is a tri-state output signal and used for reading all the serial configuration and test data from the test logic. The data on TDO  
is clocked out of the device on the falling edges of TCK.  
Input  
TDI: JTAG Test Data Input  
Pullup  
This pin is used for loading instructions and data into the test logic and has an internal pullup resistor. The data on TDI is clocked  
into the device on the rising edges of TCK.  
Power Supplies and Grounds  
VDDIO  
GNDIO  
-
-
-
13, 22 3.3V I/O Power Supply  
68, 81  
99  
12, 23 I/O Ground  
69, 83  
98  
VDDT1  
VDDT2  
VDDT3  
VDDT4  
101, 102 3.3V Power Supply for Transmitter Driver  
111, 112  
45, 46  
55, 56  
GNDT1  
GNDT2  
GNDT3  
GNDT4  
-
105, 106 Analog Ground for Transmitter Driver  
115, 116  
49, 50  
59, 60  
VDDA  
GNDA  
VDDD  
GNDD  
-
-
-
-
-
44, 121 3.3V Analog Core Power Supply  
41, 122 Core Analog Ground  
9, 85 3.3V Digital Core Power Supply  
11, 84 Core Digital Ground  
VDDR1  
VDDR2  
VDDR3  
VDDR4  
110  
120  
54  
3.3V Power Supply for Receiver  
64  
12  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type TQFP128  
Description  
GNDR1  
GNDR2  
GNDR3  
GNDR4  
-
107  
117  
51  
Analog Ground for Receiver  
61  
Others  
IC  
IC  
-
-
-
39  
7
IC: Internal Connection  
Internal Use. These pins should be connected to ground when in normal operation.  
42  
IC: Internal Connection  
Internal Use. This pin should be left open when in normal operation.  
NC  
65, 66 NC: No Connection  
67, 100  
13  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
, the PULS[3:0] bits (TCF1, 03H...) should be set to ‘0001’. In external  
impedance matching mode, for both E1/75 and E1/120 cable imped-  
ance, PULS[3:0] should be set to ‘0001’.  
3
FUNCTIONAL DESCRIPTION  
3.1 T1/E1/J1 MODE SELECTION  
TheIDT82V2044Ecanbeusedasafour-channelE1LIUorafour-chan-  
nel T1/J1 LIU. In E1 application, the T1E1 bit (GCF0, 40H) should be set  
to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’.  
1.20  
1.00  
3.2 TRANSMIT PATH  
0.80  
0.60  
The transmit path of each channel of the IDT82V2044E consists of an  
Encoder, an optional Jitter Attenuator, a Waveform Shaper, a Line Driver  
and a Programmable Transmit Termination.  
0.40  
0.20  
3.2.1 TRANSMIT PATH SYSTEM INTERFACE  
0.00  
The transmit path system interface consists of TCLKn pin, TDn/TDPn  
pin and TDNn pin. In E1 mode, the TCLKn is a 2.048 MHz clock. In T1/J1  
mode, the TCLKn is a 1.544 MHz clock. If the TCLKn is missing for more  
than 70 MCLK cycles, an interrupt will be generated if it is not masked.  
-0.20  
0.6  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
Tim e in U nit Intervals  
Figure-3 E1 Waveform Template Diagram  
TransmitdataissampledontheTDn/TDPnandTDNnpinsbytheactive  
edge of TCLKn. The active edge of TCLKn can be selected by the  
TCLK_SELbit(TCF0,02H...).AndtheactivelevelofthedataonTDn/TDPn  
and TDNn can be selected by the TD_INV bit (TCF0, 02H...).  
TTIPn  
The transmit data from the system side can be provided in two different  
ways: Single Rail and Dual Rail. In Single Rail mode, only TDn pin is used  
for transmitting data and the T_MD[1] bit (TCF0, 02H...) should be set to  
‘0’. In Dual Rail Mode, both TDPn and TDNn pins are used for transmitting  
data, the T_MD[1] bit (TCF0, 02H...) should be set to ‘1’.  
IDT82V2044E  
RLOAD  
VOUT  
TRINGn  
Note: 1. For RLOAD = 75 (nom), Vout (Peak)=2.37V (nom)  
2. For RLOAD =120 (nom), Vout (Peak)=3.00V (nom)  
3.2.2 ENCODER  
Figure-4 E1 Pulse Template Test Circuit  
When T1/J1 mode is selected, in Single Rail mode, the Encoder can be  
selected to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit  
(TCF0, 02H...).  
For T1 applications, the pulse shape is shown in Figure-5 according to  
the T1.102 and the measuring diagram is shown in Figure-6. This also  
meets the requirement of G.703, 2001. The cable length is divided into five  
grades,andtherearefivepulsetemplatesusedforeachofthecablelength.  
The pulse template is selected by PULS[3:0] bits (TCF1, 03H...).  
WhenE1modeisselected,inSingleRailmode,theEncodercanbecon-  
figured to be a HDB3 encoder or an AMI encoder by setting T_MD[0] bit  
(TCF0, 02H...).  
In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit  
T_MD[1] is ‘1’), the Encoder is by-passed. In the Dual Rail mode, a logic ‘1’  
on the TDPn pin and a logic ‘0’ on the TDNn pin results in a negative pulse  
on the TTIPn/TRINGn; a logic ‘0’ on TDPn pin and a logic ‘1’ on TDNn pin  
results in a positive pulse on the TTIPn/TRINGn. If both TDPn and TDNn  
are logic ‘1’ or logic ‘0’, the TTIPn/TRINGn outputs a space (Refer to TDn/  
TDPn, TDNn Pin Description).  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
3.2.3 PULSE SHAPER  
The IDT82V2044E provides two ways of manipulating the pulse shape  
before sending it. One is to use preset pulse templates; the other is to use  
user-programmable arbitrary waveform template.  
-0.2  
-0.4  
-0.6  
3.2.3.1 Preset Pulse Templates  
0
250  
500  
750  
1000  
1250  
Time (ns)  
For E1 applications, the pulse shape is shown in Figure-3 according to  
the G.703 and the measuring diagram is shown in Figure-4. In internal  
impedance matching mode, if the cable impedance is 75 , the PULS[3:0]  
bits (TCF1, 03H...) should be set to ‘0000’; if the cable impedance is 120  
Figure-5 DSX-1 Waveform Template  
14  
 
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
(4).SettheRWbit(TCF3,05H...)to0toimplementwritingdatatoRAM,  
or to ‘1’ to implement read data from RAM  
(5).Implement the Read from RAM/Write to RAM by setting the DONE  
bit (TCF3, 05H...)  
TTIPn  
Cable  
IDT82V2044E  
RLOAD  
VOUT  
Repeat the above steps until all the sample data are written to or read  
from the internal RAM.  
TRINGn  
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 04H...) to scale the  
amplitude of the waveform based on the selected standard pulse  
amplitude  
Note: RLOAD = 100 ± 5%  
Figure-6 T1 Pulse Template Test Circuit  
WhenmorethanoneUIisusedtocomposethepulsetemplate,theover-  
lap of two consecutive pulses could make the pulse amplitude overflow  
(exceed the maximum limitation) if the pulse amplitude is not set properly.  
This overflow is captured by DAC_OV_IS bit (INTS1, 17H...), and, if  
enabled by the DAC_OV_IM bit (INTM1, 12H...), an interrupt will be gen-  
erated.  
For J1 applications, the PULS[3:0] (TCF1, 03H...) should be set to  
‘0111’. Table-10 lists these values.  
3.2.3.2 User-Programmable Arbitrary Waveform  
WhenthePULS[3:0]bitsaresetto11xx’, user-programmablearbitrary  
waveform generator modecanbe used in thecorresponding channel. This  
allowsthetransmitterperformancetobetunedforawidevarietyoflinecon-  
dition or special application.  
The following tables give all the sample data based on the preset pulse  
templates in detail for reference. For preset pulse templates, scaling up/  
down against the pulse amplitude is not supported.  
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by  
UI[1:0] bits (TCF3, 05H...) and each UI is divided into 16 sub-phases,  
addressed by the SAMP[3:0] bits (TCF3, 05H...). The pulse amplitude of  
each phase is represented by a binary byte, within the range from +63 to -  
63, stored in WDAT[6:0] bits (TCF4, 06H...) in signed magnitude form. The  
most positive number +63 (D) represents the maximum positive amplitude  
ofthetransmitpulsewhilethemostnegativenumber-63(D)representsthe  
maximum negative amplitude of the transmit pulse. Therefore, up to 64  
bytes are used. For each channel, a 64 bytes RAM is available.  
1.Table-2 Transmit Waveform Value For E1 75 Ω  
2.Table-3 Transmit Waveform Value For E1 120 Ω  
3.Table-4 Transmit Waveform Value For T1 0~133 ft  
4.Table-5 Transmit Waveform Value For T1 133~266 ft  
5.Table-6 Transmit Waveform Value For T1 266~399 ft  
6.Table-7 Transmit Waveform Value For T1 399~533 ft  
7.Table-8 Transmit Waveform Value For T1 533~655 ft  
8.Table-9 Transmit Waveform Value For J1 0~655 ft  
Table-2 Transmit Waveform Value For E1 75 Ω  
There are eight standard templates which are stored in a local ROM.  
User can select one of them as reference and make some changes to get  
the desired waveform.  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0000000  
0000000  
0000000  
0001100  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
User can change the wave shape and the amplitude to get the desired  
pulse shape. In order to do this, firstly, users can choose a set of waveform  
valuefromthefollowingeighttables,whichisthemostsimilartothedesired  
pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7, Table-8  
and Table-9 list the sample data and scaling data of each of the eight tem-  
plates.Thenmodifythecorrespondingsampledatatogetthedesiredtrans-  
mit pulse shape.  
3
4
5
6
7
8
Secondly, through the value of SCAL[5:0] bits increased or decreased  
by 1, the pulse amplitude can be scaled up or down at the percentage ratio  
againstthestandardpulseamplitudeifneeded.Fordifferentpulseshapes,  
the value of SCAL[5:0] bits and the scaling percentage ratio are different.  
The following eight tables list these values.  
9
10  
11  
12  
13  
14  
15  
16  
Do the followings step by step, the desired waveform can be pro-  
grammed, based on the selected waveform template:  
(1).Select the UI by UI[1:0] bits (TCF3, 05H...)  
(2).Specify the sample address in the selected UI by SAMP [3:0] bits  
(TCF3, 05H...)  
(3).Write sample data to WDAT[6:0] bits (TCF4, 06H...). It contains the  
data to be stored in the RAM, addressed by the selected UI and the  
corresponding sample address.  
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
15  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-3 Transmit Waveform Value For E1 120 Ω  
Table-5 Transmit Waveform Value For T1 133~266 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0000000  
0000000  
0000000  
0001111  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0011011  
0101110  
0101100  
0101010  
0101001  
0101000  
0100111  
0100110  
0100101  
1010000  
1001111  
1001101  
1001010  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
Table-6 Transmit Waveform Value For T1 266~399 ft  
Table-4 Transmit Waveform Value For T1 0~133 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0011111  
0110100  
0101111  
0101100  
0101011  
0101010  
0101001  
0101000  
0100101  
1010111  
1010011  
1010000  
1001011  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0010111  
0100111  
0100111  
0100110  
0100101  
0100101  
0100101  
0100100  
0100011  
1001010  
1001010  
1001001  
1000111  
1000101  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 1101101 (default), One step change of this value of SCAL[5:0]  
results in 2% scaling up/down against the pulse amplitude.  
1. In T1 mode, when arbitrary pulse for short haul application is configured,  
users should write ‘110110’ to SCAL[5:0] bits if no scaling is required.  
16  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-7 Transmit Waveform Value For T1 399~533 ft  
Table-9 Transmit Waveform Value For J1 0~655 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0100000  
0111011  
0110101  
0101111  
0101110  
0101101  
0101100  
0101010  
0101000  
1011000  
1011000  
1010011  
1001100  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0010111  
0100111  
0100111  
0100110  
0100101  
0100101  
0100101  
0100100  
0100011  
1001010  
1001010  
1001001  
1000111  
1000101  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0]  
results in 2% scaling up/down against the pulse amplitude.  
Table-8 Transmit Waveform Value For T1 533~655 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0100000  
0111111  
0111000  
0110011  
0101111  
0101110  
0101101  
0101100  
0101001  
1011111  
1011110  
1010111  
1001111  
1001001  
1000111  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.2.4 TRANSMIT PATH LINE INTERFACE  
of the recommended impedance matching for transmitter.  
The transmit line interface consists of TTIPn pin and TRINGn pin. The  
impedance matching can be realized by the internal impedance matching  
circuit or the external impedance matching circuit. If T_TERM[2] is set to  
‘0’, the internal impedance matching circuit will be selected. In this case,  
the T_TERM[1:0] bits (TERM, 1AH...) can be set to choose 75 , 100 ,  
110 or 120 internal impedance of TTIPn/TRINGn. If T_TERM[2] is set  
to ‘1’, the internal impedance matching circuit will be disabled. In this case,  
the external impedance matching circuit will be used to realize the imped-  
ance matching. For T1/J1 mode, the external impedance matching circuit  
forthetransmitterisnotsupported.Figure-8showstheappropriateexternal  
components to connect with the cable for one channel. Table-10 is the list  
The TTIPn/TRINGn can be turned into high impedance globally by pull-  
ing THZ pin to high or individually by setting the THZ bit (TCF1, 03H...) to  
‘1’. In this state, the internal transmit circuits are still active.  
Besides, in the following cases, TTIPn/TRINGn will also become high  
impedance:  
Loss of MCLK: all TTIPn/TRINGn pins become high impedance;·  
Loss of TCLKn: corresponding TTIPn/TRINGn become HZ (excep-  
tions: Remote Loopback; Transmit internal pattern by MCLK);  
Transmit path power down;  
After software reset; pin reset and power on.  
Table-10 Impedance Matching for Transmitter  
Cable Configuration  
Internal Termination  
External Termination  
T_TERM[2:0]  
PULS[3:0]  
RT  
T_TERM[2:0]  
PULS[3:0]  
RT  
E1/75 Ω  
000  
001  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0001  
0001  
1XX  
9.4 Ω  
E1/120 Ω  
T1/0~133 ft  
T1/133~266 ft  
T1/266~399 ft  
T1/399~533 ft  
T1/533~655 ft  
J1/0~655 ft  
0 Ω  
010  
011  
-
-
-
Note: The precision of the resistors should be better than ± 1%  
3.2.5 TRANSMIT PATH POWER DOWN  
The transmit path can be powered down individually by setting the  
T_OFF bit (TCF0, 02H...) to ‘1’. In this case, the TTIPn/TRINGn pins are  
turned into high impedance.  
18  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
is set to ‘0’, the internal impedance matching circuit will be selected. In this  
case,theR_TERM[1:0]bits(TERM,1AH...)canbesettochoose75,100  
, 110 or 120 internal impedance of RTIPn/RRINGn. If R_TERM[2]  
is set to ‘1’, the internal impedance matching circuit will be disabled. In this  
case, the external impedance matching circuit will be used to realize the  
impedance matching.  
3.3 RECEIVE PATH  
The receive path consists of Receive Internal Termination, Monitor  
Gain,Amplitude/WaveShapeDetector,DigitalTuningController,Adaptive  
Equalizer, Data Slicer, CDR (Clock and Data Recovery), Optional Jitter  
Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7.  
3.3.1 RECEIVE INTERNAL TERMINATION  
Figure-8 shows the appropriate external components to connect with  
the cable for one channel. Table-11 is the list of the recommended imped-  
ance matching for receiver.  
The impedance matching can be realized by the internal impedance  
matching circuit or the external impedance matching circuit. If R_TERM[2]  
LOS/AIS  
LOS  
Detector  
RCLK  
Receive  
Internal  
termination  
RTIP  
Clock  
Jitter  
Adaptive  
Equalizer  
Data Slicer  
Monitor Gain  
Decoder  
RDP  
RDN  
and Data  
Recovery  
Attenuator  
RRING  
Figure-7 Receive Path Function Block Diagram  
Table-11 Impedance Matching for Receiver  
Cable Configuration  
Internal Termination  
External Termination  
R_TERM[2:0]  
RR  
R_TERM[2:0]  
1XX  
RR  
E1/75 Ω  
E1/120 Ω  
T1  
000  
001  
010  
011  
120 Ω  
75 Ω  
120 Ω  
100 Ω  
110 Ω  
J1  
VDDRn  
D8  
One ofthe Four Identical Channels  
1:1  
·
A
RTIPn  
3.3V  
68µF 1  
D7  
VDDRn  
RX Line  
VDDRn  
D6  
RR  
0.1µF  
0.1µF  
·
GNDRn  
RRINGn  
B
VDDTn  
D4  
D5  
2:1  
RT  
·  
TTIPn  
3.3V  
68µF1  
D3  
VDDTn  
2
Cp  
TX Line  
VDDTn  
D2  
GNDTn  
· TRINGn  
D13  
RT  
Note:1.Commondecouplingcapacitor  
2. Cp 0-560 (pF)  
3. D1 - D8, Motorola - MBR0540T1;  
International Rectifier - 11DQ04 or 10BQ060  
Figure-8 Transmit/Receive Line Circuit  
19  
 
 
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.3.2 LINE MONITOR  
3.3.4 RECEIVE SENSITIVITY  
In both T1/J1 and E1 short haul applications, the non-intrusive monitor-  
ingonchannelslocatedinotherchipscanbeperformedbytappingthemon-  
itored channel through a high impedance bridging circuit. Refer to Figure-  
9 and Figure-10.  
The Receive Sensitivity for both E1 and T1/J1 is -10 dB. With the Adap-  
tive Equalizer enabled, the receive sensitivity will be -20 dB.  
3.3.5 DATA SLICER  
The Data Slicer is used to generate a standard amplitude mark or a  
space according to the amplitude of the input signals. The threshold can  
be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2,  
09H...).TheoutputoftheDataSlicerisforwardedtotheCDR(Clock&Data  
Recovery) unit or to the RDPn/RDNn pins directly if the CDR is disabled.  
After a high resistance bridging circuit, the signal arriving at the RTIPn/  
RRINGn is dramatically attenuated. To compensate this attenuation, the  
Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB,  
selected by MG[1:0] bits (RCF2, 09H...). For normal operation, the Monitor  
Gain should be set to 0 dB.  
3.3.6 CDR (Clock & Data Recovery)  
DSX cross connect  
The CDR is used to recover the clock from the received signals. The  
recovered clock tracks the jitter in the data output from the Data Slicer and  
keeps the phase relationship between data and clock during the absence  
of the incoming pulse. The CDR can also be by-passed in the Dual Rail  
mode. When CDR is by-passed, the data from the Data Slicer is output to  
the RDPn/RDNn pins directly.  
point  
RTIP  
monitor  
gain=0dB  
RRING  
R
normal receive mode  
3.3.7 DECODER  
RTIP  
In T1/J1 applications, the R_MD[1:0] bits (RCF0, 07H...) is used to  
selecttheAMIdecoderorB8ZSdecoder.InE1applications,theR_MD[1:0]  
bits (RCF0, 07H...) are used to select the AMI decoder or HDB3 decoder.  
monitor gain  
=22/26/32dB  
RRING  
monitor mode  
3.3.8 RECEIVE PATH SYSTEM INTERFACE  
The receive path system interface consists of RCLKn pin, RDn/RDPn  
pin and RDNn pin. In E1 mode, the RCLKn outputs a recovered 2.048 MHz  
clock.InT1/J1mode,theRCLKnoutputsarecovered1.544MHzclock.The  
received data is updated on the RDn/RDPn and RDNn pins on the active  
edge of RCLKn. The active edge of RCLKn can be selected by the  
RCLK_SEL bit (RCF0, 07H...). And the active level of the data on RDn/  
RDPn and RDNn can also be selected by the RD_INV bit (RCF0, 07H...).  
Figure-9 Monitoring Receive Line in Another Chip  
DSX cross connect  
point  
TTIP  
TRING  
R
normal transmit mode  
Thereceiveddatacanbeoutputtothesystemsideintwodifferentways:  
Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 07H...). In Sin-  
gle Rail mode, only RDn pin is used to output data and the RDNn/CVn pin  
is used to report the received errors. In Dual Rail Mode, both RDPn pin and  
RDNn pin are used for outputting data.  
RTIP  
monitor gain  
=22/26/32dB  
RRING  
InthereceiveDualRailmode,theCDRunitcanbeby-passedbysetting  
R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data  
Slicer will be output to the RDPn/RDNn pins directly, and the RCLKn out-  
puts the exclusive OR (XOR) of the RDPn and RDNn.  
monitor mode  
Figure-10 Monitor Transmit Line in Another Chip  
3.3.3 ADAPTIVE EQUALIZER  
3.3.9 RECEIVE PATH POWER DOWN  
The Adaptive Equalizer can be enabled to increase the receive sensi-  
tivity and to allow programming of the LOS level up to -24 dB. See section  
3.5 LOS AND AIS DETECTION. It can be enabled or disabled by setting  
EQ_ON bit to ‘1’ or ‘0’ (RCF1, 08H...).  
The receive path can be powered down individually by setting R_OFF  
bit (RCF0, 07H...) to ‘1’. In this case, the RCLKn, RDn/RDPn, RDPn and  
LOSn will be logic low.  
20  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.3.10 G.772 NON-INTRUSIVE MONITORING  
The monitored line signal (transmit or receive) goes through Channel  
1's Clock and Data Recovery. The signal can be observed digitally at the  
RCLK1,RD1/RDP1andRDN1.IfChannel1isconfiguredtoRemoteLoop-  
back while in the Monitoring mode, the monitored data will be output on  
TTIP1/TRING1.  
In applications using only three channels, channel 1 can be configured  
tomonitorthedatareceivedortransmittedinanyoneoftheremainingchan-  
nels. The MON[3:0] bits (GCF1, 60H) determine which channel and which  
direction (transmit/receive) will be monitored. The monitoring is non-intru-  
sive per ITU-T G.772. Figure-11 illustrates the concept.  
Channel N (N > 2)  
LOS/AIS  
LOSn  
Detector  
Receiver  
RTIPn  
RCLKn  
RDn/RDPn  
CVn/RDNn  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
Recovery  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
Internal  
RRINGn  
Termination  
B8ZS/  
HDB3/AMI  
Encoder  
TTIPn  
Transmitter  
Internal  
Termination  
TCLKn  
TDn/TDPn  
Line  
Driver  
Jitter  
Attenuator  
Waveform  
Shaper  
TRINGn  
TDNn  
Channel 1  
G.772  
LOS/AIS  
Detector  
Monitor  
LOS1  
Receiver  
Internal  
Termination  
RCLK1  
RDn/RDP1  
CVn/RDN1  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
Recovery  
RTIP1  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
RRING1  
Remote  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIP1  
Transmitter  
Internal  
Termination  
TCLK1  
TDn/TDP1  
Line  
Driver  
Jitter  
Attenuator  
Waveform  
Shaper  
TRING1  
TDN1  
Figure-11 G.772 Monitoring Diagram  
21  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or  
6.8 Hz, as selected by the JABW bit (JACF, 01H...). In T1/J1 applications,  
the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected  
by the JABW bit (JACF, 01H...). The lower the Corner Frequency is, the  
longer time is needed to achieve synchronization.  
3.4 JITTER ATTENUATOR  
ThereisoneJitterAttenuatorineachchanneloftheLIU.TheJitterAtten-  
uatorcanbedeployedinthetransmitpathorthereceivepath, andcanalso  
be disabled. This is selected by the JACF[1:0] bits (JACF, 01H...).  
3.4.1 JITTER ATTENUATION FUNCTION DESCRIPTION  
When the incoming data moves faster than the outgoing data, the FIFO  
will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 17H...).  
If the incoming data moves slower than the outgoing data, the FIFO will  
underflow. This underflow is captured by the JAUD_IS bit (INTS1, 17H...).  
For some applications that are sensitive to data corruption, the JA limit  
mode can be enabled by setting JA_LIMIT bit (JACF, 01H...) to ‘1’. In the  
JAlimitmode, thespeedoftheoutgoingdatawillbeadjustedautomatically  
whenthe FIFO is close to its fullor emptiness. The criteria ofstarting speed  
adjustment are shown in Table-12. The JA limit mode can reduce the pos-  
sibility of FIFO overflow and underflow, but the quality of jitter attenuation  
is deteriorated.  
The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in  
Figure-12. The FIFO is used as a pool to buffer the jittered input data, then  
the data is clocked out of the FIFO by a de-jittered clock. The depth of the  
FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits  
(JACF, 01H...). Consequently, the constant delay of the Jitter Attenuator  
will be 16 bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but  
at the expense of increasing data latency time.  
RDn/RDPn  
3.4.2 JITTER ATTENUATOR PERFORMANCE  
FIFO  
32/64/128  
Jittered Data  
Jittered Clock  
De-jittered Data  
RDNn  
TheperformanceoftheJitterAttenuatorintheIDT82V2044Emeetsthe  
ITU-TI.431,G.703,G.736-739,G.823,G.824, ETSI300011,ETSITBR12/  
13, AT&T TR62411 specifications. Details of the Jitter Attenuator perfor-  
manceisshowninTable-64JitterToleranceandTable-65JitterAttenuator  
Characteristics.  
W
R
De-jittered Clock  
RCLKn  
DPLL  
Table-12 Criteria of Starting Speed Adjustment  
FIFO Depth  
32 Bits  
Criteria for Adjusting Data Outgoing Speed  
2 bits close to its full or emptiness  
3 bits close to its full or emptiness  
4 bits close to its full or emptiness  
MCLK  
64 Bits  
Figure-12 Jitter Attenuator  
128 Bits  
22  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
LOS detect level threshold  
With the Adaptive Equalizer off, the amplitude threshold Q is fixed on  
3.5 LOS AND AIS DETECTION  
3.5.1 LOS DETECTION  
800 mVpp, while P=Q+200 mVpp (200 mVpp is the LOS level detect hys-  
teresis).  
TheLossofSignalDetectormonitorstheamplitudeoftheincomingsig-  
nal level and pulse density of the received signal on RTIPn and RRINGn.  
With the Adaptive Equalizer on, the value of Q can be selected by  
LOS[4:0] bit (RCF1, 08H...), while P=Q+4 dB (4 dB is the LOS level detect  
hysteresis). RefertoTable 33, “RCF1:ReceiverConfigurationRegister1,”  
on page 40 for LOS[4:0] bit values available.  
LOS declare (LOS=1)  
A LOS is detected when the incoming signal has “no transitions”, i.e.,  
when the signal level is less than Q dB below nominal for N consecutive  
pulse intervals. Here N is defined by LAC bit (MAINT0, 0AH...). LOS will be  
declaredbypullingLOSnpintohigh(LOS=1)andLOSinterruptwillbegen-  
erated if it is not masked.  
Criteria for declare and clear of a LOS detect  
The detection supports the ANSI T1.231 and I.431 for T1/J1 mode and  
G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected  
by LAC bit (MAINT0, 0AH...) and T1E1 bit (GCF0, 40H).  
LOS clear (LOS=0)  
The LOS is cleared when the incoming signal has “transitions”, i.e.,  
when the signal level is greater than P dB below nominal and has an aver-  
age pulse density of at least 12.5% forM consecutive pulse intervals, start-  
ing with the receipt of a pulse. Here M is defined by LAC bit (MAINT0,  
0AH...). LOS status is cleared by pulling LOSn pin to low.  
Table-13 and Table-14 summarize LOS declare and clear criteria for  
both with and without the Adaptive Equalizer enabled.  
All Ones output during LOS  
On the system side, the RDPn/RDNn will reflect the input pulse “transi-  
tion” at the RTIPn/RRINGn side and output recovery clock (but the quality  
of theoutput clock can not be guaranteed when theinputlevel islowerthan  
the maximum receive sensitivity) when AISE bit (MAINT0, 0AH...) is 0; or  
output All Ones as AIS when AISE bit (MAINT0, 0AH...) is 1. In this case  
RCLKn output is replaced by MCLK.  
LOS=1  
On the line side, the TTIPn/TRINGn will output All Ones as AIS when  
ATAO bit (MAINT0, 0AH...) is 1. The All Ones pattern uses MCLK as the  
reference clock.  
signal level>P  
density=OK  
signal level<Q  
LOS indicator is always active for all kinds of loopback modes.  
(observing windows= M)  
(observing windows= N)  
LOS=0  
Figure-13 LOS Declare and Clear  
Table-13 LOS Declare and Clear Criteria, Adaptive Equalizer Disabled  
Control bit  
LOS declare threshold  
LOS clear threshold  
T1E1  
LAC  
Level > 1 Vpp  
M=128 bits  
12.5% mark density  
Level < 800 mVpp  
N=175 bits  
0=T1.231  
1=I.431  
<100 consecutive zeroes  
1=T1/J1  
Level > 1 Vpp  
M=128 bits  
12.5% mark density  
<100 consecutive zeroes  
Level < 800 mVpp  
N=1544 bits  
Level > 1 Vpp  
Level < 800 mVpp  
N=32 bits  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
0=G.775  
0=E1  
Level > 1 Vpp  
Level < 800 mVpp  
N=2048 bits  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
1=I.431/ETSI  
23  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-14 LOS Declare and Clear Criteria, Adaptive Equalizer Enabled  
Control bit  
LAC  
LOS declare threshold  
LOS clear threshold  
Note  
T1E1  
LOS[4:0]  
00000  
00001  
T1.231 …  
Q (dB)  
-4  
-6  
Level > Q+ 4dB  
M=128 bits  
12.5% mark density  
<100 consecutive zeroes  
Level < Q  
N=175 bits  
0
1
01010  
01011 - 11111  
-24  
Reserved  
1=T1/J1  
00000  
-4  
-
Level > Q+ 4dB  
M=128 bits  
12.5% mark density  
<100 consecutive zeroes  
00110  
-16  
Level < Q  
N=1544 bits  
I.431 Level detect range is -18 to -30 dB.  
00111  
I.431 01010  
01011 - 11111  
-18  
-24  
Reserved  
00000  
00010  
-4  
-8  
-
Level > Q+ 4dB  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
Level < Q  
N=32 bits  
0
1
G.775 Level detect range is -9 to -35 dB.  
I.431 Level detect range is -6 to -20 dB.  
00011  
01010  
-10  
-24  
G.775  
0=E1  
01011 - 11111  
Reserved  
-
00000  
-4  
Level > Q+ 4dB  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
00001  
ETSI 01010  
01011 - 11111  
-6  
Level < Q  
N=2048 bits  
I.431/  
-24  
Reserved  
3.5.2 AIS DETECTION  
T1.231. In E1 applications, the criteria for declaring/clearing AIS detection  
comply with the ITU G.775 or the ETSI 300233, as selected by the LAC bit  
(MAINT0, 0AH...). Table-15summarizesdifferentcriteriaforAISdetection  
Declaring/Clearing.  
TheAlarmIndicationSignalcanbedetectedbytheIDT82V2044Ewhen  
the Clock&Data Recovery unit is enabled. The status of AIS detection is  
reflectedintheAIS_Sbit(STAT0,14H...).InT1/J1applications,thecriteria  
for declaring/clearing AIS detection are in compliance with the ANSI  
Table-15 AIS Condition  
ITU G.775 for E1  
(LAC bit is set to ‘0’ by default)  
ETSI 300233 for E1  
(LAC bit is set to ‘1’)  
ANSI T1.231 for T1/J1  
Less than 3 zeros contained in each of two consecutive Less than 3 zeros contained in a 512-bit Less than 9 zeros contained in an 8192-bit stream  
512-bit streams are received stream are received (a ones density of 99.9% over a period of 5.3ms)  
AIS  
detected  
3 or more zeros contained in each of two consecutive 3 or more zeros contained in a 512-bit 9 or more zeros contained in an 8192-bit stream  
AIS  
cleared  
512-bit streams are received  
stream are received  
are received  
24  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
PRBSdatacanbeinvertedthroughsettingthePRBS_INVbit(MAINT0,  
0AH...).  
3.6 TRANSMIT AND DETECT INTERNAL PATTERNS  
The internal patterns (All Ones, All Zeros, PRBS/QRSS pattern and  
Activate/DeactivateLoopbackCode)willbegeneratedanddetectedbythe  
IDT82V2044E.TCLKnisusedasthereferenceclockbydefault.MCLKcan  
alsobe usedasthereferenceclockbysettingthePATT_CLK bit(MAINT0,  
0AH...) to ‘1’.  
Any change of PRBS_S bit will be captured by PRBS_IS bit (INTS0,  
16H...). The PRBS_IES bit (INTES, 13H...) can be used to determine  
whetherthe0to1changeofPRBS_SbitwillbecapturedbythePRBS_IS  
bitoranychangesofPRBS_SbitwillbecapturedbythePRBS_ISbit.When  
the PRBS_IS bit is ‘1’, an interrupt will be generated if the PRBS_IM bit  
(INTM0, 11H...) is set to ‘1’.  
IfthePATT_CLKbit(MAINT0,0AH...)issetto0andthePATT[1:0]bits  
(MAINT0, 0AH...) are set to ‘00’, the transmit path will operate in normal  
mode.  
The received PRBS/QRSS logic errors can be counted in a 16-bit  
counter if the ERR_SEL [1:0] bits (MAINT6, 10H...) are set to ‘00’. Refer to  
Refer to 3.8 ERROR DETECTION/COUNTING AND INSERTION for the  
operation of the error counter.  
3.6.1 TRANSMIT ALL ONES  
In transmit direction, the All Ones data can be inserted into the data  
streamwhenthePATT[1:0]bits(MAINT0,0AH...)aresetto01’.Thetrans-  
mit data stream is output from TTIPn/TRINGn. In this case, either TCLKn  
or MCLK can be used as the transmit clock, as selected by the PATT_CLK  
bit (MAINT0, 0AH...).  
3.7 LOOPBACK  
To facilitate testing and diagnosis, the IDT82V2044E provides four dif-  
ferent loopback configurations: Analog Loopback, Digital Loopback,  
Remote Loopback and Inband Loopback.  
3.6.2 TRANSMIT ALL ZEROS  
3.7.1 ANALOG LOOPBACK  
If the PATT_CLK bit (MAINT0, 0AH...) is set to ‘1’, the All Zeros will be  
inserted into the transmit data stream when the PATT[1:0] bits (MAINT0,  
0AH...) are set to ‘00’.  
WhentheALPbit(MAINT1,0BH...)issetto1’,thecorrespondingchan-  
nel is configured in Analog Loopback mode. In this mode, the transmit sig-  
nals are looped back to the Receiver Internal Termination in the receive  
path then output from RCLKn, RDn, RDPn/RDNn. At the same time, the  
transmit signals are still output to TTIPn/TRINGn in transmit direction. Fig-  
ure-14 shows the process.  
3.6.3 PRBS/QRSS GENERATION AND DETECTION  
A PRBS/QRSS will be generated in the transmit direction and detected  
20  
in the receive direction by IDT82V2044E. The QRSS is 2 -1 for T1/J1  
15  
applicationsandthePRBSis2 -1forE1applications, withmaximumzero  
3.7.2 DIGITAL LOOPBACK  
restrictions according to the AT&T TR62411 and ITU-T O.151.  
WhentheDLPbit(MAINT1,0BH...)issetto1’,thecorrespondingchan-  
nel is configured in Digital Loopback mode. In this mode, the transmit sig-  
nals are looped back to the jitter attenuator (if enabled) and decoder in  
receive path, then output from RCLKn, RDn, RDPn/RDNn. At the same  
time,thetransmitsignalsarestilloutputtoTTIPn/TRINGnintransmitdirec-  
tion. Figure-15 shows the process.  
When the PATT[1:0] bits (MAINT0, 0AH...) are set to ‘10’, the PRBS/  
QRSS pattern will be inserted into the transmit data stream with the MSB  
first. The PRBS/QRSS pattern will be transmitted directly or invertedly.  
The PRBS/QRSS in the received data stream will be monitored. If the  
PRBS/QRSS has reached synchronization status, the PRBS_S bit  
(STAT0, 14H...) will be set to ‘1’, even in the presence of a logic error rate  
Both Analog Loopback mode and Digital Loopback mode allow the  
sending of the internal patterns (All Ones, All Zeros, PRBS, etc.) which will  
overwrite the transmit signals. In this case, either TCLKn or MCLK can be  
used as the reference clock for internal patterns transmission.  
-1  
less than or equal to 10 . The criteria for setting/clearing the PRBS_S bit  
are shown in Table-16.  
Table-16 Criteria for Setting/Clearing the PRBS_S Bit  
3.7.3 REMOTE LOOPBACK  
6 or less than 6 bit errors detected in a 64 bits hopping window.  
PRBS/QRSS  
Detection  
WhentheRLPbit(MAINT1,0BH...)issetto1’,thecorrespondingchan-  
nel is configured in Remote Loopback mode. In this mode, the recovered  
clock and data output from Clock and Data Recovery on the receive path  
is looped back to the jitter attenuator (if enabled) and Waveform Shaper in  
transmit path. Figure-16 shows the process.  
More than 6 bit errors detected in a 64 bits hopping window.  
PRBS/QRSS  
Missing  
25  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
One of the Four Identical Channels  
LOS/AIS  
Detector  
LOSn  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
Recovery  
RCLKn  
RDn/RDPn  
CVn/RDNn  
RTIPn  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
RRINGn  
Analog  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIPn  
Transmitter  
Internal  
Termination  
TCLKn  
TDn/TDPn  
Line  
Driver  
Jitter  
Attenuator  
Waveform  
Shaper  
TRINGn  
TDNn  
Figure-14 Analog Loopback  
One of the Four Identical Channels  
LOS/AIS  
Detector  
LOSn  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
RCLKn  
RDn/RDPn  
CVn/RDNn  
RTIPn  
Jitter  
Attenuator  
Adaptive  
Equalizer  
Data  
Slicer  
RRINGn  
Recovery  
Digital  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIPn  
Transmitter  
TCLKn  
TDn/TDPn  
Jitter  
Attenuator  
Waveform  
Shaper  
Line  
Internal  
Driver  
TRINGn  
Termination  
TDNn  
Figure-15 Digital Loopback  
One of the Four Identical Channels  
LOS/AIS  
Detector  
LOSn  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
Recovery  
RCLKn  
RDn/RDPn  
CVn/RDNn  
RTIPn  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
RRINGn  
Remote  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIPn  
Transmitter  
TCLKn  
TDn/TDPn  
Waveform  
Shaper  
Jitter  
Attenuator  
Line  
Internal  
Driver  
TRINGn  
Termination  
TDNn  
Figure-16 Remote Loopback  
26  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.7.4 INBAND LOOPBACK  
6-bit-long or 8-bit-long respectively by repeating itself if it is 3-bit-long or 4-  
bit-long.  
When PATT[1:0] bits (MAINT0, 0AH...) are set to ‘11’, the correspond-  
ing channel is configured in Inband Loopback mode. In this mode, an  
unframed activate/Deactivate Loopback Code is generated repeatedly in  
transmit direction per ANSI T1. 403 which overwrite the transmit signals.  
In receive direction, the framed or unframed code is detected per ANSI T1.  
AftertheActivateLoopbackCodehasbeendetectedinthereceivedata  
for more than 30 ms (in E1 mode) / 40 ms (in T1/J1 mode), the IBLBA_S  
bit (STAT0, 14H...) will be set to ‘1’ to declare the reception of the Activate  
Loopback Code.  
-2  
403, even in the presence of 10 bit error rate.  
After the Deactivate Loopback Code has been detected in the receive  
dataformorethan30ms(InE1mode)/40ms(InT1/J1mode),theIBLBD_S  
bit(STAT0,14H...)willbesetto1todeclarethereceptionoftheDeactivate  
Loopback Code.  
If the Automatic Remote Loopback is enabled by setting ARLP bit  
(MAINT1, 0BH...) to ‘1’, the chip will establish/demolish the Remote Loop-  
back based on the reception of the Activate Loopback Code/Deactivate  
Loopback Code for 5.1 s. If the ARLP bit (MAINT1, 0BH...) is set to ‘0’, the  
Remote Loopback can also be demolished forcedly.  
When the IBLBA_IES bit (INTES, 13H...) is set to ‘0’, only the ‘0’ to ‘1’  
transitionoftheIBLBA_SbitwillgenerateaninterruptandsettheIBLBA_IS  
bit (INTS0, 16H...) to ‘1’. When the IBLBA_IES bit is set to ‘1’, any changes  
of the IBLBA_S bit will generate an interrupt and set the IBLBA_IS bit  
(INTS0, 16H...) to ‘1’. The IBLBA_IS bit will be reset to ‘0’ after being read.  
3.7.4.1 Transmit Activate/Deactivate Loopback Code  
The pattern of the transmit Activate/Deactivate Loopback Code is  
defined by the TIBLB[7:0] bits (MAINT3, 0DH...). Whether the code repre-  
sentsanActivateLoopbackCodeoraDeactivateLoopbackCodeisjudged  
bythefarendreceiver. Thelengthofthepatternrangesfrom5bitsto8bits,  
as selected by the TIBLB_L[1:0] bits (MAINT2, 0CH...). The pattern can be  
programmed to 6-bit-long or 8-bit-long respectively by repeating itself if it  
is 3-bit-long or 4-bit-long. When the PATT[1:0] bits (MAINT0, 0AH...) are  
set to ‘11’, the transmission of the Activate/Deactivate Loopback Code is  
initiated. If the PATT_CLK bit (MAINT0, 0AH...) is set to ‘0’ and the  
PATT[1:0]bits(MAINT0,0AH...)aresetto00’,thetransmissionoftheActi-  
vate/Deactivate Loopback Code will stop.  
When the IBLBD_IES bit (INTES, 13H...) is set to ‘0’, only the ‘0’ to ‘1’  
transitionoftheIBLBD_SbitwillgenerateaninterruptandsettheIBLBD_IS  
bit (INTS0, 16H...) to ‘1’. When the IBLBD_IES bit is set to ‘1’, any changes  
of the IBLBD_S bit will generate an interrupt and set the IBLBD_IS bit  
(INTS0, 16H...) to ‘1’. The IBLBD_IS bit will be reset to ‘0’ after being read.  
3.7.4.3 Automatic Remote Loopback  
When ARLP bit (MAINT1, 0BH...) is set to ‘1’, the corresponding chan-  
nel is configured into the Automatic Remote Loopback mode. In this mode,  
if the Activate Loopback Code has been detected in the receive data for  
more than 5.1 s, the Remote Loopback (shown as Figure-16) will be estab-  
lished automatically, and the RLP_S bit (STAT1, 15H...) will be set to ‘1’ to  
indicate the establishment of the Remote Loopback. The IBLBA_S bit  
(STAT0,14H...)issetto1togenerateaninterrupt.Inthiscase,theRemote  
Loopback mode will still be kept even if the receiver stop receiving the Acti-  
vate Loopback Code.  
The local transmit activate/deactivate code setting should be the same  
as the receive code setting in the remote end. It is the same thing for the  
other way round.  
3.7.4.2 Receive Activate/Deactivate Loopback Code  
The pattern of the receive Activate Loopback Code is defined by the  
RIBLBA[7:0] bits (MAINT4, 0EH...). The length of this pattern ranges from  
5 bits to 8 bits, as selected by the RIBLBA_L [1:0] bits (MAINT2, 0CH...).  
The pattern can be programmed to 6-bit-long or 8-bit-long respectively by  
repeating itself if it is 3-bit-long or 4-bit-long.  
If the Deactivate Loopback Code has been detected in the receive data  
formorethan5.1s,theRemoteLoopbackwillbedemolishedautomatically,  
and the RLP_S bit (STAT1, 15H...) will set to ‘0’ to indicate the demolish-  
ment of the Remote Loopback. The IBLBD_S bit (STAT0, 14H...) is set to  
‘1’ to generate an interrupt.  
The pattern of the receive Deactivate Loopback Code is defined by the  
RIBLBD[7:0] bits (MAINT5, 0FH...). The length of the receive Deactivate  
Loopback Code ranges from 5 bits to 8 bits, as selected by the  
RIBLBD_L[1:0] bits (MAINT2, 0CH...). The pattern can be programmed to  
The Remote Loopback can also be demolished forcedly by setting  
ARLP bit (MAINT1, 0BH...) to ‘0’.  
27  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
HDB3/B8ZS Code Violation (CV) Error: In HDB3/B8ZS coding, a  
CV error is declared when two consecutive BPV errors are  
detected, and the pulses that have the same polarity as the previ-  
ous pulse are not the HDB3/B8ZS zero substitution pulses.  
Excess Zero (EXZ) Error: there are two standards defining the EXZ  
errors: ANSI and FCC. The EXZ_DEF bit (MAINT6, 10H...)  
chooses which standard will be adopted by the corresponding  
channel to judge the EXZ error. Table-17 shows definition of EXZ.  
3.8 ERROR DETECTION/COUNTING AND INSERTION  
3.8.1 DEFINITION OF LINE CODING ERROR  
The following line encoding errors can be detected and counted by the  
IDT82V2044E:  
Received Bipolar Violation (BPV) Error: In AMI coding, when two  
consecutive pulses of the same polarity are received, a BPV error  
is declared.  
Table-17 EXZ Definition  
EXZ Definition  
ANSI  
FCC  
AMI  
More than 15 consecutive 0s are detected  
More than 3 consecutive 0s are detected  
More than 7 consecutive 0s are detected  
More than 80 consecutive 0s are detected  
More than 3 consecutive 0s are detected  
More than 7 consecutive 0s are detected  
HDB3  
B8ZS  
3.8.2 ERROR DETECTION AND COUNTING  
(CNT1, 19H...) should be read within the next second. If the counter over-  
flows, a counter overflow interrupt which is indicated by CNT_OV_IS bit  
(INTS1, 17H...) will be generated if it is not masked by CNT_IM bit (INTM1,  
12H...).  
Which type of the receiving errors (Received CV/BPV errors, excess  
zero errors and PRBS logic errors) will be counted is determined by  
ERR_SEL[1:0] bits (MAINT6, 10H...). Only one type of receiving error can  
becountedatatimeexceptthatwhentheERR_SEL[1:0]bitsaresetto11’,  
both CV/BPV and EXZ errors will be detected and counted.  
Auto Report Mode  
(CNT_MD=1)  
The receiving errors are counted in an internal 16-bit Error Counter.  
Once an error is detected, an error interrupt which is indicated by corre-  
sponding bit in (INTS1, 17H...) will be generated if it is not masked. This  
Error Counter can be operated in two modes: Auto Report Mode and Man-  
ual Report Mode, as selected by the CNT_MD bit (MAINT6, 10H...). In Sin-  
gle Rail mode, once BPV or CV errors are detected, the CVn pin will be  
driven to high for one RCLK period.  
counting  
next second  
repeats the  
same process  
N
One-Second Timer expired?  
Y
• Auto Report Mode  
CNT0, CNT1  
counter  
data in counter  
In Auto Report Mode, the internal counter starts to count the received  
errors when the CNT_MD bit (MAINT6, 10H...) is set to ‘1’. A one-second  
timer is used to set the counting period. The received errors are counted  
within onesecond. If the one-secondtimer expires, the valueinthe internal  
counter will be transferred to (CNT0, 18H...) and (CNT1, 19H...), then the  
internal counter will be reset and start to count received errors for the next  
second. The errors occurred during the transfer will be accumulated to the  
next round. The expiration of the one-second timer will set TMOV_IS bit  
(INTS1, 17H...) to ‘1’, and will generate an interrupt if the TIMER_IM bit  
(INTM1,12H...)issetto0’.TheTMOV_ISbit(INTS1,17H...)willbecleared  
after the interrupt register is read. The content in the (CNT0, 18H...) and  
0
Bit TMOV_IS is set to '1'  
read the data in CNT0, CNT1 within  
the next second  
Bit TMOV_IS is cleared after  
the interrupt register is read  
Figure-17 Auto Report Mode  
28  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
• Manual Report Mode  
3.8.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION  
In Manual Report Mode, the internal Error Counter starts to count the  
received errors when the CNT_MD bit (MAINT6, 10H...) is set to ‘0’. When  
there isa 0to ‘1’ transition onthe CNT_TRF bit(MAINT6, 10H...), the data  
inthecounterwillbetransferredto(CNT0, 18H...)and(CNT1, 19H...), then  
the counter will be reset. The errors occurred during the transfer will be  
accumulated to thenext round. If thecounter overflows, a counteroverflow  
interrupt indicated by CNT_OV_IS bit (INTS1, 17H...) will be generated if  
it is not masked by CNT_IM bit (INTM1, 12H...).  
Only when three consecutive ‘1’s are detected in the transmit data  
stream, will a ‘0’ to ‘1’ transition on the BPV_INS bit (MAINT6, 10H...) gen-  
erateabipolarviolationpulse, andthepolarityofthesecond1intheseries  
will be inverted.  
A ‘0’ to ‘1’ transition on the EER_INS bit (MAINT6, 10H...) will generate  
a logic error during the PRBS/QRSS transmission.  
3.9 LINE DRIVER FAILURE MONITORING  
Thetransmitdriverfailuremonitorcanbeenabledordisabledbysetting  
DFM_OFF bit (TCF1, 03H...). If the transmit driver failure monitor is  
enabled, the transmit driver failure will be captured by DF_S bit (STAT0,  
14H...). The transition of the DF_S bit is reflected by DF_IS bit (INTS0,  
16H...), and, ifenabledbyDF_IMbit(INTM0, 11H...), willgenerateaninter-  
rupt.WhenthereisashortcircuitontheTTIPn/TRINGnport,theoutputcur-  
rent will be limited to 100 mA (typical) and an interrupt will be generated.  
Manual Report mode  
(CNT_MD=0)  
counting  
N
A '0' to '1' transition  
on CNT_TRF?  
next round  
Y
repeat the  
same process  
CNT0, CNT1  
counter  
data in  
counter  
0
Read the data in CNT0,  
CNT1 within next round1  
Reset CNT_TRF for the  
next '0' to '1' transition  
Figure-18 Manual Report Mode  
Note: 1. It is recommended that users should do the followings within next round  
of error counting: Read the data in CNT0 and CNT1; Reset CNT_TRF  
bit for the next ‘0’ to ‘1’ transition on this bit.  
29  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
3.10.2 TRANSMIT CLOCK (TCLK)  
3.10 MCLK AND TCLK  
The TCLKn is used to sample the transmit data on TDn/TDPn, TDNn.  
The active edge of TCLKn can be selected by the TCLK_SEL bit (TCF0,  
02H...). During Transmit All Ones, PRBS/QRSS patterns or Inband Loop-  
backCode,eitherTCLKnorMCLKcanbeusedasthereferenceclock.This  
is selected by the PATT_CLK bit (MAINT0, 0AH...).  
3.10.1 MASTER CLOCK (MCLK)  
MCLK is an independent, free-running reference clock. MCLK is 1.544  
MHz or 37.056 MHz for T1/J1 applications and 2.048 MHz or 49.152 MHz  
in E1 mode. This reference clock is used to generate several internal ref-  
erence signals:  
But for Automatic Transmit All Ones and AIS, only MCLK is used as the  
reference clock and the PATT_CLK bit is ignored. In Automatic Transmit  
All Ones condition, the ATAO bit (MAINT0, 0AH) is set to ‘1’. In AIS condi-  
tion, the AISE bit (MAINT0, 0AH) is set to ‘1’.  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLK signal during a loss of signal condition if AIS is  
enabled.  
Reference clock during a blue alarm Transmit All Ones (TAOS), all  
zeros, PRBS/QRSS and inband loopback patterns if it is selected  
as the reference clock. For ATAO and AIS, MCLK is always used as  
the reference clock.  
If TCLKn has been missing for more than 70 MCLK cycles, TCLK_LOS  
bit (STAT0, 14H...) will be set, and the corresponding TTIPn/TRINGn will  
become high impedance if this channel is not used for remote loopback or  
isnotusingMCLKtotransmitinternalpatterns(TAOS,AllZeros,PRBSand  
in-band loopback code). When TCLKn is detected again, TCLK_LOS bit  
(STAT0,14H...)willbecleared.ThereferencefrequencytodetectaTCLKn  
loss is derived from MCLK.  
Figure-19 shows the chip operation status in different conditions of  
MCLK and TCLKn. The missing of MCLK will set all the four TTIP/TRING  
to high impedance state.  
clocked  
MCLK=H/L?  
yes  
L/H  
clocked  
TCLKn status?  
transmitter n enters high  
impedance status and  
generates transmit clock loss  
interrupt if not masked  
all transmitters high  
impedance status  
normal operation mode  
Figure-19 TCLK Operation Flowchart  
30  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
interface. When pin INT/MOT is pulled to Low, the parallel microcontroller  
interface is configured for Motorola compatible hosts. When High, it is for  
Intel compatible microcontrollers.  
3.11 MICROCONTROLLER INTERFACES  
Themicrocontrollerinterfaceprovidesaccesstoreadandwritethereg-  
isters in the device. The chip supports serial processor interface and two  
kinds of parallel processor interface: Motorola non_multiplexed mode and  
Intel non_multiplexed mode. By pulling pin P/S to low or to High, the micro-  
controller interface can be set to work in serial mode or in parallel mode  
respectively. Refer to 7 MICROCONTROLLER INTERFACE TIMING  
CHARACTERISTICS for details.  
3.11.2 SERIAL MICROCONTROLLER INTERFACE  
TheserialinterfacepinsincludeSCLK,SDI,SDO,CSaswellasSCLKE  
(control pin for the selection of serial clock active edge). By pulling P/S pin  
to LOW, the device operates in the serial host Mode. In this mode, the reg-  
isters are programmed through a 24-bit word which contains an 8-bit  
address byte (A0~A7), a subsequent 8-bit command byte (bit R/W) and an  
8-bit data byte (D0~D7). When bit R/W is ‘1’, data is read out from pin SDO.  
When bit R/W is ‘0’, data is written into SDI pin. Refer to Figure-20.  
3.11.1 PARALLEL MICROCONTROLLER INTERFACE  
The interface is compatible with Motorola or Intel microcontroller. Pin  
INT/MOTisusedtoselecttheoperatingmodeoftheparallelmicrocontroller  
CS  
SCLK  
SDI  
D
o
n
'
t
C
a
r
e
A0 A1 A2 A3 A4 A5 A6 A7 R/W  
D0 D1 D2 D3 D4 D5 D6 D7  
command byte  
address byte  
input data byte (R/W=0)  
SDO  
D0 D1 D2 D3 D4 D5 D6 D7  
remains high impedance  
Output data byte (R/W=1)  
Figure-20 Serial Processor Interface Function Timing  
31  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
interrupt is acknowledged through reading the Interrupt Status Registers  
of all the channels (INTS0, 16H...) or (INTS1, 17H...) will all the bits in the  
INTCH register (80H) be reset and the INT pin become inactive.  
3.12 INTERRUPT HANDLING  
All kinds of interrupt of the IDT82V2044E are indicated by the INT pin.  
WhentheINT_PIN[0]bit(GCF0, 40H)is0’, theINTpinisopendrainactive  
low, with a 10 Kexternal pull-up resistor. When the INT_PIN[1:0] bits  
(GCF0, 40H) are ‘01’, the INT pin is push-pull active low; when the  
INT_PIN[1:0] bits are ‘10’, the INT pin is push-pull active high.  
There are totally thirteen kinds of events that could be the interrupt  
source for one channel:  
(1).LOS Detected  
(2).AIS Detected  
(3).Driver Failure Detected  
(4).TCLK Loss  
(5).Synchronization Status of PRBS  
(6).PRBS Error Detected  
(7).Code Violation Received  
(8).Excessive Zeros Received  
(9).JA FIFO Overflow/Underflow  
(10).Inband Loopback Code Status  
(11).One-Second Timer Expired  
(12).Error Counter Overflow  
All the interrupt can be disabled by the INTM_GLB bit (GCF0, 40H).  
When the INTM_GLB bit (GCF0, 40H) is set to ‘0’, an active level on the  
INT pin represents an interrupt of the IDT82V2044E. The INT_CH[7:0] bits  
(INTCH, 80H) should be read to identify which channel(s) generate the  
interrupt.  
The interrupt event is captured by the corresponding bit in the Interrupt  
Status Register (INTS0, 16H...) or (INTS1, 17H...). Every kind of interrupt  
canbeenabled/disabledindividuallybythecorrespondingbitintheregister  
(INTM0, 11H...) or (INTM1, 12H...). Some event is reflected by the corre-  
spondingbitintheStatusRegister(STAT0,14H...)or(STAT1,15H...),and  
theInterruptTriggerEdgeSelectionRegistercanbeusedtodeterminehow  
the Status Register sets the Interrupt Status Register.  
(13).Arbitrary Waveform Generator Overflow  
Table-18 is a summary of all kinds of interrupt and their associated Sta-  
tusbit,InterruptStatusbit,InterruptTriggerEdgeSelectionbitandInterrupt  
Mask bit.  
After the Interrupt Status Register (INTS0, 16H...) or (INTS1, 17H...) is  
read, the corresponding bit indicating which channel generates the inter-  
rupt in the INTCH register (80H) will be reset. Only when all the pending  
Table-18 Interrupt Event  
Interrupt Event  
Status bit  
(STAT0, STAT1)  
Interrupt Status bit  
(INTS0, INTS1)  
Interrupt Edge Selection bit  
(INTES)  
Interrupt Mask bit  
(INTM0, INTM1)  
LOS Detected  
AIS Detected  
LOS_S  
AIS_S  
LOS_IS  
AIS_IS  
LOS_IES  
AIS_IES  
LOS_IM  
AIS_IM  
Driver Failure Detected  
DF_S  
DF_IS  
DF_IES  
DF_IM  
TCLKn Loss  
TCLK_LOS  
PRBS_S  
TCLK_LOS_IS  
PRBS_IS  
ERR_IS  
TCLK_IES  
PRBS_IES  
TCLK_IM  
PRBS_IM  
ERR_IM  
CV_IM  
Synchronization Status of PRBS/QRSS  
PRBS/QRSS Error  
Code Violation Received  
Excessive Zeros Received  
JA FIFO Overflow  
CV_IS  
EXZ_IS  
EXZ_IM  
JAOV_IS  
JAUD_IS  
IBLBA_IS  
IBLBD_IS  
TMOV_IS  
CNT_OV_IS  
DAC_OV_IS  
JAOV_IM  
JAUD_IM  
IBLBA_IM  
IBLBD_IM  
TIMER_IM  
CNT_IM  
JA FIFO Underflow  
Inband Loopback Activate Code Status  
Inband Loopback Deactivate Code Status  
One-Second Timer Expired  
Error Counter Overflow  
IBLBA_S  
IBLBD_S  
IBLBA_IES  
IBLBD_IES  
Arbitrary Waveform Generator Overflow  
DAC_OV_IM  
Hardware Reset: Asserting the RST pin low for a minimum of 100 ns  
3.13 5V TOLERANT I/O PINS  
will reset the chip.  
All digital input pins will tolerate 5.0 ± 5% volts and are compatible with  
TTL logic.  
Afterreset, alldriversoutputareinhighimpedancestate, alltheinternal  
flip-flops are reset, and all the registers are initialized to default values.  
3.14 RESET OPERATION  
3.15 POWER SUPPLY  
The chip can be reset in two ways:  
This chip uses a single 3.3 V power supply.  
Software Reset: Writing to the RST register (20H) will reset the chip  
in 1 us.  
32  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4
PROGRAMMING INFORMATION  
4.1 REGISTER LIST AND MAP  
The IDT82V2044E registers can be divided into Global Registers and  
Local Registers. The operation on the Global Registers affects all the four  
channels while the operation on Local Registers only affects that specific  
channel. For different channel, the address of Local Register is different.  
Table-19 is the map of Global Registers and Table-20 is the map of Local  
Registers.Iftheconfigurationofallthefourchannelsisthesame,theCOPY  
bit (GCF0, 40H) can be set to ‘1’ to establish the Broadcasting mode. In the  
Broadcasting mode, the Writing operation on any of the four channels’ reg-  
isterswillbecopiedtothecorrespondingregistersofalltheotherchannels.  
Table-19 Global Register List and Map  
Address (Hex)  
Register  
R/W  
Map  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
00  
20  
40  
60  
80  
A0  
C0  
E0  
ID  
R
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
RST  
W
GCF0  
R/W  
R/W  
R
-
-
-
MON1  
-
T1E1  
MON0  
COPY  
INTM_GLB  
-
INT_PIN1  
INT_PIN0  
-
GCF1  
MON3  
-
MON2  
INT_CH4  
-
-
-
-
INTCH  
Reserved  
Reserved  
Reserved  
INT_CH3  
INT_CH2  
INT_CH1  
33  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-20 Per Channel Register List and Map  
Address (Hex)  
CH1-CH4  
Register R/W  
Map  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Jitter Attenuation Control Register  
01,41,81,C1  
JACF  
R/W  
-
-
JA_LIMIT  
JACF1  
JACF0  
JADP1  
JADP0  
JABW  
Transmit Path Control Registers  
02,42,82,C2  
03,43,83,C3  
04,44,84,C4  
05,45,85,C5  
06,46,86,C6  
TCF0  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
T_OFF  
THZ  
TD_INV  
PULS3  
SCAL3  
SAMP3  
WDAT3  
TCLK_SEL  
PULS2  
T_MD1  
PULS1  
SCAL1  
SAMP1  
WDAT1  
T_MD0  
PULS0  
SCAL0  
SAMP0  
WDAT0  
TCF1  
TCF2  
TCF3  
TCF4  
-
-
-
DFM_OFF  
SCAL5  
UI1  
-
DONE  
-
SCAL4  
UI0  
SCAL2  
RW  
SAMP2  
WDAT2  
WDAT6  
WDAT5  
WDAT4  
Receive Path Control Registers  
07,47,87,C7  
08,48,88,C8  
09,49,89,C9  
RCF0  
R/W  
R/W  
R/W  
-
-
-
-
-
R_OFF  
LOS4  
RD_INV  
LOS3  
-
RCLK_SEL  
R_MD1  
LOS1  
MG1  
R_MD0  
LOS0  
MG0  
RCF1  
RCF2  
EQ_ON  
-
-
LOS2  
-
SLICE1  
SLICE0  
Network Diagnostics Control Registers  
0A,4A,8A,CA  
0B,4B,8B,CB  
MAINT0 R/W  
MAINT1  
-
PATT1  
-
PATT0  
-
PATT_CLK  
-
PRBS_INV  
ARLP  
LAC  
RLP  
AISE  
ALP  
ATAO  
DLP  
-
0C,4C,8C,CC  
0D,4D,8D,CD  
0E,4E,8E,CE  
MAINT2 R/W  
MAINT3 R/W  
-
-
TIBLB_L1 TIBLB_L0  
RIBLBA_L1 RIBLBA_L0 RIBLBD_L1 RIBLBD_L0  
TIBLB7  
TIBLB6  
RIBLBA6  
RIBLBD6  
BPV_INS  
TIBLB5  
RIBLBA5  
RIBLBD5  
TIBLB4  
RIBLBA4  
RIBLBD4  
TIBLB3  
RIBLBA3  
RIBLBD3  
ERR_SEL1  
TIBLB2  
RIBLBA2  
RIBLBD2  
TIBLB1  
RIBLBA1  
RIBLBD1  
TIBLB0  
RIBLBA0  
RIBLBD0  
CNT_TRF  
MAINT4 R/W RIBLBA7  
MAINT5 R/W RIBLBD7  
0F,4F,8F,CF  
10,50,90,D0  
MAINT6 R/W  
-
ERR_INS EXZ_DEF  
ERR_SEL0 CNT_MD  
Interrupt Control Registers  
11,51,91,D1  
INTM0  
INTM1  
INTES  
R/W  
-
IBLBA_IM  
IBLBD_IM PRBS_IM  
TCLK_IM  
EXZ_IM  
DF_IM  
CV_IM  
DF_IES  
AIS_IM  
TIMER_IM  
AIS_IES  
LOS_IM  
CNT_IM  
LOS_IES  
12,52,92,D2  
R/W DAC_OV_IM JAOV_IM  
JAUD_IM  
ERR_IM  
13,53,93,D3  
R/W  
-
IBLBA_IES IBLBD_IES PRBS_IES  
TCLK_IES  
Line Status Registers  
14,54,94,D4  
STAT0  
STAT1  
R
R
-
-
IBLBA_S  
-
IBLBD_S  
RLP_S  
PRBS_S  
-
TCLK_LOS  
-
DF_S  
-
AIS_S  
-
LOS_S  
-
15,55,95,D5  
Interrupt Status Registers  
16,56,96,D6  
INTS0  
INTS1  
R
R
-
IBLBA_IS  
IBLBD_IS  
JAUD_IS  
PRBS_IS TCLK_LOS_IS  
DF_IS  
CV_IS  
AIS_IS  
LOS_IS  
17,57,97,D7  
DAC_OV_IS JAOV_IS  
ERR_IS  
EXZ_IS  
TMOV_IS CNT_OV_IS  
Counter Registers  
18,58,98,D8  
CNT0  
CNT1  
R
R
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit9  
Bit0  
Bit8  
19,59,99,D9  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Transmit and Receive Termination Registers  
1A,5A,9A,DA TERM R/W  
-
-
T_TERM2 T_TERM1  
T_TERM0  
R_TERM2 R_TERM1 R_TERM0  
34  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2 REGISTER DESCRIPTION  
4.2.1 GLOBAL REGISTERS  
Table-21 ID: Chip Revision Register  
(R, Address = 00H)  
Symbol  
Bit  
Default  
Description  
Description  
ID[7:0]  
7-0  
01H  
00H is for the first version.  
Table-22 RST: Reset Register  
(W, Address = 20H)  
Symbol  
Bit  
Default  
RST[7:0]  
7-0  
01H  
Software reset. A write operation on this register will reset all internal registers to their default values, and the sta-  
tus of all ports are set to the default status. The content in this register can not be changed.  
Table-23 GCF0: Global Configuration Register 0  
(R/W, Address = 40H)  
Symbol  
Bit  
7-6  
5
Default  
Description  
-
-
0
0
0
Reserved  
Reserved. For normal operation, this bit should be set to ‘0’.  
T1E1  
4
This bit selects E1 or T1/J1 operation mode globally.  
= 0: E1 mode is selected.  
= 1: T1/J1 mode is selected.  
COPY  
3
2
0
1
Enable broadcasting mode.  
= 0: Broadcasting mode disabled  
= 1: Broadcasting mode enabled. Writing operation on one channel's register will be copied exactly to the corre-  
sponding registers in all the other channels.  
INTM_GLB  
INT_PIN[1:0]  
Global interrupt enable  
= 0: Interrupt is globally enabled. But for each individual interrupt, it still can be disabled by its corresponding Inter-  
rupt mask Bit.  
= 1: All the interrupts are disabled for all channels.  
1-0  
00  
Interrupt pin operation mode selection  
= x0: open drain, active low (with an external pull-up resistor)  
= 01: push-pull, active low  
= 11: push-pull, active high  
35  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-24 GCF1: Global Configuration Register 1  
(R/W, Address = 60H)  
Symbol  
Bit  
Default  
Description  
MON[3:0]  
7-4  
0000  
MON selects the transmitter or receiver channel to be monitored.  
= 0000: receiver 1 is in normal operation without monitoring  
= 0001: reserved  
= 0010: monitor receiver 2  
= 0011: reserved  
= 0100: monitor receiver 3  
= 0101: reserved  
= 0110: monitor receiver 4  
= 0111: reserved  
= 1000: transmitter 1 is in normal operation without monitoring  
= 1001: reserved  
= 1010: monitor transmitter 2  
= 1011: reserved  
= 1100: monitor transmitter 3  
= 1101: reserved  
= 1110: monitor transmitter 4  
= 1111: reserved  
-
3-0  
0000  
Reserved  
Table-25 INTCH: Interrupt Channel Indication Register  
(R, Address = 80H)  
Symbol  
Bit  
Default  
Description  
INT_CH[7:0]  
7-0  
00H  
INT_CH[0, 2, 4 or 6]=1 indicates that an interrupt was generated by channel 1, 2, 3 or 4 respectively.  
36  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.2 JITTER ATTENUATION CONTROL REGISTER  
Table-26 JACF: Jitter Attenuator Configuration Register  
(R/W, Address = 01H,41H,81H,C1H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved  
JA_LIMIT  
Wide Jitter Attenuation bandwidth  
= 0: normal mode  
= 1: JA limit mode  
JACF[1:0]  
JADP[1:0]  
JABW  
4-3  
2-1  
0
00  
00  
0
Jitter Attenuator configuration  
= 00/10: JA not used  
= 01: JA in transmit path  
= 11: JA in receive path  
Jitter Attenuator depth selection  
= 00: 128 bits  
= 01: 64 bits  
= 10/11: 32 bits  
Jitter transfer function bandwidth selection  
JABW  
T1/J1  
5 Hz  
E1  
0
1
6.8 Hz  
0.9 Hz  
1.25 Hz  
37  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.3 TRANSMIT PATH CONTROL REGISTERS  
Table-27 TCF0: Transmitter Configuration Register 0  
(R/W, Address = 02H,42H,82H,C2H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
T_OFF  
0
Transmitter power down enable  
= 0: Transmitter power up  
= 1: Transmitter power down and line driver high impedance  
TD_INV  
TCLK_SEL  
T_MD[1:0]  
3
2
0
0
Transmit data invert  
= 0: data on TDn or TDPn/TDNn is active high  
= 1: data on TDn or TDPn/TDNn is active low  
Transmit clock edge select  
= 0: data on TDn or TDPn/TDNn is sampled on the falling edges of TCLKn  
= 1: data on TDn or TDPn/TDNn is sampled on the rising edges of TCLKn  
1-0  
00  
Transmitter operation mode control bits which select different stages of transmit data path  
= 00: enable HDB3/B8ZS encoder and waveform shaper blocks, input on TDn is single rail NRZ data  
= 01: enable AMI encoder and waveform shaper blocks, input on pin TDn is single rail NRZ data  
= 1x: encoder is bypassed, dual rail NRZ transmit data input on pin TDPn/TDNn  
Table-28 TCF1: Transmitter Configuration Register 1  
(R/W, Address = 03H,43H,83H,C3H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
Reserved. This bit should be ‘0’ for normal operation.  
00  
0
DFM_OFF  
Transmit driver failure monitor disable  
= 0: DFM is enabled  
= 1: DFM is disabled  
THZ  
4
1
Transmit line driver high impedance enable  
= 0: normal state  
= 1: transmit line driver high impedance enable (other transmit path still in normal state)  
PULS[3:0]  
3-0  
0000  
These bits select the transmit template.  
T1/E1/J1  
E1  
TCLK  
CableImpedance Cable Range  
Cable Loss  
0~24 dB  
00001  
0001  
2.048 MHz  
75 Ω  
-
E1  
2.048 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
120 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
110 Ω  
-
0~24 dB  
0~0.6 dB  
0010  
DSX1  
DSX1  
DSX1  
DSX1  
DSX1  
J1  
0~133 ft  
0011  
133~266 ft  
266~399 ft  
399~533 ft  
533~655 ft  
0~655 ft  
0.6~1.2 dB  
1.2~1.8 dB  
1.8~2.4 dB  
2.4~3.0 dB  
0~3.0 dB  
0100  
0101  
0110  
0111  
1000 - 1011  
11xx  
Reserved  
User programmable waveform setting  
1. In internal impedance matching mode, for E1/75 cable impedance, the PULS[3:0] bits (TCF1, 03H...) should be set to ‘0000’. In external impedance matching  
mode, for E1/75 cable impedance, the PULS[3:0] bits should be set to ‘0001’.  
38  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-29 TCF2: Transmitter Configuration Register 2  
(R/W, Address = 04H,44H,84H,C4H)  
Symbol  
-
Bit  
7-6  
5-0  
Default  
00  
Description  
Reserved  
SCAL[5:0]  
100001  
SCAL specifies a scaling factor to be applied to the amplitude of the user-programmable arbitrary pulses which is  
to be transmitted if needed. The default value of SCAL[5:0] is ‘100001’. Refer to 3.2.3.2 User-Programmable Arbi-  
trary Waveform.  
= 110110: default value for T1 0~133 ft, T1 133~266 ft, T1 266~399 ft, T1 399~533 ft, T1 533~655 ft, J1 0~655 ft.  
One step change of this value results in 2% scaling up/down against the pulse amplitude.  
= 100001: default value for E1 75 and 120 . One step change of this value results in 3% scaling up/down  
against the pulse amplitude.  
Table-30 TCF3: Transmitter Configuration Register 3  
(R/W, Address = 05H,45H,85H,C5H)  
Symbol  
DONE  
RW  
Bit  
7
Default  
Description  
0
0
After ‘1’ is written to this bit, a read or write operation is implemented.  
6
This bit selects read or write operation  
= 0: write to RAM  
= 1: read from RAM  
UI[1:0]  
5-4  
3-0  
00  
These bits specify the unit interval address. There are 4 unit intervals.  
= 00: UI address is 0 (The most left UI)  
= 01: UI address is 1  
= 10: UI address is 2  
= 11: UI address is 3  
SAMP[3:0]  
0000  
These bits specify the sample address. Each UI has 16 samples.  
= 0000: sample address is 0 (The most left Sample)  
= 0001: sample address is 1  
= 0010: sample address is 2  
......  
= 1110: sample address is 14  
= 1111: sample address is 15  
Table-31 TCF4: Transmitter Configuration Register 4  
(R/W, Address = 06H,46H,86H,C6H)  
Symbol  
-
Bit  
7
Default  
Description  
0
Reserved  
WDAT[6:0]  
6-0  
0000000 In Indirect Write operation, the WDAT[6:0] will be loaded to the pulse template RAM, specifying the amplitude of  
the Sample.  
After an Indirect Read operation, the amplitude data of the Sample in the pulse template RAM will be output to the  
WDAT[6:0].  
39  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.4 RECEIVE PATH CONTROL REGISTERS  
Table-32 RCF0: Receiver Configuration Register 0  
(R/W, Address = 07H,47H,87H,C7H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
R_OFF  
0
Receiver power down enable  
= 0: Receiver power up  
= 1: Receiver power down  
RD_INV  
RCLK_SEL  
R_MD[1:0]  
3
2
0
0
Receive data invert  
= 0: data on RDn or RDPn/RDNn is active high  
= 1: data on RDn or RDPn/RDNn is active low  
Receive clock edge select (this bit is ignored in slicer mode)  
= 0: data on RDn or RDPn/RDNn is updated on the rising edges of RCLKn  
= 1: data on RDn or RDPn/RDNn is updated on the falling edges of RCLKn  
1-0  
00  
Receiver path decoding selection  
= 00: receive data is HDB3 (E1) / B8ZS (T1/J1) decoded and output on RDn with single rail NRZ format  
= 01: receive data is AMI decoded and output on RDn with single rail NRZ format  
= 10: decoder is bypassed, re-timed dual rail data with NRZ format output on RDPn/RDNn (dual rail mode with  
clock recovery)  
= 11: both CDR and decoder blocks are bypassed, slicer data with RZ format output on RDPn/RDNn (slicer mode)  
Table-33 RCF1: Receiver Configuration Register 1  
(R/W, Address = 08H,48H,88H,C8H)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved  
EQ_ON  
6
= 0: receive equalizer off  
= 1: receive equalizer on (LOS programming enabled)  
Reserved. Should be 0 for normal operation.  
LOS Clear Level (dB)  
-
5
0
LOS[4:0]  
4-0  
10101  
LOS Declare Level (dB)  
00000  
00001  
00010  
00011  
0
<-4  
>-2  
<-6  
>-4  
<-8  
>-6  
<-10  
<-12  
<-14  
<-16  
<-18  
<-20  
<-22  
<-24  
00100  
00101  
00110  
>-8  
>-10  
>-12  
>-14  
>-16  
>-18  
>-20  
Reserved  
00111  
01000  
01001  
01010  
01011 - 11111  
40  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-34 RCF2: Receiver Configuration Register 2  
(R/W, Address =09H,49H,89H,C9H)  
Symbol  
-
Bit  
7-6  
5-4  
Default  
00  
Description  
Reserved  
SLICE[1:0]  
01  
Receive slicer threshold  
= 00: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 40% of the peak amplitude.  
= 01: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 50% of the peak amplitude.  
= 10: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 60% of the peak amplitude.  
= 11: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 70% of the peak amplitude.  
-
3-2  
1-0  
10  
00  
Reserved  
MG[1:0]  
Monitor gain setting: these bits select the internal linear gain boost  
= 00: 0 dB  
= 01: 22 dB  
= 10: 26 dB  
= 11: 32 dB  
41  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.5 NETWORK DIAGNOSTICS CONTROL REGISTERS  
Table-35 MAINT0: Maintenance Function Control Register 0  
(R/W, Address = 0AH,4AH,8AH,CAH)  
Symbol  
-
Bit  
7
Default  
Description  
0
Reserved  
PATT[1:0]  
6-5  
00  
These bits select the internal pattern and insert it into the transmit data stream.  
= 00: normal operation (PATT_CLK = 0) / insert all zeros (PATT_CLK = 1)  
= 01: insert All Ones  
= 10: insert PRBS (E1: 215-1) or QRSS (T1/J1: 220-1)  
= 11: insert programmable Inband Loopback activate or deactivate code  
PATT_CLK  
PRBS_INV  
LAC  
4
3
2
1
0
0
0
0
0
0
Selects reference clock for transmitting internal pattern  
= 0: uses TCLKn as the reference clock  
= 1: uses MCLK as the reference clock  
Inverts PRBS  
= 0: PRBS data is not inverted  
= 1: PRBS data is inverted before transmission and detection  
The LOS/AIS criterion is selected as below:  
= 0: G.775 (E1) / T1.231 (T1/J1)  
= 1: ETSI 300233 & I.431 (E1) / I.431 (T1/J1)  
AISE  
AIS enable during LOS  
= 0: AIS insertion on RDPn/RDNn/RCLKn is disabled during LOS  
= 1: AIS insertion on RDPn/RDNn/RCLKn is enabled during LOS  
ATAO  
Automatically Transmit All Ones (enabled only when PATT[1:0] = 01)  
= 0: disabled  
= 1: Automatically Transmit All Ones pattern at TTIPn/TRINGn during LOS.  
Table-36 MAINT1: Maintenance Function Control Register 1  
(R/W, Address = 0BH,4BH,8BH,CBH)  
Symbol  
-
Bit  
7-4  
3
Default  
0000  
0
Description  
Reserved  
ARLP  
Automatic Remote Loopback Control  
= 0: disables Automatic Remote Loopback (normal transmit and receive operation)  
= 1: enables Automatic Remote Loopback  
RLP  
ALP  
DLP  
2
1
0
0
0
0
Remote loopback enable  
= 0: disables remote loopback (normal transmit and receive operation)  
= 1: enables remote loopback  
Analog loopback enable  
= 0: disables analog loopback (normal transmit and receive operation)  
= 1: enables analog loopback  
Digital loopback enable  
= 0: disables digital loopback (normal transmit and receive operation)  
= 1: enables digital loopback  
42  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-37 MAINT2: Maintenance Function Control Register 2  
(R/W, Address = 0CH,4CH,8CH,CCH)  
Symbol  
Bit  
7-6  
5-4  
Default  
00  
Description  
-
Reserved.  
TIBLB_L[1:0]  
00  
Defines the length of the user-programmable transmit Inband Loopback activate/deactivate code contained in  
TIBLB register. The default selection is 5 bits length.  
= 00: 5-bit activate code in TIBLB [4:0]  
= 01: 6-bit activate code in TIBLB [5:0]  
= 10: 7-bit activate code in TIBLB [6:0]  
= 11: 8-bit activate code in TIBLB [7:0]  
RIBLBA_L[1:0]  
RIBLBD_L[1:0]  
3-2  
1-0  
00  
01  
Defines the length of the user-programmable receive Inband Loopback activate code contained in RIBLBA regis-  
ter.  
= 00: 5-bit activate code in RIBLBA [4:0]  
= 01: 6-bit activate code in RIBLBA [5:0]  
= 10: 7-bit activate code in RIBLBA [6:0]  
= 11: 8-bit activate code in RIBLBA [7:0]  
Defines the length of the user-programmable receive Inband Loopback deactivate code contained in RIBLBD reg-  
ister.  
= 00: 5-bit deactivate code in RIBLBD [4:0]  
= 01: 6-bit deactivate code in RIBLBD [5:0]  
= 10: 7-bit deactivate code in RIBLBD [6:0]  
= 11: 8-bit deactivate code in RIBLBD [7:0]  
Table-38 MAINT3: Maintenance Function Control Register 3  
(R/W, Address = 0DH,4DH,8DH,CDH)  
Symbol  
Bit  
Default  
Description  
TIBLB[7:0]  
7-0  
(000)00001 Defines the user-programmable transmit Inband Loopback activate/deactivate code. The default selection is  
00001.  
TIBLB[7:0] form the 8-bit repeating code  
TIBLB[6:0] form the 7-bit repeating code  
TIBLB[5:0] form the 6-bit repeating code  
TIBLB[4:0] form the 5-bit repeating code  
Table-39 MAINT4: Maintenance Function Control Register 4  
(R/W, Address = 0EH,4EH,8EH,CEH)  
Symbol  
Bit  
Default  
Description  
RIBLBA[7:0]  
7-0  
(000)00001 Defines the user-programmable receive Inband Loopback activate code. The default selection is 00001.  
RIBLBA[7:0] form the 8-bit repeating code  
RIBLBA[6:0] form the 7-bit repeating code  
RIBLBA[5:0] form the 6-bit repeating code  
RIBLBA[4:0] form the 5-bit repeating code  
Table-40 MAINT5: Maintenance Function Control Register 5  
(R/W, Address = 0FH,4FH,8FH,CFH)  
Symbol  
Bit  
Default  
Description  
RIBLBD[7:0]  
7-0  
(00)001001 Defines the user-programmable receive Inband Loopback deactivate code. The default selection is 001001.  
RIBLBD[7:0] form the 8-bit repeating code  
RIBLBD[6:0] form the 7-bit repeating code  
RIBLBD[5:0] form the 6-bit repeating code  
RIBLBD[4:0] form the 5-bit repeating code  
43  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-41 MAINT6: Maintenance Function Control Register 6  
(R/W, Address = 10H,50H,90H,D0H)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved.  
BPV_INS  
6
BPV error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single bipolar violation error to be inserted into the transmit data  
stream. This bit must be cleared and set again for a subsequent error to be inserted.  
ERR_INS  
EXZ_DEF  
ERR_SEL  
5
4
0
0
PRBS/QRSS logic error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single PRBS/QRSS logic error to be inserted into the transmit PRBS/  
QRSS data stream. This bit must be cleared and set again for subsequent error to be inserted.  
EXZ definition select  
= 0: ANSI  
= 1: FCC  
3-2  
00  
These bits choose which type of error will be counted  
= 00: the PRBS logic error is counted by a 16-bit error counter.  
= 01: the EXZ error is counted by a 16-bit error counter.  
= 10: the Received CV (BPV) error is counted by a 16-bit error counter.  
= 11: both CV (BPV) and EXZ errors are counted by a 16-bit error counter.  
CNT_MD  
CNT_TRF  
1
0
0
0
Counter operation mode select  
= 0: Manual Report Mode  
= 1: Auto Report Mode  
= 0: Clear this bit for the next ‘0’ to ‘1’ transition on this bit.  
= 1: Error counting result is transferred to CNT0 and CNT1 and the error counter is reset.  
44  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.6 INTERRUPT CONTROL REGISTERS  
Table-42 INTM0: Interrupt Mask Register 0  
(R/W, Address = 11H,51H,91H,D1H)  
Symbol  
-
Bit  
7
Default  
Description  
-
Reserved  
IBLBA_IM  
6
1
In-band Loopback activate code detect interrupt mask  
= 0: In-band Loopback activate code detect interrupt enabled  
= 1: In-band Loopback activate code detect interrupt masked  
IBLBD_IM  
PRBS_IM  
TCLK_IM  
DF_IM  
5
4
3
2
1
0
1
1
1
1
1
1
In-band Loopback deactivate code detect interrupt mask  
= 0: In-band Loopback deactivate code detect interrupt enabled  
= 1: In-band Loopback deactivate code detect interrupt masked  
PRBS synchronic signal detect interrupt mask  
= 0: PRBS synchronic signal detect interrupt enabled  
= 1: PRBS synchronic signal detect interrupt masked  
TCLK loss detect interrupt mask  
= 0: TCLK loss detect interrupt enabled  
= 1: TCLK loss detect interrupt masked  
Driver failure interrupt mask  
= 0: Driver failure interrupt enabled  
= 1: Driver failure interrupt masked  
AIS_IM  
Alarm Indication Signal interrupt mask  
= 0: Alarm Indication Signal interrupt enabled  
= 1: Alarm Indication Signal interrupt masked  
LOS_IM  
Loss Of Signal interrupt mask  
= 0: Loss Of Signal interrupt enabled  
= 1: Loss Of Signal interrupt masked  
Table-43 INTM1: Interrupt Mask Register 1  
(R/W, Address = 12H,52H,92H,D2H)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IM  
7
1
DAC arithmetic overflow interrupt mask  
= 0: DAC arithmetic overflow interrupt enabled  
= 1: DAC arithmetic overflow interrupt masked  
JAOV_IM  
JAUD_IM  
ERR_IM  
EXZ_IM  
CV_IM  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
JA overflow interrupt mask  
= 0: JA overflow interrupt enabled  
= 1: JA overflow interrupt masked  
JA underflow interrupt mask  
= 0: JA underflow interrupt enabled  
= 1: JA underflow interrupt masked  
PRBS/QRSS logic error detect interrupt mask  
= 0: PRBS/QRSS logic error detect interrupt enabled  
= 1: PRBS/QRSS logic error detect interrupt masked  
Receive excess zeros interrupt mask  
= 0: Receive excess zeros interrupt enabled  
= 1: Receive excess zeros interrupt masked  
Receive error interrupt mask  
= 0: Receive error interrupt enabled  
= 1: Receive error interrupt masked  
TIMER_IM  
CNT_IM  
One-Second Timer expiration interrupt mask  
= 0: One-Second Timer expiration interrupt enabled  
= 1: One-Second Timer expiration interrupt masked  
Counter overflow interrupt mask  
= 0: Counter overflow interrupt enabled  
= 1: Counter overflow interrupt masked  
45  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-44 INTES: Interrupt Trigger Edges Select Register  
(R/W, Address = 13H, 53H,93H,D3H)  
Symbol  
-
Bit  
7
Default  
Description  
-
Reserved  
IBLBA_IES  
6
0
This bit determines the Inband Loopback Activate Code interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the IBLBA_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBA_S bit in the STAT0  
status register.  
IBLBD_IES  
PRBS_IES  
TCLK_IES  
DF_IES  
5
4
3
2
1
0
0
0
0
0
0
0
This bit determines the Inband Loopback Deactivate Code interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the IBLBD_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBD_S bit in the STAT0  
status register.  
This bit determines the PRBS/QRSS synchronization status interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the PRBS_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the PRBS_S bit in the STAT0  
status register.  
This bit determines the TCLK Loss interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the TCLK_LOS bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the TCLK_LOS bit in the  
STAT0 status register.  
This bit determines the Driver Failure interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the DF_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the DF_S bit in the STAT0  
status register.  
AIS_IES  
This bit determines the AIS interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the AIS_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the AIS_S bit in the STAT0  
status register.  
LOS_IES  
This bit determines the LOS interrupt event.  
= 0: interrupt event is defined as a ‘0’ to ‘1’ transition of the LOS_S bit in the STAT0 status register  
= 1: interrupt event is defined as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the LOS_S bit in the STAT0  
status register.  
46  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.7 LINE STATUS REGISTERS  
Table-45 STAT0: Line Status Register 0 (real time status monitor)  
(R, Address = 14H,54H,94H,D4H)  
Symbol  
-
Bit  
7
Default  
Description  
-
Reserved  
IBLBA_S  
6
0
Inband Loopback activate code receive status indication  
= 0: no Inband Loopback activate code is detected  
= 1: activate code has been detected for more than t ms. Even there is bit error, this bit remains set as long as the  
bit error rate is less than 10-2.  
Note1:  
Automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms. If automatic remote loopback switching is  
enabled (ARLP = 1), t = 5.1 s. The rising edge of this bit activates the remote loopback operation in local end.  
Note2:  
If IBLBA_IM=0 and IBLBA_IES=0, a ‘0’ to ‘1’ transition on this bit will cause an activate code detect interrupt.  
If IBLBA_IM=0 and IBLBA_IES=1, any changes on this bit will cause an activate code detect interrupt.  
IBLBD_S  
5
0
Inband Loopback deactivate code receive status indication  
= 0: no Inband Loopback deactivate code is detected  
= 1: the Inband Loopback deactivate code has been detected for more than t. Even there is a bit error, this bit  
remains set as long as the bit error rate is less than 10-2.  
Note1:  
Automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms.If automatic remote loopback switching is  
enabled (ARLP = 1), t= 5.1 s. The rising edge of this bit disables the remote loopback operation.  
Note2:  
If IBLBD_IM=0 and IBLBD_IES=0, a ‘0’ to ‘1’ transition on this bit will cause a deactivate code detect interrupt.  
If IBLBD_IM=0 and IBLBD_IES=1, any changes on this bit will cause a deactivate code detect interrupt.  
PRBS_S  
4
0
Synchronous status indication of PRBS/QRSS (real time)  
= 0: 215-1 (E1) PRBS or 220-1 (T1/J1) QRSS is not detected  
= 1: 215-1 (E1) PRBS or 220-1 (T1/J1) QRSS is detected.  
Note:  
If PRBS_IM=0 and PRBS_IES=0, a ‘0’ to ‘1’ transition on this bit will cause a synchronous status detect interrupt.  
If PRBS_IM=0 and PRBS_IES=1, any changes on this bit will cause a synchronous status detect interrupt.  
TCLK_LOS  
3
2
0
0
TCLKn loss indication  
= 0: normal  
= 1: TCLKn pin has not toggled for more than 70 MCLK cycles.  
Note:  
If TCLK_IM=0 and TCLK_IES=0, a ‘0’ to ‘1’ transition on this bit will cause an interrupt.  
If TCLK_IM=0 and TCLK_IES=1, any changes on this bit will cause an interrupt.  
DF_S  
Line driver status indication  
= 0: normal operation  
= 1: line driver short circuit is detected.  
Note:  
If DF_IM=0 and DF_IES=0, a ‘0’ to ‘1’ transition on this bit will cause an interrupt.  
If DF_IM=0 and DF_IES=1, any changes on this bit will cause an interrupt.  
47  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-45 STAT0: Line Status Register 0 (real time status monitor) (Continued)  
(R, Address = 14H,54H,94H,D4H)  
Symbol  
Bit  
Default  
Description  
AIS_S  
1
0
Alarm Indication Signal status detection  
= 0: no AIS signal is detected in the receive path  
= 1: AIS signal is detected in the receive path  
Note:  
If AIS_IM=0 and AIS_IES=0, a ‘0’ to ‘1’ transition on this bit will cause an interrupt.  
If AIS_IM=0 and AIS_IES=1, any changes on this bit will cause an interrupt.  
LOS_S  
0
0
Loss of Signal status detection  
= 0: Loss of signal on RTIP/RRING is not detected  
= 1: Loss of signal on RTIP/RRING is detected  
Note:  
IF LOS_IM=0 and LOS_IES=0, a ‘0’ to ‘1’ transition on this bit will cause an interrupt.  
IF LOS_IM=0 and LOS_IES=1, any changes on this bit will cause an interrupt.  
Table-46 STAT1: Line Status Register 1 (real time status monitor)  
(R, Address = 15H, 55H,95H, D5H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved  
RLP_S  
Indicating the status of Remote Loopback  
= 0: The remote loopback is inactive.  
= 1: The remote loopback is active (closed).  
-
4-0  
00000  
Reserved  
48  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.8 INTERRUPT STATUS REGISTERS  
Table-47 INTS0: Interrupt Status Register 0  
(this register is reset after a read operation) (R, Address = 16H, 56H,96H, D6H)  
Bit Default Description  
Symbol  
-
7
0
Reserved  
IBLBA_IS  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit indicates the occurrence of the Inband Loopback Activate Code interrupt event.  
= 0: no Inband Loopback Activate Code interrupt event occurred  
= 1: Inband Loopback Activate Code Interrupt event occurred  
IBLBD_IS  
PRBS_IS  
TCLK_LOS_IS  
DF_IS  
This bit indicates the occurrence of the Inband Loopback Deactivate Code interrupt event.  
= 0: no Inband Loopback Deactivate Code interrupt event occurred  
= 1: interrupt event of the received inband loopback deactivate code occurred.  
This bit indicates the occurrence of the interrupt event generated by the PRBS/QRSS synchronization status.  
= 0: no PRBS/QRSS synchronization status interrupt event occurred  
= 1: PRBS/QRSS synchronization status interrupt event occurred  
This bit indicates the occurrence of the interrupt event generated by the TCLKn loss detection.  
= 0: no TCLKn loss interrupt event.  
= 1:TCLKn loss interrupt event occurred.  
This bit indicates the occurrence of the interrupt event generated by the Driver Failure.  
= 0: no Driver Failure interrupt event occurred  
= 1: Driver Failure interrupt event occurred  
AIS_IS  
This bit indicates the occurrence of the AIS (Alarm Indication Signal) interrupt event.  
= 0: no AIS interrupt event occurred  
= 1: AIS interrupt event occurred  
LOS_IS  
This bit indicates the occurrence of the LOS (Loss of signal) interrupt event.  
= 0: no LOS interrupt event occurred  
= 1: LOS interrupt event occurred  
Table-48 INTS1: Interrupt Status Register 1  
(this register is reset and relevant interrupt request is cleared after a read) (R, Address = 17H, 57H,97H, D7H)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IS  
7
0
This bit indicates the occurrence of the pulse amplitude overflow of Arbitrary Waveform Generator interrupt event.  
= 0: no pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
= 1: the pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
JAOV_IS  
JAUD_IS  
ERR_IS  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit indicates the occurrence of the Jitter Attenuator Overflow interrupt event.  
= 0: no JA overflow interrupt event occurred  
= 1: A overflow interrupt event occurred  
This bit indicates the occurrence of the Jitter Attenuator Underflow interrupt event.  
= 0: no JA underflow interrupt event occurred  
= 1: JA underflow interrupt event occurred  
This bit indicates the occurrence of the interrupt event generated by the detected PRBS/QRSS logic error.  
= 0: no PRBS/QRSS logic error interrupt event occurred  
= 1: PRBS/QRSS logic error interrupt event occurred  
EXZ_IS  
This bit indicates the occurrence of the Excessive Zeros interrupt event.  
= 0: no excessive zeros interrupt event occurred  
= 1: EXZ interrupt event occurred  
CV_IS  
This bit indicates the occurrence of the Code Violation interrupt event.  
= 0: no code violation interrupt event occurred  
= 1: code violation interrupt event occurred  
TMOV_IS  
CNT_OV_IS  
This bit indicates the occurrence of the One-Second Timer Expiration interrupt event.  
= 0: no one-second timer expiration interrupt event occurred  
= 1: one-second timer expiration interrupt event occurred  
This bit indicates the occurrence of the Counter Overflow interrupt event.  
= 0: no counter overflow interrupt event occurred  
= 1: counter overflow interrupt event occurred  
49  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.9 COUNTER REGISTERS  
Table-49 CNT0: Error Counter L-byte Register 0  
(R, Address = 18H, 58H,98H, D8H)  
Symbol  
Bit  
Default  
Description  
This register contains the lower eight bits of the 16-bit error counter. CNT_L[0] is the LSB.  
CNT_L[7:0]  
7-0  
00H  
Table-50 CNT1: Error Counter H-byte Register 1  
(R, Address = 19H, 59H,99H,D9H)  
Symbol  
Bit  
Default  
Description  
CNT_H[7:0]  
7-0  
00H  
This register contains the upper eight bits of the 16-bit error counter. CNT_H[7] is the MSB.  
50  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
4.2.10 TRANSMIT AND RECEIVE TERMINATION REGISTER  
Table-51 TERM: Transmit and Receive Termination Configuration Register  
(R/W, Address = 1AH, 5AH,9AH,DAH)  
Symbol  
Bit  
7-6  
5-3  
Default  
00  
Description  
-
Reserved  
T_TERM[2:0]  
000  
These bits select the internal termination for transmit line impedance matching.  
= 000: internal 75 impedance matching  
= 001: internal 120 impedance matching  
= 010: internal 100 impedance matching  
= 011: internal 110 impedance matching  
=1xx: Selects external impedance matching resistors for E1 mode only. T1/J1 does not require external imped-  
ance resistors (see Table-10).  
R_TERM[2:0]  
2-0  
000  
These bits select the internal termination for receive line impedance matching.  
= 000: internal 75 impedance matching  
= 001: internal 120 impedance matching  
= 010: internal 100 impedance matching  
= 011: internal 110 impedance matching  
= 1xx: Selects external impedance matching resistors (see Table-11).  
51  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Clock (TCK) pins. Data is shifted into the registers via the Test Data Input  
(TDI) pin, and shifted out of the registers via the Test Data Output (TDO)  
pin. Both TDI and TDO are clocked at a rate determined by TCK.  
5
IEEE STD 1149.1 JTAG TEST  
ACCESS PORT  
TheIDT82V2044EsupportsthedigitalBoundaryScanSpecificationas  
described in the IEEE 1149.1 standards.  
The JTAG boundary scan registers include BSR (Boundary Scan Reg-  
ister), IDR (Device Identification Register), BR (Bypass Register) and IR  
(InstructionRegister).Thesewillbedescribedinthefollowingpages.Refer  
to for architecture.  
The boundary scan architecture consists of data and instruction regis-  
ters plus a Test Access Port (TAP) controller. Control of the TAP is per-  
formed through signals applied to the Test Mode Select (TMS) and Test  
Digital output pins  
Digital input pins  
parallel latched output  
BSR (Boundary Scan Register)  
MUX  
IDR (Device Identification Register)  
BR (Bypass Register)  
TDI  
TDO  
IR (Instruction Register)  
Control<6:0>  
TMS  
TAP  
Select  
TRST  
(Test Access Port)  
Controller  
High Impedance Enable  
TCK  
Figure-21 JTAG Architecture  
52  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
5.1 JTAG INSTRUCTIONS AND INSTRUCTION REG-  
ISTER  
The IR (Instruction Register) with instruction decode block is used to  
select the test to be executed or the data register to be accessed or both.  
The instructions are shifted in LSB first to this 3-bit register. See Table-  
52 for details of the codes and the instructions related.  
Table-52 Instruction Register Description  
IR CODE  
INSTRUCTION  
COMMENTS  
000  
Extest  
The external test instruction allows testing of the interconnection to other devices. When the current instruction is the  
EXTEST instruction, the boundary scan register is placed between TDI and TDO. The signal on the input pins can be sam-  
pled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting  
the boundary scan register using the Shift-DR state. The signal on the output pins can be controlled by loading patterns  
shifted in through input TDI into the boundary scan register using the Update-DR state.  
100  
Sample / Preload The sample instruction samples all the device inputs and outputs. For this instruction, the boundary scan register is placed  
between TDI and TDO. The normal path between IDT82V2044E logic and the I/O pins is maintained. Primary device inputs  
and outputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can  
then be viewed by shifting the boundary scan register using the Shift-DR state.  
110  
111  
Idcode  
The identification instruction is used to connect the identification register between TDI and TDO. The device's identification  
code can then be shifted out using the Shift-DR state.  
Bypass  
The bypass instruction shifts data from input TDI to output TDO with one TCK clock period delay. The instruction is used to  
bypass the device.  
5.2 JTAG DATA REGISTER  
5.2.1 DEVICE IDENTIFICATION REGISTER (IDR)  
The IDR can be set to define the producer number, part number and  
the device revision, which can be used to verify the proper version or re-  
vision number that has been used in the system under test. The IDR is  
32 bits long and is partitioned as in Table-53. Data from the IDR is shifted  
out to TDO LSB first.  
Table-53 Device Identification Register Description  
Bit No.  
0
Comments  
Set to ‘1’  
1-11  
Producer Number  
Part Number  
12-27  
28-31  
Device Revision  
5.2.2 BYPASS REGISTER (BR)  
The BR consists of a single bit. It can provide a serial path between the  
TDI inputand TDO output, bypassing the BSR toreduce test access times.  
5.2.3 BOUNDARY SCAN REGISTER (BSR)  
The BSR can apply and read test patterns in parallel to or from all the  
digital I/O pins. The BSR is a 98 bits long shift register and is initialized and  
read using the instruction EXTEST or SAMPLE/PRELOAD. Each pin is  
related to one or more bits in the BSR. For details, please refer to the BSDL  
file.  
53  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
5.2.4 TEST ACCESS PORT CONTROLLER  
tion registers. The value shown next to each state transition in this figure  
states the value present at TMS at each rising edge of TCK. Please refer  
to Table-54 for details of the state description.  
The TAP controller is a 16-state synchronous state machine. Figure-22  
shows its state diagram following the description of each state. Note that  
the figure contains two main branches to access either the data or instruc-  
Table-54 TAP Controller State Description  
STATE  
DESCRIPTION  
Test Logic Reset  
In this state, the test logic is disabled. The device is set to normal operation. During initialization, the device initializes the instruction register  
with the IDCODE instruction. Regardless of the original state of the controller, the controller enters the Test-Logic-Reset state when the  
TMS input is held high for at least 5 rising edges of TCK. The controller remains in this state while TMS is high. The device processor auto-  
matically enters this state at power-up.  
Run-Test/Idle  
This is a controller state between scan operations. Once in this state, the controller remains in the state as long as TMS is held low. The  
instruction register and all test data registers retain their previous state. When TMS is high and a rising edge is applied to TCK, the control-  
ler moves to the Select-DR state.  
Select-DR-Scan  
This is a temporary controller state and the instruction does not change in this state. The test data register selected by the current instruc-  
tion retains its previous state. If TMS is held low and a rising edge is applied to TCK when in this state, the controller moves into the Cap-  
ture-DR state and a scan sequence for the selected test data register is initiated. If TMS is held high and a rising edge applied to TCK, the  
controller moves to the Select-IR-Scan state.  
Capture-DR  
Shift-DR  
In this state, the Boundary Scan Register captures input pin data if the current instruction is EXTEST or SAMPLE/PRELOAD. The instruc-  
tion does not change in this state. The other test data registers, which do not have parallel input, are not changed. When the TAP controller  
is in this state and a rising edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.  
In this controller state, the test data register connected between TDI and TDO as a result of the current instruction shifts data on stage  
toward its serial output on each rising edge of TCK. The instruction does not change in this state. When the TAP controller is in this state  
and a rising edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or remains in the Shift-DR state if TMS is low.  
Exit1-DR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-DR  
state. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state.  
Pause-DR  
The pause state allows the test controller to temporarily halt the shifting of data through the test data register in the serial path between TDI  
and TDO. For example, this state could be used to allow the tester to reload its pin memory from disk during application of a long test  
sequence. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state. The controller remains in this state as long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller  
moves to the Exit2-DR state.  
Exit2-DR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-DR  
state. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state.  
Update-DR  
The Boundary Scan Register is provided with a latched parallel output to prevent changes while data is shifted in response to the EXTEST  
and SAMPLE/PRELOAD instructions. When the TAP controller is in this state and the Boundary Scan Register is selected, data is latched  
into the parallel output of this register from the shift-register path on the falling edge of TCK. The data held at the latched parallel output  
changes only in this state. All shift-register stages in the test data register selected by the current instruction retain their previous value and  
the instruction does not change during this state.  
Select-IR-Scan  
Capture-IR  
Shift-IR  
This is a temporary controller state. The test data register selected by the current instruction retains its previous state. If TMS is held low  
and a rising edge is applied to TCK when in this state, the controller moves into the Capture-IR state, and a scan sequence for the instruc-  
tion register is initiated. If TMS is held high and a rising edge is applied to TCK, the controller moves to the Test-Logic-Reset state. The  
instruction does not change during this state.  
In this controller state, the shift register contained in the instruction register loads a fixed value of '100' on the rising edge of TCK. This sup-  
ports fault-isolation of the board-level serial test data path. Data registers selected by the current instruction retain their value and the  
instruction does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters  
the Exit1-IR state if TMS is held high, or the Shift-IR state if TMS is held low.  
In this state, the shift register contained in the instruction register is connected between TDI and TDO and shifts data one stage towards its  
serial output on each rising edge of TCK. The test data register selected by the current instruction retains its previous value and the instruc-  
tion does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters the Exit1-  
IR state if TMS is held high, or remains in the Shift-IR state if TMS is held low.  
Exit1-IR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-IR  
state. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state.  
54  
 
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-54 TAP Controller State Description (Continued)  
STATE  
DESCRIPTION  
Pause-IR  
The pause state allows the test controller to temporarily halt the shifting of data through the instruction register. The test data register  
selected by the current instruction retains its previous value and the instruction does not change during this state. The controller remains in  
this state as long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller moves to the Exit2-IR state.  
Exit2-IR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Update-IR  
The instruction shifted into the instruction register is latched into the parallel output from the shift-register path on the falling edge of TCK.  
When the new instruction has been latched, it becomes the current instruction. The test data registers selected by the current instruction  
retain their previous value.  
1
Test-logic Reset  
0
0
1
1
1
Run Test/Idle  
Select-DR  
0
Select-IR  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
0
Exit1-DR  
0
Exit1-IR  
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
0
0
1
1
Figure-22 JTAG State Diagram  
55  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
6
TEST SPECIFICATIONS  
Table-55 Absolute Maximum Rating  
Symbol  
Parameter  
Min  
-0.5  
Max  
4.6  
4.6  
4.6  
4.6  
5.5  
Unit  
V
VDDA, VDDD  
VDDIO  
Core Power Supply  
I/O Power Supply  
-0.5  
V
VDDT1-4  
VDDR1-4  
Transmit Power Supply  
Receive Power Supply  
-0.5  
V
-0.5  
Input Voltage, Any Digital Pin  
GND-0.5  
GND-0.5  
V
Input Voltage, Any RTIP and RRING pin1  
ESD Voltage, any pin  
VDDR+0.5  
V
V
V
Vin  
Iin  
2000 2  
500 3  
Transient latch-up current, any pin  
Input current, any digital pin 4  
100  
10  
mA  
mA  
-10  
DC Input current, any analog pin 4  
Maximum power dissipation in package  
Case Temperature  
±100  
mA  
Pd  
1.69  
120  
W
°C  
°C  
Tc  
Ts  
Storage Temperature  
-65  
+150  
CAUTION  
Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
1.Reference to ground  
2.Human body model  
3.Charge device model  
4.Constant input current  
Table-56 Recommended Operation Conditions  
Symbol  
Parameter  
Min  
3.13  
3.13  
3.13  
3.13  
-40  
Typ  
3.3  
3.3  
3.3  
3.3  
25  
Max  
3.47  
3.47  
3.47  
3.47  
85  
Unit  
V
VDDA,VDDD  
VDDIO  
VDDT  
Core Power Supply  
I/O Power Supply  
V
Transmitter Power Supply  
Receive Power Supply  
Ambient operating temperature  
E1, 75 Load  
V
VDDR  
V
TA  
°C  
50% ones density data  
100% ones density data  
-
-
250  
300  
270  
320  
mA  
mA  
mA  
mA  
E1, 120 Load  
T1, 100 Load  
J1, 110 Load  
50% ones density data  
100% ones density data  
-
-
240  
280  
260  
300  
Total current dissipation1,2,3  
50% ones density data  
100% ones density data  
-
-
270  
360  
290  
380  
50% ones density data  
100% ones density data  
-
-
230  
300  
250  
320  
1.Power consumption includes power consumption on device and load. Digital levels are 10% of the supply rails and digital outputs driving a 50 pF capacitive load.  
2.Maximum power consumption over the full operating temperature and power supply voltage range.  
3.Internal impedance matching, E1 75power dissipation values are measured with template PULS[3:0] = 0000; E1 120power dissipation values are measured with  
templatePULS[3:0]=0001;T1powerdissipationvaluesaremeasuredwithtemplatePULS[3:0]=0110;J1powerdissipationvaluesaremeasuredwithtemplatePULS[3:0]  
= 0111.  
56  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-57 Power Consumption  
Max1,2  
Unit  
Symbol  
Parameter  
Min  
Typ  
E1, 3.3 V, 75 Load  
E1, 3.3 V, 120 Load  
50% ones density data:  
100% ones density data:  
-
-
830  
990  
-
mW  
mW  
mW  
1110  
50% ones density data:  
100% ones density data:  
-
-
790  
920  
-
1050  
T1, 3.3 V, 100 Load3  
J1, 3.3 V, 110 Load  
-
-
890  
1190  
-
50% ones density data:  
100% ones density data:  
1320  
50% ones density data:  
100% ones density data:  
-
-
760  
990  
mW  
1110  
1.Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.  
2.Power consumption includes power absorbed by line load and external transmitter components.  
3.T1 is measured with maximum cable length.  
Table-58 DC Characteristics  
Symbol  
Parameter  
Input Low Level Voltage  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
-
-
0.8  
V
V
V
V
V
Input High Voltage  
2.0  
-
-
-
-
VOL  
VOH  
VMA  
Output Low level Voltage (Iout=1.6mA)  
Output High level Voltage (Iout=400µA)  
0.4  
2.4  
-
VDDIO  
Analog Input Quiescent Voltage (RTIP, RRING  
pin while floating)  
1.5  
II  
Input Leakage Current  
TMS, TDI, TRST  
All other digital input pins  
50  
10  
µA  
µA  
-10  
-10  
IZL  
High Impedance Leakage Current  
10  
µA  
Ci  
Input capacitance  
15  
50  
pF  
pF  
pF  
Co  
Co  
Output load capacitance  
Output load capacitance (bus pins)  
100  
57  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-59 E1 Receiver Electrical Characteristics  
Symbol  
Parameter  
Receiver sensitivity  
Min  
Typ  
Max  
Unit  
Test conditions  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
-10  
-20  
dB  
Analog LOS level  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
800  
mVp-p A LOS level is programmable with Adaptive  
dB Equalizer enabled  
-4  
-24  
0.05  
±1%  
Allowable consecutive zeros before LOS  
G.775:  
32  
2048  
I.431/ETSI300233:  
LOS reset  
12.5  
% ones G.775, ETSI 300 233  
Receive Intrinsic Jitter  
20Hz - 100kHz  
U.I.  
JA enabled  
Input Jitter Tolerance  
1 Hz – 20 Hz  
37  
5
2
U.I.  
U.I.  
U.I.  
G.823, with 6 dB cable attenuation  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
ZDM  
Receiver Differential Input Impedance  
Input termination resistor tolerance  
20  
KΩ  
Internal mode  
Receive Return Loss  
51 KHz – 102 KHz  
RRX  
RPD  
20  
20  
20  
dB  
dB  
dB  
G.703 Internal termination  
102 KHz - 2.048 MHz  
2.048 MHz – 3.072 MHz  
Receive path delay  
Single rail  
Dual rail  
7
2
U.I.  
U.I.  
JA disabled  
58  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-60 T1/J1 Receiver Electrical Characteristics  
Symbol  
Parameter  
Receiver sensitivity  
Min  
Typ  
Max  
Unit  
Test conditions  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
-10  
-20  
dB  
Analog LOS level  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
800  
mVp-p A LOS level is programmable with Adaptive  
dB Equalizer enabled  
-4  
-24  
Allowable consecutive zeros before LOS  
T1.231-1993  
I.431  
175  
1544  
LOS reset  
12.5  
% ones G.775, ETSI 300 233  
JA enabled ( in receive path)  
U.I.  
U.I.  
U.I.  
U.I.  
Receive Intrinsic Jitter  
10 Hz – 8 KHz  
10 Hz – 40 KHz  
8 KHz – 40 KHz  
Wide band  
0.02  
0.025  
0.025  
0.050  
Input Jitter Tolerance  
0.1 Hz – 1 Hz  
138.0  
28.0  
0.4  
U.I.  
U.I.  
U.I.  
AT&T62411  
4.9 Hz – 300 Hz  
10 KHz – 100 KHz  
ZDM  
Receiver Differential Input Impedance  
Input termination resistor tolerance  
20  
KΩ  
Internal mode  
±1%  
RRX  
Receive Return Loss  
39 KHz – 77 KHz  
20  
20  
20  
dB  
dB  
dB  
G.703  
Internal termination  
77 KHz - 1.544 MHz  
1.544 MHz – 2.316 MHz  
RPD  
Receive path delay  
Single rail  
JA disabled  
7
2
U.I.  
U.I.  
Dual rail  
59  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-61 E1 Transmitter Electrical Characteristics  
Symbol  
Vo-p  
Parameter  
Min  
Typ  
Max  
Unit  
Output pulse amplitudes  
E1, 75load  
2.14  
2.7  
2.37  
3.0  
2.60  
3.3  
V
V
E1, 120load  
Vo-s  
Zero (space) level  
E1, 75 load  
-0.237  
-0.3  
0.237  
0.3  
V
V
E1, 120 load  
Transmit amplitude variation with supply  
-1  
+1  
%
mV  
ns  
Difference between pulse sequences for 17 consecutive pulses (T1.102)  
Output Pulse Width at 50% of nominal amplitude  
200  
256  
1.05  
Tpw  
RTX  
232  
244  
Ratio of the amplitudes of Positive and Negative Pulses at the center of the pulse interval  
(G.703)  
0.95  
Ratio of the width of Positive and Negative Pulses at the center of the pulse interval (G.703)  
Transmit Return Loss (G.703)  
0.95  
1.05  
51 KHz – 102 KHz  
102 KHz - 2.048 MHz  
2.048 MHz – 3.072 MHz  
20  
15  
12  
dB  
dB  
dB  
JTXp-p  
Td  
Intrinsic Transmit Jitter (TCLK is jitter free)  
20 Hz – 100 KHz  
0.050  
U.I.  
Transmit path delay (JA is disabled)  
Single rail  
Dual rail  
8.5  
4.5  
U.I.  
U.I.  
Isc  
Line short circuit current  
100  
mA  
60  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-62 T1/J1 Transmitter Electrical Characteristics  
Symbol  
Parameter  
Min  
2.4  
Typ  
Max  
3.6  
Unit  
V
Vo-p  
Vo-s  
Output pulse amplitudes  
Zero (space) level  
3.0  
-0.15  
-1  
0.15  
+1  
V
Transmit amplitude variation with supply  
%
Difference between pulse sequences for 17 consecutive  
pulses(T1.102)  
200  
mV  
TPW  
Output Pulse Width at 50% of nominal amplitude  
Pulse width variation at the half amplitude (T1.102)  
338  
350  
362  
20  
ns  
ns  
Imbalance between Positive and Negative Pulses amplitude  
(T1.102)  
0.95  
1.05  
Output power level (T1.102)  
@772kHz  
@1544kHz (referenced to power at 772kHz)  
12.6  
-29  
17.9  
dBm  
dBm  
RTX  
Transmit Return Loss  
39 KHz – 77 KHz  
77 KHz – 1.544 MHz  
1.544 MHz – 2.316 MHz  
20  
15  
12  
dB  
dB  
dB  
JTXP-P  
Intrinsic Transmit Jitter (TCLK is jitter free)  
10 Hz – 8 KHz  
8 KHz – 40 KHz  
10 Hz – 40 KHz  
wide band  
0.020  
0.025  
0.025  
0.050  
U.I.p-p  
U.I.p-p  
U.I.p-p  
U.I.p-p  
Td  
Transmit path delay (JA is disabled)  
Single rail  
Dual rail  
8.5  
4.5  
U.I.  
U.I.  
ISC  
Line short circuit current  
100  
mA  
61  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-63 Transmitter and Receiver Timing Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
MCLK frequency  
E1:  
T1/J1:  
2.048/49.152  
1.544/37.056  
MHz  
MCLK tolerance  
MCLK duty cycle  
-100  
30  
100  
70  
ppm  
%
Transmit path  
TCLK frequency  
E1:  
T1/J1:  
2.048  
1.544  
MHz  
TCLK tolerance  
-50  
10  
40  
40  
+50  
90  
ppm  
%
TCLK Duty Cycle  
t1  
t2  
Transmit Data Setup Time  
ns  
Transmit Data Hold Time  
ns  
Delay time of THZ low to driver high impedance  
Delay time of TCLK low to driver high impedance  
10  
us  
75  
U.I.  
Receive path  
Clock recovery capture E1  
± 80  
± 180  
50  
ppm  
%
range 1  
T1/J1  
RCLK duty cycle 2  
RCLK pulse width 2  
40  
60  
t4  
E1:  
T1/J1:  
457  
607  
488  
648  
519  
689  
ns  
ns  
t5  
t6  
RCLK pulse width low time  
E1:  
T1/J1:  
203  
259  
244  
324  
285  
389  
RCLK pulse width high time  
E1:  
T1/J1:  
203  
259  
244  
324  
285  
389  
ns  
ns  
Rise/fall time 3  
20  
t7  
t8  
Receive Data Setup Time  
E1:  
T1/J1:  
200  
200  
244  
324  
ns  
ns  
Receive Data Hold Time  
E1:  
T1/J1:  
200  
200  
244  
324  
1.Relative to nominal frequency, MCLK= ± 100 ppm  
2.RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions  
(0.2UI displacement for E1 per ITU G.823).  
3.For all digital outputs. C load = 15pF  
62  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
TCLKn  
t1  
t2  
TDn/TDPn  
TDNn  
Figure-23 Transmit System Interface Timing  
t4  
RCLKn  
t6  
t7  
t5  
t8  
RDPn/RDn  
(RCLK_SEL = 0)  
RDNn/CVn  
t7  
t8  
RDPn/RDn  
(RCLK_SEL = 1)  
RDNn/CVn  
Figure-24 Receive System Interface Timing  
Table-64 Jitter Tolerance  
Jitter Tolerance  
Min  
Typ  
Max  
Unit  
Standard  
E1: 1 Hz  
37  
1.5  
0.2  
U.I.  
U.I.  
U.I.  
G.823  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
Cable attenuation is 6dB  
AT&T 62411  
T1/J1: 1 Hz  
138.0  
28.0  
0.4  
U.I.  
U.I.  
U.I.  
4.9 Hz – 300 Hz  
10 KHz – 100 KHz  
63  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Figure-25 E1 Jitter Tolerance Performance  
Figure-26 T1/J1 Jitter Tolerance Performance  
64  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-65 Jitter Attenuator Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Jitter Transfer Function Corner (-3dB) Frequency  
E1, 32/64/128 bits FIFO  
JABW = 0:  
6.8  
0.9  
Hz  
Hz  
JABW = 1:  
T1/J1, 32/64/128 bits FIFO  
JABW = 0:  
5
1.25  
Hz  
Hz  
JABW = 1:  
Jitter Attenuator  
E1: (G.736)  
@ 3 Hz  
@ 40 Hz  
-0.5  
-0.5  
dB  
+19.5  
+19.5  
@ 400 Hz  
@ 100 kHz  
T1/J1: (Per AT&T pub.62411)  
@ 1 Hz  
@ 20 Hz  
@ 1 kHz  
0
0
+33.3  
40  
40  
@ 1.4 kHz  
@ 70 kHz  
Jitter Attenuator Latency Delay  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
16  
32  
64  
U.I.  
U.I.  
U.I.  
Input jitter tolerance before FIFO overflow or underflow  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
28  
58  
120  
U.I.  
U.I.  
U.I.  
65  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Figure-27 E1 Jitter Transfer Performance  
Figure-28 T1/J1 Jitter Transfer Performance  
66  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-66 JTAG Timing Characteristics  
Symbol  
Parameter  
Min  
100  
25  
Typ  
Max  
Unit  
ns  
t1  
t2  
TCK Period  
TMS to TCK Setup Time  
TDI to TCK Setup Time  
ns  
t3  
t4  
TCK to TMS Hold Time  
TCK to TDI Hold Time  
25  
ns  
ns  
TCK to TDO Delay Time  
50  
t1  
TCK  
t2  
t3  
TMS  
TDI  
t4  
TDO  
Figure-29 JTAG Interface Timing  
67  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
7
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS  
7.1 SERIAL INTERFACE TIMING  
Table-67 Serial Interface Timing Characteristics  
Symbol  
t1  
Parameter  
Min  
82  
82  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Comments  
SCLK High Time  
t2  
SCLK Low Time  
t3  
Active CS to SCLK Setup Time  
t4  
Last SCLK Hold Time to Inactive CS Time  
CS Idle Time  
41  
41  
0
t5  
t6  
SDI to SCLK Setup Time  
t7  
SCLK to SDI Hold Time  
62  
t10  
t11  
SCLK to SDO Valid Delay Time  
Inactive CS to SDO High Impedance Hold Time  
75  
70  
CS  
t4  
t5  
t3  
t6  
t1  
t2  
SCLK  
SDI  
t7  
t7  
LSB  
LSB  
Figure-30 Serial Interface Write Timing  
MSB  
21  
1
2
3
4
5
15  
16 17  
18  
19  
20  
3
22  
23  
24  
t4  
SCLK  
t10  
CS  
t11  
SDO  
0
1
2
4
5
6
7
Figure-31 Serial Interface Read Timing with SCLKE=1  
15 16 17 18 19 20 21  
1
2
3
4
5
22  
23  
24  
SCLK  
CS  
t4  
t10  
t11  
SDO  
0
1
2
3
4
5
6
7
Figure-32 Serial Interface Read Timing with SCLKE=0  
68  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
7.2 PARALLEL INTERFACE TIMING  
Table-68 Non_multiplexed Motorola Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tAV  
Delay from DS to Valid Read Signal  
R/W to DS Hold Time  
15  
15  
65  
65  
Delay from DS to Valid Address  
Address to DS Hold Time  
tADH  
tPRD  
DS to Valid Read Data Propagation Delay  
Delay from DS inactive to data bus High Impedance  
Recovery Time from Read Cycle  
175  
20  
tDAZ  
5
5
tRecovery  
tRC  
tRecovery  
tDW  
DS+CS  
tRWH  
tRWV  
tAV  
R/W  
tADH  
A[x:0]  
Valid Address  
tDAZ  
tPRD  
READ D[7:0]  
Valid Data  
Figure-33 Non_multiplexed Motorola Read Timing  
69  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-69 Non_multiplexed Motorola Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tAV  
Delay from DS to Valid Write Signal  
R/W to DS Hold Time  
15  
15  
15  
65  
65  
Delay from DS to Valid Address  
Address to DS Hold Time  
tAH  
tDV  
Delay from DS to Valid Write Data  
Write Data to DS Hold Time  
Recovery Time from Write Cycle  
tDHW  
tRecovery  
65  
5
tRecovery  
tWC  
tDW  
DS+CS  
R/W  
tRWH  
tRWV  
tAH  
tAV  
A[x:0]  
Valid Address  
tDHW  
tDV  
Valid Data  
Write D[7:0]  
Figure-34 Non_multiplexed Motorola Write Timing  
70  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-70 Non_multiplexed Intel Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
Max  
Unit  
ns  
Read Cycle Time  
tRDW  
tAV  
Valid RD Width  
ns  
Delay from RD to Valid Address  
Address to RD Hold Time  
15  
ns  
tAH  
65  
ns  
tPRD  
RD to Valid Read Data Propagation Delay  
Delay from RD inactive to data bus High Impedance  
Recovery Time from Read Cycle  
175  
20  
ns  
tDAZ  
5
5
ns  
tRecovery  
ns  
tRC  
tRecovery  
tRDW  
CS+RD  
tAH  
tAV  
A[x:0]  
Valid Address  
tDAZ  
tPRD  
READ D[7:0]  
Valid Data  
Note: WR should be tied to high  
Figure-35 Non_multiplexed Intel Read Timing  
71  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
Table-71 Non_multiplexed Intel Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
Max  
Unit  
ns  
Write Cycle Time  
tWRW  
tAV  
Valid WR Width  
ns  
Delay from WR to Valid Address  
Address to WR Hold Time  
Delay from WR to Valid Write Data  
Write Data to WR Hold Time  
Recovery Time from Write Cycle  
15  
15  
ns  
tAH  
65  
ns  
tDV  
ns  
tDHW  
tRecovery  
65  
5
ns  
ns  
tRecovery  
tWC  
tWRW  
WR+CS  
tAH  
tAV  
A[x:0]  
Valid Address  
tDHW  
tDV  
Write D[7:0]  
Valid Data  
Note: RD should be tied to high  
Figure-36 Non_multiplexed Intel Write Timing  
72  
INDUSTRIAL  
TEMPERATURE RANGES  
QUAD CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT  
ORDERING INFORMATION  
XXXXXXX  
Device Type  
XX  
X
IDT  
Process/  
Temperature  
Range  
Blank  
PF  
Industrial (-40 °C to +85 °C)  
Thin Quad Flatpack (TQFP, PK128)  
82V2044E Short Haul LIU  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
408-330-1552  
email:TELECOMhelp@idt.com  
www.idt.com*  
To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
73  

相关型号:

82V2048LDA

PCM Transceiver, 1-Func, PQFP144, TQFP-144
IDT

82V2052EPF8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2052EPFG8

PCM Transceiver, 1-Func, PQFP80, GREEN, TQFP-80
IDT

82V2054BB

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054BBG

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054DA

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2054DAG

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2058BB

PCM Transceiver, 1-Func, PBGA160, PLASTIC, BGA-160
IDT

82V2058DA

PCM Transceiver, 1-Func, PQFP144, TQFP-144
IDT

82V2081PPG8

PCM Transceiver, 1-Func, PQFP44, TQFP-44
IDT

82V2082PF

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2082PFG8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT