ICS87339AG-01LF [IDT]

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20;
ICS87339AG-01LF
型号: ICS87339AG-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总15页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS87339-01 is a low skew, high perfor- 2 divide by 2/4 differential 3.3V LVPECL outputs;  
mance Differential-to-3.3V LVPECL / ECL Clock  
Generator/Divider and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from ICS. The ICS87339-01 has one  
2 divide by 4/6 differential 3.3V LVPECLoutputs  
HiPerClockS™  
1 differential CLK, nCLK input pair  
CLK, nCLK pair can accept the following differential  
differential clock input pair. The CLK, nCLK pair can accept  
most standard differential input levels. The clock enable is  
internally synchronized to eliminate runt pulses on the  
outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum input frequency: 1GHz  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics  
make the ICS87339-01 ideal for clock distribution applications  
demanding well defined performance and repeatability.  
Output skew: 50ps (maximum)  
Part-to-part skew: 200ps (maximum)  
LVPECLmode operating voltage supply range:  
VCC = 3V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3V to -3.8V  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Compatible with MC100LVEL39  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
DIV_SELA  
VCC  
nCLK_EN  
DIV_SELB  
CLK  
VCC  
1
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
QA0  
nQA0  
QA0  
nQA0  
QA1  
nQA1  
QB0  
nQB0  
QB1  
nQB1  
VEE  
D
nCLK_EN  
÷2, ÷4  
QA1  
nQA1  
Q
R
nCLK  
nc  
MR  
VCC  
nc  
5
6
7
8
9
10  
LE  
CLK  
nCLK  
DIV_SELA  
QB0  
nQB0  
ICS87339-01  
20-Lead TSSOP, G Package  
6.5mm x 4.4mm x 0.92mm  
body package  
÷4, ÷6  
QB1  
nQB1  
R
MR  
Top View  
DIV_SELB  
ICS87339-01  
20-Lead SOIC, M Package  
7.5mm x 12.8mm x 2.25  
package body  
Top View  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
1
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 8, 20  
2
Name  
VCC  
Type  
Description  
Power  
Input  
Positive supply pins.  
nCLK_EN  
Pulldown Clock enable.  
Selects divide value for Bank B outputs as described in Table 3.  
3
DIV_SELB  
Input  
Pulldown  
LVCMOS / LVTTL interface levels.  
4
5
CLK  
nCLK  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup  
Inverting differential clock input.  
6, 9  
Unused  
No connect.  
Active High Master Reset. When logic HIGH, the internal dividers  
7
MR  
Input  
Pulldown are reset. When LOW, the Master Reset is disabled.  
LVCMOS / LVTTL interface levels.  
Selects divide value for Bank A outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
10  
DIV_SELA  
VEE  
Input  
Pulldown  
11  
Power  
Negative supply pin.  
12, 13  
14, 15  
16, 17  
18, 19  
nQB1, QB1 Output  
nQB0, QB0 Output  
nQA1, QA1 Output  
nQA0, QA0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
QA0 thru QA1 nQA0 thru nQA1 QB0 thru QB1 nQB0 thru nQB1  
MR nCLK_EN DIV_SELA  
DIV_SELB  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
0
0
1
1
X
X
0
1
0
1
LOW  
HOLD Qx  
÷2  
HIGH  
HOLD Qx  
÷2  
LOW  
HOLD Qx  
÷4  
HIGH  
HOLD Qx  
÷4  
÷2  
÷2  
÷6  
÷6  
÷4  
÷4  
÷4  
÷4  
÷4  
÷4  
÷6  
÷6  
NOTE: After nCLK_EN switches, the clock outputs stop switching following a rising and falling input clock edge.  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
2
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V±0.3V, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
3.0  
3.6  
V
IEE  
85  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V±0.3V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
nCLK_EN, MR,  
DIV_SELA, DIV_SELB  
nCLK_EN, MR,  
IIH  
IIL  
VIN = VCC = 3.6V  
150  
µA  
µA  
Input Low Current  
VIN = 0V, VCC = 3.6V  
-5  
DIV_SELA, DIV_SELB  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V±0.3V, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.6V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
VIN = VCC = 3.6V  
150  
nCLK  
CLK  
VIN = 0V, VCC = 3.6V  
VIN = 0V, VCC = 3.6V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
3
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V±0.3V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE1  
VCC - 1.0  
VCC - 1.7  
0.85  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V±0.3V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum  
Typical  
Maximum Units  
fMAX  
tpLH  
tpHL  
tsk(o)  
tsk(pp)  
tS  
Maximum Toggle Frequency  
1
3
GHz  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Propagation Delay; NOTE 1  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 3  
1
1
3
50  
500  
Part-to-Part Skew; NOTE 3, 4  
Setup Time  
nCLK_EN to CLK  
CLK to nCLK_EN  
250  
100  
tH  
Hold Time  
tRR  
Reset Recovery Time  
300  
tPW  
Minimum Pulse Width CLK  
Output Rise Time  
500  
200  
200  
tR  
20% to 80%  
20% to 80%  
700  
700  
tF  
Output Fall Time  
All parameters measured up to 1GHz unless noted otherwise.  
This device does not add measureable jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
4
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Qx  
LVPECL  
VCC = 2V  
nQx  
VEE = -1.3V ± 0.3V  
3.3V OUTPUT LOAD TEST CIRCUIT  
VCC  
nCLK  
VPP  
VCMR  
Cross Points  
CLK  
VEE  
DIFFERENTIAL INPUT LEVEL  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
5
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
nQx  
Qx  
nQy  
Qy  
tsk(o)  
OUTPUT SKEW  
nQx  
PART1  
Qx  
nQy  
PART2  
Qy  
tsk(pp)  
PART-TO-PART SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Outputs  
tR  
tF  
OUTPUT RISE AND FALL TIME  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
6
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
nCLK  
CLK  
nQA0, nQA1, nQB0, nQB1  
QA0, QA1, QB0, QB1  
tPD  
PROPAGATION DELAY  
nQA0, nQA1, nQB0, nQB1  
QA0, QA1, QB0, QB1  
Pulse Width  
tPERIOD  
tPW & tPERIOD  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
7
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 1 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
50transmission lines. Matched impedance techniques should  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
5
2
5
Zo  
Zo  
2
FIN  
FOUT  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 2A - LVPECL OUTPUT TERMINATION  
FIGURE 2B - LVPECL OUTPUT TERMINATION  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
8
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87339-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87339-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 0.3V = 3.6V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.6V * 95mA = 342  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.2mW = 120.8mW  
Total Power_MAX (3.6V, with all outputs switching) = 342mW + 120.8mW = 462.8mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA =Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6Abelow.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.463W * 66.6°C/W = 101°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE qJA FOR 20-PIN TSSOP, FORCED CONVECTION  
q by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
98.0°C/W  
88.0°C/W  
73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 6B. THERMAL RESISTANCE qJA FOR 20-PIN SOIC, FORCED CONVECTION  
q by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
9
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 3.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 3 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
10  
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TSSOP TABLE  
q
by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW SOIC TABLE  
q
by Velocity (Linear Feet per Minute)  
0
JA  
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87339-01 is: 1745  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
11  
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
PACKAGE OUTLINE - G SUFFIX  
TABLE 8A. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
12  
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
PACKAGE OUTLINE - M SUFFIX  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
20  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
13  
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS87339AG-01  
ICS87339AG-01T  
ICS87339AM-01  
ICS87339AM-01T  
Marking  
Package  
20 lead TSSOP  
Count  
72 per Tube  
2500  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS87339AG01  
ICS87339AG01  
ICS87339AM01  
ICS87339AM01  
20 lead TSSOP on Tape and Reel  
20 lead SOIC  
38 per Tube  
1000  
20 lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
14  
ICS87339-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
REVISION HISTORY SHEET  
Rev  
Table  
T1  
Page  
Description of Change  
Date  
A
8
2
6
Added Termination for LVPECL Outputs section.  
Pin Description Table, revised MR description.  
Updated Output Rise & Fall Time diagram.  
5/31/02  
A
8/15/02  
87339AG-01  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 15, 2002  
15  

相关型号:

ICS87339AG-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LFT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AM-01

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-01LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-01LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-11LFT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AMI-11LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20
IDT

ICS87339AMI-11LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20
IDT