ICS87332AMI-01LF [IDT]

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8;
ICS87332AMI-01LF
型号: ICS87332AMI-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8

驱动 光电二极管 逻辑集成电路
文件: 总14页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
÷2, Differential-to-2.5V/3.3V  
ICS87332I-01  
ECL/LVPECL Clock Generator  
DATA SHEET  
GENERAL DESCRIPTION  
FEATURES  
The ICS87332I-01 is a high performance ÷2 Differen- • One ÷2 differential 2.5V/3.3V LVPECL / ECL output  
ICS  
HiPerClockS™  
tial-to-2.5V/3.3V ECL/LVPECL Clock Generator. The  
• One CLK, nCLK input pair  
CLK, nCLK pair can accept most standard differential  
input levels The ICS87332I-01 is characterized to op-  
erate from either a 2.5V or a 3.3V power supply. Guar-  
• CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
anteed output and part-to-part skew characteristics make the  
ICS87332I-01 ideal for those clock distribution applications de-  
manding well defined performance and repeatability.  
• Maximum output frequency: 500MHz  
• Maximum input frequency: 1GHz  
Translates any single ended input signal to 3.3V LVPECL  
levels with resistor bias on nCLK input  
• Part-to-part skew: 400ps (maximum)  
• Propagation delay: 1.6ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
• ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.8V  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
MR  
CLK  
nCLK  
nc  
Vcc  
Q
1
2
3
4
8
7
6
5
Q
nQ  
CLK  
nCLK  
÷2  
nQ  
VEE  
ICS87332I-01  
MR  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
1
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
Master reset. When LOW, outputs are enabled. When HIGH,  
1
MR  
Input  
Pulldown divider is reset forcing Q output LOW and nQ output HIGH.  
LVCMOS / LVTTL interface level.  
2
3
CLK  
nCLK  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup  
Inverting differential clock input.  
No connect.  
4
Unused  
Power  
Output  
Power  
5
VEE  
Negative supply pin.  
6, 7  
8
Q, nQ  
VCC  
Differential output pair. LVPECL interface levels.  
Positive supply pin.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
CLK  
MR  
Q
FIGURE 1. TIMING DIAGRAM  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
2
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θJA 112.7°C/W (0 lfpm)  
StorageTemperature, T -65°C to 150°C  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
30  
V
IEE  
mA  
TABLE 3B. LVCMOS DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage  
MR  
2
VCC + 0.3  
0.8  
V
VIL  
IIH  
Input Low Voltage  
Input High Current  
Input Low Current  
MR  
MR  
MR  
-0.3  
V
VCC = VIN = 3.8V  
150  
µA  
µA  
IIL  
VCC = 3.8V, VIN = 0V  
-5  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
CC = VIN = 3.8V  
Minimum  
Typical  
Maximum Units  
CLK  
V
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
VCC = VIN = 3.8V  
V
CC = 3.8V, VIN = 0V  
-5  
IIL  
Input Low Current  
nCLK  
VCC = 3.8V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Input Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
V
EE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
3
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.65  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Input Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum Units  
1
GHz  
ns  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise Time  
ƒ1GHz  
1.1  
1.4  
1.6  
400  
700  
700  
51  
tsk(pp)  
tR  
ps  
20% to 80%  
20% to 80%  
200  
200  
49  
ps  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
%
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
4
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK  
CLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
nQx  
-1.8V to -0.375V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nCLK  
CLK  
Qx  
PART 2  
nQy  
nQ  
Qy  
Q
tPD  
tsk(pp)  
PART-TO-PART SKEW  
PROPAGATION DELAY  
nQ  
Q
tPW  
nQ  
tPERIOD  
80%  
tF  
80%  
VSWING  
20%  
tPW  
tPERIOD  
odc =  
x 100%  
20%  
Q
tR  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
5
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/  
R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termi-  
nation for LVPECL outputs. The two different layouts men-  
tioned are recommended only as guidelines.  
signed to drive 50Ω transmission lines. Matched impedance  
techniques should be used to maximize operating frequency  
and minimize signal distortion. Figures 3A and 3B show two  
different layouts which are recommended only as guidelines.  
Other suitable clock layouts may exist and it would be recom-  
mended that the board designers simulate to guarantee com-  
patibility across all printed circuit and clock component pro-  
The differential outputs are low impedance follower outputs  
that generate ECL/LVPECL compatible outputs. Therefore,  
terminating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are de-  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUTTERMINATION  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
FIGURE 3B. LVPECL OUTPUTTERMINATION  
©2009 Integrated Device Technology, Inc.  
6
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 4A and Figure 4B show examples of termination for 2.5V level. The R3 in Figure 4B can be eliminated and the termination  
LVPECL driver. These terminations are equivalent to terminating is shown in Figure 4C.  
50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to ground  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
7
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the VPP  
and VCMR input requirements. Figures 5A to 5F show interface ex-  
amples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm  
the driver termination requirements. For example in Figure 5A,  
the input termination applies for IDT open emitter LVHSTL drivers.  
If you are using an LVHSTL driver from another vendor, use their  
termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 5A. CLK/nCLK INPUT DRIVEN BY AN IDT OPEN  
EMITTER LVHSTL DRIVER  
FIGURE 5B. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL  
DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL  
DRIVER  
FIGURE 5D. CLK/nCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
FIGURE 5F. CLK/nCLK INPUT DRIVEN BY A 2.5V SSTL DRIVER  
FIGURE 5E. CLK/nCLK INPUT DRIVEN BY A 3.3V HCSL DRIVER  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
8
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87332I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87332I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 30mA = 114mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.8V, with all outputs switching) = 114mW + 30mW = 144mW  
2. Junction Temperature.  
Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum  
recommended junction temperature for HiPerClockSTM devices is 125°C. Limiting the internal transistor junction temperature, Tj, to  
125°C ensures that the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used . Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.144W * 103.3°C/W = 99.9°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
9
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to calculate power dissipation on the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V – 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
/R ] * (V  
– V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
10  
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87332I-01 is: 383  
Compatible to part number MC100EP32  
PACKAGE OUTLINE AND DIMENSIONS  
TABLE 7. PACKAGE DIMENSIONS  
SYMBOL  
PACKAGE OUTLINE - M SUFFIX  
Millimeters  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
11  
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
87332AMI-01  
Marking  
7332AI01  
7332AI01  
332AI01L  
332AI01L  
Package  
8 lead SOIC  
Shipping Package  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
87332AMI-01T  
8 lead SOIC  
2500 tape & reel  
tube  
87332AMI-01LF  
87332AMI-01LFT  
8 lead "Lead-Free" SOIC  
8 lead "Lead-Free" SOIC  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any  
patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any  
other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT.IDT reserves the right to change any circuitry  
or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
12  
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
1
2
6
Features Section - added Lead-Free bullet.  
T2  
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Added "Wiring the Differential Input to Accept Single Ended Levels.  
Added Termination for 3.3V LVPECL Output.  
6
B
7
Added Termination for 2.5V LVPECL Output.  
7/5/05  
8
Added Differential Clock Input Interface.  
T8  
13  
Ordering Information Table - corrected marking. Added Lead-Free part number  
and note.  
Updated format of datasheet.  
T3D  
4
LVPECL DC Characteristics Table -corrected VOH max. from VCC - 1.0V to  
C
C
V
CC - 0.9V; and VSWING max. from 0.9V to 1.0V.  
4/13/07  
9 - 10  
4
6
8
12  
Power Considerations - corrected power dissipation to reflect VOH max in Table 3D.  
Added thermal note to AC Characteristics table.  
Updated figures 3A & 3B, LVPECL Output Termination diagrams.  
Updated Differential Clock Input Interface.  
Ordering Information Table - add LF marking. Deleted "ICS" prefix from part/order  
number.  
T4  
11/16/09  
Updated header/footer of datasheet.  
ICS87332AMI-01 REVISION C NOVEMBER 16, 2009  
13  
©2009 Integrated Device Technology, Inc.  
ICS87332I-01 Data Sheet  
÷2DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL CLOCK GENERATOR  
www.IDT.com  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Techical Support  
netcom@idt.com  
+480-763-2056  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion.All information  
in this document, including descriptions of product features and performace, is subject to change without notice. Performance specifications and the operating parameters of the described products are  
determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any  
kind, whether express or implied, including, but not limited to, the suitablity of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property  
rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users.  
Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Techology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or  
their respective third party owners.  
Copyright 2009. All rights reserved.  

相关型号:

ICS87332AMI-01LFT

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

ICS87332AMI-01T

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

ICS87339AG-01LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS87339AG-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LFT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AM-01

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-01LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-01LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT