ICS85357AG-01LFT [IDT]

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20;
ICS85357AG-01LFT
型号: ICS85357AG-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20

光电二极管
文件: 总13页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85357-01 is a 4:1 or 2:1 Differential-to- High speed differential multiplexer.The device can be  
ICS  
3.3V LVPECL / ECL clock multiplexer which can  
operate up to 750MHz and is a member of the  
HiPerClockS™family of High Perfor mance Clock  
Solutions from ICS. The ICS85357-01 has 4  
configured as either a 4:1 or 2:1 multiplexer  
1 differential 3.3V LVPECL output  
4 selectable CLK, nCLK inputs  
HiPerClockS™  
selectable clock inputs.The CLK, nCLK pair can accept most  
standard differential input levels. The device can operate  
using a 3.3V LVPECL (VEE = 0V, VCC = 3.135V to 3.465V) or  
3.3V ECL (VCC = 0V, VEE = -3.135V to -3.465V). The fully dif-  
ferential architecture and low propagation delay make it  
ideal for use in clock distribution circuits.The select pins have  
internal pulldown resistors. Leaving one input unconnected  
(pulled to logic low by the internal resistor) will transform  
the device into a 2:1 multiplexer. The SEL1 pin is the most  
significant bit and the binary number applied to the select pins  
will select the same numbered data input (i.e., 00  
selects CLK0, nCLK0).  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum output frequency: 750MHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLKx input  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 1.5ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 3.135V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.135V to -3.465V  
0°C to 70°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCC  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK2  
nCLK2  
CLK3  
nCLK3  
VEE  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
SEL1  
SEL0  
VCC  
Q0  
nQ0  
VCC  
nc  
CLK0  
00  
nCLK0  
CLK1  
01  
nCLK1  
Q0  
nQ0  
CLK2  
10  
nCLK2  
9
10  
nc  
VEE  
CLK3  
11  
nCLK3  
ICS85357-01  
20-LeadTSSOP  
4.40mm x 6.50mm x 0.90mm body package  
G Package  
SEL0  
SEL1  
TopView  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
1
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 14,  
17, 20  
VCC  
Power  
Positive supply pins.  
2
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK2  
nCLK2  
CLK3  
nCLK3  
VEE  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
3
4
Input  
5
Input  
6
7
Input  
Input  
8
Input  
9
Input  
Pullup  
Inverting differential clock input.  
Negative supply pins.  
10, 11  
12, 13  
15, 16  
18  
Power  
Unused  
Output  
Input  
nc  
No connect.  
nQ0, Q0  
SEL0  
SEL1  
Differential output pairs. LVPECL interface levels.  
Pulldown Clock select input. LVCMOS / LVTTL interface levels.  
Pulldown Clock select input. LVCMOS / LVTTL interface levels.  
19  
Input  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Clock Out  
CLK  
SEL1  
SEL0  
0
0
1
1
0
1
0
1
CLK0, nCLK0  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
2
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
35  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage SEL0, SEL1  
Input Low Voltage SEL0, SEL1  
Input High Current SEL0, SEL1  
Input Low Current SEL0, SEL1  
2
3.765  
0.8  
V
V
-0.3  
VCC = VIN = 3.465V  
150  
µA  
µA  
IIL  
VCC = 3.465V, VIN = 0V  
-5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK0, CLK1,  
CLK2, CLK3  
VCC = VIN = 3.465V  
150  
5
µA  
IIH  
Input High Current  
nCLK0, nCLK1,  
nCLK2, nCLK3  
VCC = VIN = 3.465V  
µA  
µA  
CLK0, CLK1,  
CLK2, CLK3  
nCLK0, nCLK1,  
nCLK2, nCLK3  
VCC = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
V
CC = 3.465V, VIN = 0V  
-150  
0.15  
µA  
V
VPP  
Peak-to-Peak Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode input voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VCC + 0.3V.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
3
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC -1.7  
0.85  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum  
Typical  
1.2  
Maximum Units  
fMAX  
Maximum Output Frequency  
750  
1.5  
150  
700  
53  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise/Fall Time  
ƒ750MHz  
1
tsk(pp)  
tR / tF  
odc  
ps  
20ꢀ to 80ꢀ @50MHz  
300  
47  
400  
ps  
Output Duty Cycle  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
4
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK0:  
nCLK3  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
CLK0:  
CLK3  
VEE  
-1.3V 0.165V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
nCLK0:  
nCLK3  
CLK0:  
CLK3  
PART 1  
Qx  
nQy  
nQ0  
PART 2  
Qy  
Q0  
tPD  
tsk(pp)  
PART-TO-PART SKEW  
PROPAGATION DELAY  
nQ0  
80ꢀ  
tF  
80ꢀ  
Q0  
VSWING  
20ꢀ  
Pulse Width  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
tPERIOD  
odc =  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
5
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit should be located as close as possible to the input pin.The ratio of  
R1 and R2 might need to be adjusted to position theV_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
6
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3E show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 3E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
7
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85357-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85357-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 35mA = 121.3mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 1 * 30.2mW = 30.2mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120.8mW = 151.5mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.151W * 66.6°C/W = 80.06°C. This is well below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
8
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 4. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
9
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85357-01 is: 400  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
10  
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
11  
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS85357AG-01  
ICS85357AG-01T  
ICS85357AG-01LF  
ICS85357AG-01LFT  
ICS85357AG01  
ICS85357AG01  
ICS85357A01L  
ICS85357A01L  
20 lead TSSOP  
20 lead TSSOP  
2500 tape & reel  
tube  
20 lead "Lead-Free" TSSOP  
20 lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
12  
ICS85357-01  
4:1 OR 2:1  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
7
12  
Description of Change  
Date  
A
Added Termination for LVPECL Outputs section.  
5/30/02  
9
Ordering Information Table, revised Marking to read ICS85357AG01 from  
ICS85357AG-01.  
Output Load Test Circuit Diagram, changed VEE = -1.3V 0.135V to  
A
A
8/16/02  
3/21/05  
5
V
EE = -1.3 0.165V.  
Features Section - added Lead-Free bullet.  
Added "Differential Clock Input Interface" section.  
Ordering Information Table - added Lead-Free part number and note.  
Updated datasheet format.  
1
7
12  
T9  
85357AG-01  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 21, 2005  
13  

相关型号:

ICS85357AG-01T

4:1 OR 2:1 DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85357AG-11

4:1 OR 2:1, CRYSTAL OSCILLATOR-TO-3.3V LVPECL / ECL MULTIPLEXER
ICSI

ICS85357AG-11LF

Clock Generator, 27MHz, PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85357AG-11LFT

Clock Generator, 27MHz, PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85357AG-11T

4:1 OR 2:1, CRYSTAL OSCILLATOR-TO-3.3V LVPECL / ECL MULTIPLEXER
ICSI

ICS85357AGI-01LFT

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85357AGI-01T

Multiplexer, 85357 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO20, 4.40 X 6.50 MM, 0.90 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AG-01

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-01LF

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 4 Inverted Output(s), PDSO20, ROHS COMPLIANT, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AG-01LFT

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20
IDT

ICS8535AG-01T

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI