MPC93R52FAR2 [IDT]

PLL Based Clock Driver, 93R Series, 11 True Output(s), 0 Inverted Output(s), PQFP32, PLASTIC, LQFP-32;
MPC93R52FAR2
型号: MPC93R52FAR2
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 93R Series, 11 True Output(s), 0 Inverted Output(s), PQFP32, PLASTIC, LQFP-32

驱动 逻辑集成电路
文件: 总11页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢁꢃ ꢁ ꢄꢅ  
SEMICONDUCTOR TECHNICAL DATA  
Order Number: MPC93R52/D  
Rev 2, 04/2003  
Freescale Semiconductor, Inc.  
ꢀꢚ ꢋꢛ ꢆꢃꢜ ꢝ  
The MPC93R52 is a 3.3V compatible, 1:11 PLL based clock generator  
targeted for high performance clock tree applications. With output fre-  
quencies up to 240 MHz and output skews lower than 200 ps the device  
meets the needs of most demanding clock applications.  
2
LOW VOLTAGE  
3.3V LVCMOS 1:11  
CLOCK GENERATOR  
Features  
Configurable 11 outputs LVCMOS PLL clock generator  
Fully integrated PLL  
Wide range of output clock frequency of 16.67 MHz to 240 MHz  
Multiplication of the input reference clock frequency by 3, 2, 1, 3B2,  
2B3, 1B3 and 1B2  
3.3V LVCMOS compatible  
Maximum output skew of 200 ps  
Supports zero–delay applications  
Designed for high–performance telecom, networking and computing  
applications  
32 lead LQFP package  
Ambient Temperature Range – 0°C to +70°C  
Pin and function compatible to the MPC952  
FA SUFFIX  
32 LEAD LQFP PACKAGE  
CASE 873A  
Functional Description  
The MPC93R52 is a fully 3.3V compatible PLL clock generator and  
clock driver. The device has the capability to generate output clock sig-  
nals of 16.67 to 240 MHz from external clock sources. The internal PLL  
optimized for its frequency range and does not require external look filter  
components. One output of the MPC93R52 has to be connected to the  
PLL feedback input FB_IN to close the external PLL feedback path. The  
output divider of this output setting determines the PLL frequency multi-  
plication factor. This multiplication factor, F_RANGE and the reference  
clock frequency must be selected to situate the VCO in its specified lock  
range. The frequency of the clock outputs can be configured individually  
for all three output banks by the FSELx pins supporting systems with  
different but phase-aligned clock frequencies.  
The PLL of the MPC93R52 minimizes the propagation delay and therefore supports zero-delay applications. All inputs and  
outputs are LVCMOS compatible. The outputs are optimized to drive parallel terminated 50transmission lines. Alternatively,  
each output can drive up to two series terminated transmission lines giving the device an effective fanout of 22.  
The device also supports output high-impedance disable and a PLL bypass mode for static system test and diagnosis. The  
MPC93R52 is package in a 32 ld LQFP.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
139  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
ꢃ ꢩꢦ ꢳ ꢋ  
ꢁꢁ ꢒꢖ  
ꢀ ꢁꢕ  
ꢂ ꢋꢉ  
1
0
1
0
÷2  
÷6  
÷4  
÷2  
1
0
ꢂ ꢋꢊ  
ꢂ ꢋꢄ  
ꢁ ꢁ ꢒ ꢖ  
ꢍ ꢃꢎꢗ ꢇ  
ꢏꢢ ꢬ  
ꢍꢃ  
PLL  
ꢂ ꢋꢅ  
ꢂ ꢋꢌ  
2
1
0
ꢂ ꢃꢊ  
ꢂ ꢃꢄ  
ꢂ ꢃꢅ  
ꢍ ꢑꢐꢒꢋ  
ꢍ ꢑꢐꢒꢃ  
ꢃ ꢩꢦ ꢳ ꢁ  
1
0
ꢂ ꢁ ꢉ  
ꢂ ꢁ ꢊ  
ꢍ ꢑꢐꢒꢁ  
ꢓꢏ ꢔ ꢕ ꢐ  
ꢝ ꢕꢷ ꢐꢏ ꢸꢕ ꢇ ꢏ ꢐꢑꢐ ꢹ  
W
Figure 1. MPC93R52 Logic Diagram  
ꢄꢘ  
ꢄꢙ  
ꢄꢚ  
ꢄꢛ  
ꢄꢜ  
ꢅꢉ  
ꢅꢊ  
ꢅꢄ  
ꢀ ꢁꢁ  
ꢂ ꢃꢄ  
ꢂ ꢃꢅ  
ꢆ ꢇꢈ  
ꢆ ꢇꢈ  
ꢂ ꢁꢉ  
ꢂ ꢁꢊ  
ꢀ ꢁꢁ  
ꢊ ꢘ  
ꢊ ꢌ  
ꢊ ꢅ  
ꢊ ꢄ  
ꢊ ꢊ  
ꢊ ꢉ  
ꢂ ꢋ ꢄ  
ꢆ ꢇꢈ  
ꢂ ꢋ ꢉ  
MPC93R52  
ꢀ ꢁꢁ  
ꢀ ꢁꢁꢋ  
ꢝ ꢒꢒ ꢎ ꢐꢇ  
ꢗꢞ ꢟꢠ ꢡꢢ ꢣꢤꢥ ꢥꢢ ꢦꢧꢢ ꢧ ꢞ ꢤ ꢨꢠꢢ ꢩꢦ ꢢꢪꢞ ꢢꢡ ꢦꢩ ꢫ ꢏ ꢁ ꢬ ꢟꢫꢞ ꢢꢡ ꢬ ꢤ ꢡ ꢞ ꢭꢢ ꢩ ꢦꢩ ꢫꢤ ꢮ ꢯ ꢤꢰ ꢢꢡ ꢠꢨ ꢯꢯ ꢫꢱ ꢯ ꢟꢦ ꢀ ꢁꢁꢋ ꢲ ꢝ ꢫꢢꢩ ꢠꢢ ꢠꢢ ꢢ ꢩ ꢯꢯ ꢫꢟꢣꢩ ꢞ ꢟꢤꢦ ꢠꢢ ꢣꢞ ꢟꢤꢦ ꢬ ꢤ ꢡ ꢧ ꢢꢞ ꢩ ꢟꢫꢠꢲ  
Figure 2. MPC93R52 32–Lead Package Pinout (Top View)  
140  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Table 1: PIN CONFIGURATION  
Pin  
I/O  
Type  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Function  
CCLK  
FB_IN  
Input  
Input  
Input  
Input  
Input  
Input  
PLL reference clock signal  
PLL feedback signal input, connect to an output  
PLL frequency range select  
F_RANGE  
FSELA  
Frequency divider select for bank A outputs  
Frequency divider select for bank B outputs  
Frequency divider select for bank C outputs  
FSELB  
FSELC  
2
PLL_EN  
MR/OE  
Input  
Input  
LVCMOS  
PLL enable/disable  
LVCMOS  
LVCMOS  
Ground  
VCC  
Output enable/disable (high–impedance tristate) and device reset  
Clock outputs  
QA0–4, QB0–3, QC0–1 Output  
GND  
Supply  
Supply  
Negative power supply  
VCCA  
PLL positive power supply (analog power supply). It is recommended to use  
an external RC filter for the analog power supply pin V  
applications section for details.  
. Please see  
CCA  
VCC  
Supply  
VCC  
Positive power supply for I/O and core  
Table 2: FUNCTION TABLE  
Control  
Default  
0
1
F_RANGE, FSELA, FSELB, and FSELC control the operating PLL frequency range and input/output frequency ratios.  
See Table 1 and Table 2 for supported frequency ranges and output to input frequency ratios.  
F_RANGE  
FSELA  
0
0
0
0
VCO ÷ 1 (High input frequency range)  
Output divider ÷ 4  
VCO ÷ 2 (Low input frequency range)  
Output divider ÷ 6  
FSELB  
Output divider ÷ 4  
Output divider ÷ 2  
FSELC  
Output divider ÷ 2  
Output divider ÷ 4  
MR/OE  
0
Outputs enabled (active)  
Outputs disabled (high–impedance state) and  
reset of the device. During reset, the PLL  
feedback loop is open and the VCO is operating  
at its lowest frequency. The MPC93R52  
requires reset after any loss of PLL lock. Loss  
of PLL lock may occur when the external  
feedback path is interrupted. The length of the  
reset pulse should be greater than two  
reference clock cycles (CCLK). The device is  
reset by the internal power–on reset (POR)  
circuitry during power–up.  
PLL_EN  
0
Normal operation mode with PLL enabled.  
Test mode with PLL disabled. CCLK is  
substituted for the internal VCO output.  
MPC93R52 is fully static and no minimum  
frequency limit applies. All PLL related AC  
characteristics are not applicable.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
141  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Table 3: GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
V B 2  
CC  
Max  
Unit  
V
Condition  
V
TT  
MM  
HBM  
LU  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch–Up Immunity  
200  
2000  
200  
V
V
mA  
pF  
pF  
C
Power Dissipation Capacitance  
Input Capacitance  
10  
Per output  
Inputs  
PD  
C
4.0  
IN  
2
Table 4: ABSOLUTE MAXIMUM RATINGSa  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
3.9  
Unit  
V
Condition  
V
CC  
Supply Voltage  
V
IN  
DC Input Voltage  
V
V
+0.3  
V
CC  
CC  
V
DC Output Voltage  
DC Input Current  
+0.3  
V
OUT  
I
20  
50  
mA  
mA  
°C  
IN  
I
DC Output Current  
Storage Temperature  
OUT  
T
S
-65  
125  
a. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not  
implied.  
Table 5: DC CHARACTERISTICS (VCC = 3.3V 5%, TA = 0° to 70°C)  
Symbol  
Characteristics  
Input high voltage  
Min  
Typ  
Max  
V + 0.3  
CC  
Unit  
V
Condition  
LVCMOS  
LVCMOS  
V
IH  
2.0  
V
IL  
Input low voltage  
0.8  
V
a
V
Output High Voltage  
Output Low Voltage  
2.4  
V
I
=-24 mA  
OH  
OH  
V
0.55  
0.30  
V
V
I
OL  
I
OL  
= 24 mA  
= 12 mA  
OL  
Z
OUT  
Output impedance  
14 - 17  
W
b
I
Input Current  
200  
5.0  
10  
µA  
mA  
mA  
V
V
=V or V =GND  
CC IN  
IN  
IN  
I
Maximum PLL Supply Current  
3.0  
7.0  
Pin  
CCA  
CCA  
I
c
Maximum Quiescent Supply Current  
All V Pins  
CC  
CCQ  
a
The MPC93R52 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated trans-  
mission line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines.  
Inputs have pull-down resistors affecting the input current.  
TT  
b
c
I
is the DC current consumption of the device with all outputs open in high impedance state and the inputs in its default state or open.  
CCQ  
142  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Table 6: AC CHARACTERISTICS (VCC = 3.3V 5%, TA = 0° to 70°C)a  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
bc  
f
ref  
Input reference frequency in PLL mode  
÷4 feedback  
÷6 feedback  
÷8 feedback  
÷12 feedback  
50.0  
33.3  
25.0  
120.0  
80.0  
60.0  
40.0  
MHz  
MHz  
MHz  
MHz  
16.67  
d
Input reference frequency in PLL bypass mode  
50.0  
200  
250.0  
480  
MHz  
MHz  
e
f
f
VCO lock frequency range  
VCO  
f
Output Frequency  
÷2 output  
100  
50  
33.3  
25  
240  
120  
80  
60  
40  
MHz  
MHz  
MHz  
MHz  
MHz  
MAX  
2
÷4 output  
÷6 output  
÷8 output  
÷12 output  
16.67  
t
Minimum Reference Input Pulse Width  
2.0  
ns  
ns  
PWMIN  
g
tr, tf  
CCLK Input Rise/Fall Time  
1.0  
0.8 to 2.0V  
PLL locked  
t
(
Propagation Delay CCLK to FB_IN  
(static phase offset)  
(f = 50MHz)  
ref  
-100  
+200  
ps  
ps  
)
h
t
Output-to-output Skew  
all outputs, any frequency  
within QA output bank  
within QB output bank  
within QC output bank  
150  
100  
100  
50  
ps  
ps  
ps  
ps  
sk(O)  
DC  
Output duty cycle  
47  
50  
53  
1.0  
8
%
ns  
ns  
ns  
t , t  
Output Rise/Fall Time  
Output Disable Time  
Output Enable Time  
Cycle-to-cycle jitter  
0.1  
0.55 to 2.4V  
r
f
t
PLZ, HZ  
t
10  
PZL, LZ  
t
output frequencies mixed  
all outputs same frequency  
450  
100  
ps  
ps  
JIT(CC)  
t
Period Jitter  
output frequencies mixed  
all outputs same frequency  
450  
100  
ps  
ps  
JIT(PER)  
i
t
I/O Phase Jitter  
÷4 feedback divider RMS (1 σ)  
÷6 feedback divider RMS (1 σ)  
÷8 feedback divider RMS (1 σ)  
÷12 feedback divider RMS (1 σ)  
j
40  
50  
60  
80  
ps  
ps  
ps  
ps  
JIT(  
)
BW  
PLL closed loop bandwidth  
÷4 feedback  
÷6 feedback  
÷8 feedback  
÷12 feedback  
2.0–8.0  
1.0–4.0  
0.8–2.5  
0.6–1.5  
MHz  
MHz  
MHz  
MHz  
t
Maximum PLL Lock Time  
10  
ms  
LOCK  
a
b
c
d
e
f
AC characteristics apply for parallel output termination of 50to V .  
TT  
PLL mode requires PLL_EN=0 to enable the PLL and zero-delay operation.  
The PLL may be unstable with a divide by 2 feedback ratio.  
In PLL bypass mode, the MPC93R52 divides the input reference clock.  
The input frequency f on CCLK must match the VCO frequency range divided by the feedback divider ratio FB: f = f ÷ FB.  
ref  
ref  
VCO  
See Table 9 and Table 10 for output divider configurations.  
g
The MPC93R52 will operate with input rise and fall times up to 3.0 ns, but the AC characteristics, specifically t , can only be guaranteed if  
( )  
tr/tf are within the specified range.  
h
i
j
See application section for part-to-part skew calculation.  
See application section for a jitter calculation for other confidence factors than 1 s.  
-3 dB point of PLL transfer characteristics.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
143  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
APPLICATIONS INFORMATION  
Programming the MPC93R52  
The FSELA, FSELB, FSELC pins select the desired output  
clock frequencies. Possible frequency ratios of the reference  
clock input to the outputs are 1:1, 1:2, 1:3, 3:2 as well as 2:3,  
3:1 and 2:1. Table 1 illustrates the various output configura-  
tions and frequency ratios supported by the MPC93R52. See  
also Table 9, Table 10 and Figure 3 to Figure 6 for further refer-  
The MPC93R52 supports output clock frequencies from  
16.67 to 240 MHz. Different feedback and output divider con-  
figurations can be used to achieve the desired input to output  
frequency relationship. The feedback frequency and divider  
should be used to situate the VCO in the frequency lock range  
between 200 and 480 MHz for stable and optimal operation. ence. A ÷2 output divider cannot be used for feedback.  
2
Table 9: MPC93R52 Example Configuration (F_RANGE = 0)  
a
PLL Feedback  
fref [MHz] FSELA FSELB FSELC  
QA[0:4]:fref ratio  
QB[0:3]:fref ratio  
QC[0:1]:fref ratio  
b
VCO ÷ 4  
50-120  
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
fref  
(50-120  
MHz)  
fref  
fref  
fref  
fref  
(50-120  
MHz)  
fref 2 (100-240  
MHz)  
fref  
(50-120  
MHz)  
(50-120  
MHz)  
fref  
(50-120  
MHz)  
fref 2÷3 (33-80  
(50-120  
MHz)  
fref 2 (100-240  
MHz)  
MHz)  
fref 2÷3 (33-80  
(50-120  
MHz)  
fref  
(50-120  
MHz)  
MHz)  
c
VCO ÷ 6  
33.3-80  
fref  
fref  
fref  
fref  
(33-80  
MHz)  
fref 3÷2 (50-120  
fref 3 (100-240  
MHz)  
MHz)  
(33-80  
MHz)  
fref 3÷2 (50-120  
fref 3÷2 (50-120  
MHz)  
MHz)  
(33-80  
MHz)  
fref 3 (100-240  
fref 3 (100-240  
MHz)  
MHz)  
(33-80  
MHz)  
fref 3 (100-240  
fref 3÷2 (50-120  
MHz)  
MHz)  
a. fref is the input clock reference frequency (CCLK)  
b. QAx connected to FB_IN and FSELA=0  
c. QAx connected to FB_IN and FSELA=1  
Table 10: MPC93R52 Example Configurations (F_RANGE = 1)  
a
PLL Feedback  
fref [MHz] FSELA FSELB FSELC  
QA[0:4]:fref ratio  
QB[0:3]:fref ratio  
QC[0:1]:fref ratio  
b
VCO ÷ 8  
25-60  
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
fref  
(25-60  
MHz)  
fref  
fref  
fref  
fref  
(25-60  
MHz)  
fref 2 (50-120 MHz)  
fref  
(25-60  
MHz)  
(25-60  
MHz)  
fref  
(25-60  
MHz)  
fref 2÷3 (16-40 MHz)  
(25-60  
MHz)  
fref 2 (50-120 MHz)  
fref 2÷3 (16-40 MHz)  
(25-60  
MHz)  
fref  
(25-60  
MHz)  
c
VCO ÷ 12  
16.67-40  
fref  
fref  
fref  
fref  
(16-40  
MHz)  
fref 3÷2 (25-60 MHz)  
fref 3 (50-120 MHz)  
(16-40  
MHz)  
fref 3÷2 (25-60 MHz)  
fref 3÷2 (25-60 MHz)  
(16-40  
MHz)  
fref 3 (50-120 MHz) fref 3 (50-120 MHz)  
fref 3 (50-120 MHz) fref 3÷2 (25-60 MHz)  
(16-40  
MHz)  
a. fref is the input clock reference frequency (CCLK)  
b. QAx connected to FB_IN and FSELA=0  
c. QAx connected to FB_IN and FSELA=1  
144  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Example Configurations for the MPC93R52  
Figure 3. MPC93R52 Default Configuration  
Figure 4. MPC93R52 Zero Delay Buffer Configuration  
ꢂ ꢋꢉ  
ꢂ ꢋ ꢉ  
ꢬ ꢡꢢꢬ ꢼ ꢊ ꢉꢉ ꢓꢺ ꢻ  
ꢬ ꢡꢢ ꢬ ꢼ ꢙ ꢄꢲ ꢘ ꢓꢺ ꢻ  
ꢁ ꢁ ꢒꢖ  
ꢂ ꢋꢊ  
ꢂ ꢋꢄ  
ꢂ ꢋꢅ  
ꢂ ꢋꢌ  
ꢂ ꢋ ꢊ  
ꢂ ꢋ ꢄ  
ꢂ ꢋ ꢅ  
ꢂ ꢋ ꢌ  
ꢍꢃ ꢎ ꢗꢇ  
ꢍ ꢃꢎꢗ ꢇ  
ꢂ ꢃꢉ  
ꢂ ꢃꢊ  
ꢂ ꢃꢄ  
ꢂ ꢃꢅ  
ꢂ ꢃ ꢉ  
ꢂ ꢃ ꢊ  
ꢂ ꢃ ꢄ  
ꢂ ꢃ ꢅ  
ꢍꢑ ꢐ ꢒꢋ  
ꢍꢑ ꢐ ꢒꢃ  
ꢍꢑ ꢐ ꢒꢁ  
ꢍ ꢑꢐꢒ ꢋ  
ꢍ ꢑꢐꢒ ꢃ  
ꢍ ꢑꢐꢒ ꢈ  
2
ꢙ ꢄ ꢲꢘ ꢓꢺ ꢻ  
ꢙ ꢄ ꢲꢘ ꢓꢺ ꢻ  
ꢊꢉ ꢉ ꢓ ꢺꢻ  
ꢄꢉ ꢉ ꢓ ꢺꢻ  
ꢀ ꢁꢁ  
ꢂ ꢁꢉ  
ꢂ ꢁꢊ  
ꢂ ꢁꢉ  
ꢂ ꢁꢊ  
MPC93R52  
MPC93R52  
ꢊ ꢉꢉ ꢓ ꢺꢻ ꢴꢍ ꢢꢢꢧ ꢽꢩꢣꢳ ꢶ  
ꢙ ꢄꢲ ꢘ ꢓꢺ ꢻ ꢴꢍꢢ ꢢ ꢧꢽ ꢩ ꢣꢳꢶ  
MPC93R52 default configuration (feedback of QB0 = 100  
MHz). All control pins are left open.  
MPC93R52 zero–delay (feedback of QB0 = 62.5 MHz).  
All control pins are left open except FSELC = 1. All out-  
puts are locked in frequency and phase to the input clock.  
Frequency range  
Input  
Min  
Max  
Frequency range  
Input  
Min  
Max  
50 MHz  
50 MHz  
50 MHz  
100 MHz  
120 MHz  
120 MHz  
120 MHz  
240 MHz  
50 MHz  
50 MHz  
50 MHz  
50 MHz  
120 MHz  
120 MHz  
120 MHz  
120 MHz  
QA outputs  
QB outputs  
QC outputs  
QA outputs  
QB outputs  
QC outputs  
Figure 5. MPC93R52 Default Configuration  
Figure 6. MPC93R52 Zero Delay Buffer Config. 2  
ꢂ ꢋꢊ  
ꢂ ꢋꢄ  
ꢂ ꢋꢅ  
ꢂ ꢋꢌ  
ꢂ ꢋ ꢊ  
ꢂ ꢋ ꢄ  
ꢂ ꢋ ꢅ  
ꢂ ꢋ ꢌ  
ꢂ ꢃꢉ  
ꢂ ꢃꢊ  
ꢂ ꢃꢄ  
ꢂ ꢃꢅ  
ꢂ ꢃ ꢉ  
ꢂ ꢃ ꢊ  
ꢂ ꢃ ꢄ  
ꢂ ꢃ ꢅ  
ꢀꢁ ꢁ  
ꢀꢁ ꢁ  
ꢍꢑ ꢐ ꢒꢋ  
ꢍꢑ ꢐ ꢒꢃ  
ꢍꢑ ꢐ ꢒꢁ  
ꢍꢑ ꢐꢒ ꢋ  
ꢍꢑ ꢐꢒ ꢃ  
ꢍꢑ ꢐꢒ ꢁ  
ꢅꢅ ꢲ ꢅ ꢓꢺ ꢻ  
ꢅ ꢅ ꢲꢅ ꢓꢺ ꢻ  
ꢀ ꢁꢁ  
ꢀ ꢁꢁ  
ꢂ ꢁꢉ  
ꢂ ꢁꢊ  
ꢂ ꢁꢉ  
ꢂ ꢁꢊ  
MPC93R52  
MPC93R52  
MPC93R52 configuration to multiply the reference frequen-  
cy by 3, 3÷2 and 1. PLL feedback of QA4 = 33.3 MHz.  
MPC93R52 zero–delay (feedback of QB0 = 33.3 MHz).  
Equivalent to Table 2 except F_RANGE = 1 enabling a  
lower input and output clock frequency.  
Frequency range  
Input  
Min  
Max  
Frequency range  
Input  
Min  
Max  
25 MHz  
50 MHz  
50 MHz  
100 MHz  
60 MHz  
120 MHz  
120 MHz  
240 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
60 MHz  
60 MHz  
60 MHz  
60 MHz  
QA outputs  
QB outputs  
QC outputs  
QA outputs  
QB outputs  
QC outputs  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
145  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Power Supply Filtering  
Using the MPC93R52 in zero–delay applications  
The MPC93R52 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if  
this noise is seen on the power supply pins. Random noise on  
the VCCA (PLL) power supply impacts the device characteris-  
tics, for instance I/O jitter. The MPC93R52 provides separate  
power supplies for the output buffers (VCC) and the phase-  
locked loop (VCCA) of the device. The purpose of this design  
technique is to isolate the high switching noise digital outputs  
from the relatively sensitive internal analog phase-locked loop.  
In a digital system environment where it is more difficult to  
minimize noise on the power supplies a second level of isola-  
tion may be required. The simple but effective form of isolation  
is a power supply filter on the VCCA pin for the MPC93R52.  
Figure 7 illustrates a typical power supply filter scheme. The  
MPC93R52 frequency and phase stability is most susceptible  
to noise with spectral content in the 100kHz to 20MHz range.  
Therefore the filter should be designed to target this range.  
The key parameter that needs to be met in the final filter design  
is the DC voltage drop across the series filter resistor RF. From  
the data sheet the ICCA current (the current sourced through  
the VCCA pin) is typically 3 mA (5 mA maximum), assuming  
that a minimum of 2.98V must be maintained on the VCCA pin.  
The resistor RF shown in Figure 7 “VCCA Power Supply Filter”  
should have a resistance of 5–25W to meet the voltage drop  
criteria.  
Nested clock trees are typical applications for the  
MPC93R52. Designs using the MPC93R52 as LVCMOS PLL  
fanout buffer with zero insertion delay will show significantly  
lower clock skew than clock distributions developed from  
CMOS fanout buffers. The external feedback option of the  
MPC93R52 clock driver allows for its use as a zero delay buff-  
er. One example configuration is to use a ÷4 output as a feed-  
back to the PLL and configuring all other outputs to a divide-  
by-4 mode. The propagation delay through the device is  
virtually eliminated. The PLL aligns the feedback clock output  
edge with the clock input reference edge resulting a near zero  
delay through the device. The maximum insertion delay of the  
device in zero-delay applications is measured between the ref-  
erence clock input and any output. This effective delay con-  
sists of the static phase offset, I/O jitter (phase or long-term  
jitter), feedback path delay and the output-to-output skew error  
relative to the feedback output.  
2
Calculation of part-to-part skew  
The MPC93R52 zero delay buffer supports applications  
where critical clock signal timing can be maintained across  
several devices. If the reference clock inputs of two or more  
MPC93R52 are connected together, the maximum overall tim-  
ing uncertainty from the common CCLK input to any output is:  
tSK(PP) = t + tSK(O) + tPD, LINE(FB) + tJIT( CF  
)
(
)
ꢏ ꢼ ꢘ ꢸꢄ ꢘ Ω  
ꢁ ꢼ ꢄꢄ µꢍ  
This maximum timing uncertainty consist of 4 components:  
static phase offset, output skew, feedback board trace delay  
and I/O (phase) jitter:  
ꢀ ꢁꢁꢋ  
ꢀꢁ ꢁ  
ꢊꢉ ꢦꢍ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢁ  
ꢁꢁꢒ ꢖ  
ꣁ ꢞ  
Figure 7. VCCA Power Supply Filter  
The minimum values for RF and the filter capacitor CF are  
defined by the required filter characteristics: the RC filter  
should provide an attenuation greater than 40 dB for noise  
whose spectral content is above 100 kHz. In the example RC  
filter shown in Figure 7 “VCCA Power Supply Filter”, the filter  
cut-off frequency is around 3-5 kHz and the noise attenuation  
at 100 kHz is better than 42 dB.  
t  
ꢑ ꢖ ꢴ ꢕ ꢶ  
ꢂ ꢍꢃ  
ꢿ ꢗ ꢹ ꢴ ꢶ  
As the noise frequency crosses the series resonant point of  
an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The  
parallel capacitor combination shown ensures that a low im-  
pedance path to ground exists for frequencies well above the  
bandwidth of the PLL. Although the MPC93R52 has several  
design features to minimize the susceptibility to power supply  
noise (isolated power and grounds and fully differential PLL)  
there still may be applications in which overall performance is  
being degraded due to system power supply noise. The power  
supply filter schemes discussed in this section should be ade-  
ꢋ ꢦꢱ ꢂ  
ꢈ ꢢ ꢵ ꢟ ꢣ ꢢ  
t  
ꢑ ꢖ ꢴ ꢕ ꢶ  
ꢓꢩ ꢪꢲ ꢠꢳꢢ ꢰ  
ꢑ ꢖ ꢴ ꢝ ꢝ ꢶ  
Figure 8. MPC93R52 max. device-to-device skew  
Due to the statistical nature of I/O jitter a RMS value (1 s) is  
quate to eliminate power supply noise related problems in specified. I/O jitter numbers for other confidence factors (CF)  
most designs. can be derived from Table 11.  
146  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each output  
of the MPC93R52 clock driver. For the series terminated case  
however there is no DC current draw, thus the outputs can  
drive multiple series terminated lines. Figure 10 “Single versus  
Dual Transmission Lines” illustrates an output driving a single  
series terminated line versus two series terminated lines in  
parallel. When taken to its extreme the fanout of the  
MPC93R52 clock driver is effectively doubled due to its capa-  
bility to drive multiple lines.  
Table 11: Confidence Facter CF  
CF  
1s  
Probability of clock edge within the distribution  
0.68268948  
0.95449988  
0.99730007  
0.99993663  
0.99999943  
0.99999999  
2s  
3s  
4s  
5s  
6s  
2
The feedback trace delay is determined by the board layout  
and can be used to fine-tune the effective delay through each  
device. In the following example calculation a I/O jitter confi-  
dence factor of 99.7% ( 3s) is assumed, resulting in a worst  
case timing uncertainty from input to any output of -445 ps to  
395 ps relative to CCLK:  
ꢓꢝ ꢁꢜ ꢅ ꢏꢘ ꢄ  
ꢕ ꣂꢹꢝ ꣂꢹ  
ꢃ ꣂꢍꢍꢐ ꢏ  
ꢼ ꢘ Ω  
ꢏ ꢼ ꢅ ꢙΩ  
ꢊꢌΩ  
ꢗ ꢇ  
ꢕ ꢨ ꢞꢋ  
tSK(PP)  
=
[–200ps...150ps] + [–200ps...200ps] +  
[(15ps @ –3)...(15ps @ 3)] + tPD, LINE(FB)  
ꢓꢝ ꢁꢜ ꢅ ꢏꢘ ꢄ  
ꢕ ꣂꢹꢝ ꣂꢹ  
ꢃ ꣂꢍꢍꢐ ꢏ  
ꢼ ꢘ Ω  
ꢼ ꢘ Ω  
ꢏ ꢼ ꢅ ꢙΩ  
tSK(PP)  
=
[–445ps...395ps] + tPD, LINE(FB)  
ꢕ ꢨ ꢞꢃ ꢉ  
ꢕ ꢨ ꢞꢃ ꢊ  
Due to the frequency dependence of the I/O jitter, Figure 9  
“Max. I/O Jitter versus frequency” can be used for a more pre-  
cise timing performance analysis.  
ꢗ ꢇ  
ꢏ ꢼ ꢅ ꢙΩ  
Figure 10. Single versus Dual Transmission Lines  
The waveform plots in Figure 11 “Single versus Dual Line  
Termination Waveforms” show the simulation results of an out-  
put driving a single line versus two lines. In both cases the  
drive capability of the MPC93R52 output buffer is more than  
sufficient to drive 50transmission lines on the incident edge.  
Note from the delay measurements in the simulations a delta  
of only 43ps exists between the two differently loaded outputs.  
This suggests that the dual line driving need not be used exclu-  
sively to maintain the tight output-to-output skew of the  
MPC93R52. The output waveform in Figure 11 “Single versus  
Dual Line Termination Waveforms” shows a step in the wave-  
form, this step is caused by the impedance mismatch seen  
looking into the driver. The parallel combination of the 36se-  
ries resistor plus the output impedance does not match the  
parallel combination of the line impedances. The voltage wave  
launched down the two lines will equal:  
Figure 9. Max. I/O Jitter versus frequency  
Driving Transmission Lines  
The MPC93R52 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output drivers  
were designed to exhibit the lowest impedance possible. With  
an output impedance of less than 20the drivers can drive  
either parallel or series terminated transmission lines. For  
more information on transmission lines the reader is referred to  
Motorola application note AN1091. In most high performance  
clock networks point-to-point distribution of signals is the meth-  
od of choice. In a point-to-point scheme either series termi-  
VL = VS ( Z0 ÷ (RS+R0 +Z0))  
Z0 = 50|| 50Ω  
RS = 36|| 36Ω  
R0 = 14Ω  
VL = 3.0 ( 25 ÷ (18+17+25)  
= 1.31V  
At the load end the voltage will double, due to the near unity  
nated or parallel terminated transmission lines can be used. reflection coefficient, to 2.6V. It will then increment towards the  
The parallel technique terminates the signal at the end of the quiescent 3.0V in steps separated by one round trip delay (in  
line with a 50resistance to VCC÷2.  
this case 4.0ns).  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
147  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
ꢅꢲ ꢉ  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines the situation  
in Figure 12 “Optimized Dual Line Termination” should be  
used. In this case the series terminating resistors are reduced  
such that when the parallel combination is added to the output  
buffer impedance the line impedance is perfectly matched.  
ꢕ ꢨꢞ ꢋ  
ꢞ ꢼ ꢅ ꢲꢛ ꢜꢘꢙ  
ꢕ ꢨꢞ ꢃ  
ꢞ ꢼ ꢅꢲ ꢜꢅ ꢛꢙ  
ꢄꢲ ꢘ  
ꢄꢲ ꢉ  
ꢊꢲ ꢘ  
ꢊꢲ ꢉ  
ꢉꢲ ꢘ  
ꢗꢦ  
ꢓꢝ ꢁꢜ ꢅ ꢏꢘ ꢄ  
ꢕ ꣂꢹꢝ ꣂꢹ  
ꢼ ꢘ Ω  
ꢼ ꢘ Ω  
ꢏ ꢼ ꢄ ꢄΩ  
ꢃ ꣂꢍꢍꢐ ꢏ  
2
ꢊꢌΩ  
ꢏ ꢼ ꢄ ꢄΩ  
14+ 2222= 5050Ω  
25= 25Ω  
ꢊꢉ  
ꢊꢄ  
ꢊ ꢌ  
ꢹꢗ ꢓ ꢐ ꢴꢦ ꢑꢶ  
Figure 12. Optimized Dual Line Termination  
Figure 11. Single versus Dual Waveforms  
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
ꢓꢝ ꢁꢜ ꢅ ꢏꢘ ꢄ  
ꢈꣂ ꢹ  
ꢝ ꢨꢫꢠꢢ  
ꢆ ꢢꢦꢢ ꢡꢩꢞ ꢤ ꢡ  
ꢼ ꢘꢉ Ω  
ꣃ ꢼ ꢘ ꢉ Ω  
ꣃ ꢼ ꢘꢉ W  
ꢏ ꢼ ꢘ ꢉ Ω  
ꢏ ꢼ ꢘ ꢉΩ  
ꢹ ꢹ  
Figure 13. CCLK MPC93R52 AC test reference for Vcc = 3.3V and Vcc = 2.5V  
148  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC93R52  
Bꢄ  
ꢆ ꢇꢈ  
ꢁꢁ ꢒꢖ  
ꢍꢃ ꢎ ꢗꢇ  
Bꢄ  
ꢆ ꢇꢈ  
Bꢄ  
Bꢄ  
ꢑ ꢖ ꢴ ꢕ ꢶ  
ꢆ ꢇꢈ  
ꢹ ꢭꢢ ꢯ ꢟꢦ ꢸꢞ ꢤꢸ ꢯ ꢟꢦ ꢠ ꢳꢢꢰ ꢟꢠ ꢧꢢ ꢬꢟꢦ ꢢꢧ ꢩꢠ ꢞ ꢭꢢ ꢰꢤ ꢡꢠꢞ ꢣꢩꢠ ꢢ ꢧꢟꢬꢬ ꢢꢡꢢ ꢦꢣꢢ ꢟꢦ  
ꢯ ꢡꢤ ꢯ ꢩꢮ ꢩ ꢞꢟꢤ ꢦ ꢧ ꢢꢫ ꢩꢱ ꢽꢢ ꢞꢰ ꢢꢢꢦ ꢩꢦ ꢱ ꢠꢟꢥ ꢟꢫꢩꢡ ꢧꢢ ꢫꢩꢱ ꢯꢩ ꢞꢭ ꢰ ꢟꢞꢭ ꢟꢦ ꢩ  
ꢠꢟꢦ ꢮ ꢫꢢ ꢧ ꢢꢵꢟ ꢣꢢ  
2
Figure 14. Output–to–output Skew tSK(O)  
Figure 15. Propagation delay (t(, static phase  
)
offset) test reference  
Bꢄ  
ꢊ ꢋ ꢆ ꢌ  
ꢆ ꢎ ꢆ ꢏꢐ ꢑ ꢒꣅ  
ꢇ ꢈ  
ꢹ ꢭꢢ ꢞꢟ ꢥꢢ ꢬꢡ ꢤ ꢥ ꢞꢭ ꢢ ꢝ ꢒꢒ ꢣꢤꢦ ꢞꢡ ꢤꢫꢫꢢ ꢧ ꢢꢧ ꢮꢢ ꢞ ꢤ ꢞ ꢭꢢ ꢦꢤ ꢦ ꢣꢤꢦ ꢞꢡ ꢤꢫꢫꢢ ꢧ  
ꢢ ꢧꢮ ꢢ ꢾ ꢧ ꢟꢵꢟꢧ ꢢ ꢧ ꢽ ꢱ ꢞ ꢭꢢ ꢞ ꢟꢥ ꢢ ꢽꢢ ꢞꢰ ꢢꢢ ꢦ ꢝ ꢒꢒ ꢣꢤꢦ ꢞꢡ ꢤꢫꢫꢢ ꢧ ꢢꢧ ꢮꢢꢠꢾ  
ꢢ ꢪꢯ ꢡꢢ ꢠꢠ ꢢꢧ ꢩ ꢠ ꢩ ꢯꢢ ꢡꢣꢢꢦ ꢞꢩ ꢮꢢ  
ꢹꢭ ꢢ ꢧ ꢢꢵꢟꢩ ꢞ ꢟꢤ ꢦ ꢟꢦ ꢞ ꢬ ꢤꢡ ꢩ ꢣꢤ ꢦꢞ ꢡꢤ ꢫꢫꢢ ꢧ ꢢ ꢧꢮ ꢢ ꢰꢟꢞ ꢭ ꢡꢢ ꢠꢯ ꢢꢣꢞ ꢞ ꢤ ꢩ ꢞ ꢥꢢ ꢩ ꢦ ꢟꢦ ꢩ  
ꢡꢩ ꢦꢧ ꢤ ꢥ ꢠꢩ ꢥꢯ ꢫꢢ ꢤ ꢬ ꢣꢱꢣꢫꢢ ꢠ  
Figure 16. Output Duty Cycle (DC)  
Figure 17. I/O Jitter  
ꢆ ꢂ ꢆ ꢎ ꣅ  
ꢊ ꢋ ꢆ ꢌ ꢄ ꢕ ꢖ ꢍ ꢓ ꢇ  
ꢇ ꣀ ꢊ  
ꢹ ꢭꢢ ꢵꢩ ꢡ ꢟꢩꢞ ꢟꢤ ꢦ ꢟꢦ ꢣꢱꢣ ꢫꢢ ꢞ ꢟꢥ ꢢ ꢤꢬ ꢩ ꢠꢟꢮꢦ ꢩꢫ ꢽꢢ ꢞꢰ ꢢꢢ ꢦ ꢩꢧ ꣆ꢩꢣꢢ ꢦꢞ ꢣꢱꢣꢫꢢ ꢠꢾ ꢤ ꢵꢢꢡ ꢩ  
ꢡ ꢩꢦ ꢧ ꢤꢥ ꢠꢩ ꢥꢯ ꢫꢢ ꢤ ꢬ ꢩ ꢧ꣆ꢩ ꢣꢢꢦꢞ ꢣꢱꢣꢫꢢ ꢯꢩ ꢟꢡꢠ  
ꢹꢭ ꢢ ꢧ ꢢꢵꢟꢩ ꢞ ꢟꢤ ꢦ ꢟꢦ ꢣꢱꢣꢫꢢ ꢞ ꢟꢥꢢ ꢤ ꢬ ꢩ ꢠꢟꢮ ꢦꢩ ꢫ ꢰꢟꢞ ꢭ ꢡꢢ ꢠꢯ ꢢꢣꢞ ꢞ ꢤ ꢞ ꢭ ꢢ ꢟꢧ ꢢꢩ ꢫ ꢯ ꢢꢡ ꢟꢤ ꢧ ꢤ ꢵꢢ ꢡ  
ꢩ ꢡꢩ ꢦꢧ ꢤ ꢥ ꢠꢩ ꢥꢯ ꢫꢢ ꢤ ꢬ ꢣꢱꢣꢫꢢ ꢠ  
Figure 18. Cycle–to–cycle Jitter  
Figure 19. Period Jitter  
ꢼ ꢅꢲ ꢅꢀ  
Figure 20. Output Transition Time Test Reference  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
149  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MPC940

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
MOTOROLA

MPC940L

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
MOTOROLA

MPC940L

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
IDT

MPC940LAC

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
IDT

MPC940LACR2

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
IDT

MPC940LFA

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
IDT

MPC940LFAR2

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
IDT

MPC941

LOW VOLTAGE 1:27 CLOCK DISTRIBUTION CHIP
MOTOROLA

MPC941AE

941 SERIES, LOW SKEW CLOCK DRIVER, 27 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, PLASTIC, LQFP-48
NXP

MPC941AER2

TQFP-48, Reel
IDT

MPC941FA

MPC900 SERIES, LOW SKEW CLOCK DRIVER, 27 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, PLASTIC, LQFP-48
MOTOROLA

MPC941FA

Low Skew Clock Driver, 941 Series, 27 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, LQFP-48
IDT