AUIRF7737L2TR [INFINEON]

Power Field-Effect Transistor, 31A I(D), 40V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-7;
AUIRF7737L2TR
型号: AUIRF7737L2TR
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 31A I(D), 40V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-7

开关 脉冲 晶体管
文件: 总11页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96315C  
AUIRF7737L2TR  
AUIRF7737L2TR1  
AUTOMOTIVE GRADE  
Automotive DirectFET® Power MOSFET ‚  
Advanced Process Technology  
Optimized for Automotive Motor Drive, DC-DC and  
other Heavy Load Applications  
Exceptionally Small Footprint and Low Profile  
High Power Density  
V(BR)DSS  
40V  
RDS(on) typ.  
1.5m  
1.9m  
max.  
ID (Silicon Limited)  
Qg  
156A  
Low Parasitic Parameters  
Dual Sided Cooling  
89nC  
175°C Operating Temperature  
Repetitive Avalanche Capability for Robustness and  
Reliability  
Lead Free, RoHS Compliant and Halogen Free  
Automotive Qualified *  
S
S
S
S
S
S
G
D
D
DirectFET® ISOMETRIC  
Applicable DirectFET® Outline and Substrate Outline   
L6  
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The AUIRF7737L2 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging  
technology to achieve exceptional performance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The  
DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-  
red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The  
DirectFET® package allows dual sided cooling to maximize thermal transfer in automotive power systems.  
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are of value. The advanced DirectFET® packaging  
platform coupled with the latest silicon technology allows the AUIRF7737L2 to offer substantial system level savings and performance improvement  
specifically in motor drive, high frequency DC-DC and other heavy load applications on ICE, HEV and EV platforms. This MOSFET utilizes the latest  
processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction  
temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable  
device for high current automotive applications.  
AbsoluteMaximumRatings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Max.  
Parameter  
Units  
40  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
V
DS  
GS  
V
± 20  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
156  
I
I
I
@ T = 25°C  
C
D
D
D
110  
@ T = 100°C  
C
31  
A
@ TA = 25°C  
ID @ TC = 25°C  
315  
624  
I
DM  
83  
P
P
@TC = 25°C  
@TA = 25°C  
Power Dissipation  
D
D
W
3.3  
Power Dissipation  
EAS  
104  
386  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
EAS (tested)  
IAR  
A
See Fig.18a, 18b, 16, 17  
EAR  
Repetitive Avalanche Energy  
mJ  
270  
Peak Soldering Temperature  
T
T
T
P
-55 to + 175  
°C  
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
–––  
–––  
1.8  
RθJA  
RθJCan  
RθJ-PCB  
–––  
–––  
Junction-to-PCB Mounted  
0.5  
0.56  
Linear Derating Factor  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
11/08/10  
AUIRF7737L2TR/TR1  
Static Characteristics @ TJ = 25°C (unless otherwise stated)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
40  
–––  
0.03  
1.5  
–––  
–––  
1.9  
4.0  
V
∆ ∆  
V(BR)DSS/ TJ  
–––  
–––  
2.0  
V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
VGS = 10V, ID = 94A  
mΩ  
V
3.0  
VDS = VGS, ID = 150µA  
V
GS(th)/ TJ  
Gate Threshold Voltage Coefficient  
–––  
100  
–––  
–––  
–––  
–––  
–––  
-10  
––– mV/°C  
V
DS = 10V, ID = 94A  
–––  
0.6  
–––  
–––  
5
S
gfs  
RG  
IDSS  
Forward Transconductance  
Gate Resistance  
Drain-to-Source Leakage Current  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
–––  
–––  
–––  
–––  
µA  
250  
100  
-100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
V
GS = -20V  
Dynamic Characteristics @ TJ = 25°C (unless otherwise stated)  
Parameter  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
DS = 20V, VGS = 10V  
Qg  
Qgs1  
V
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
89  
18  
134  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 94A  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Qgs2  
Qgd  
8
See Fig.11  
nC  
34  
Qgodr  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
29  
Qsw  
42  
V
DS = 16V, VGS = 0V  
Qoss  
td(on)  
Output Charge  
Turn-On Delay Time  
Rise Time  
39  
nC  
ns  
VDD = 20V, VGS = 10V  
ID = 94A  
12  
tr  
19  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 1.8Ω  
22  
14  
Ciss  
Coss  
Crss  
Coss  
Coss  
Coss eff.  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
Output Capacitance  
Effective Output Capacitance  
V
GS = 0V  
5469  
1193  
534  
4296  
1066  
1615  
VDS = 25V  
ƒ = 1.0MHz  
pF  
VGS = 0V, VDS = 1.0V, f=1.0MHz  
VGS = 0V, VDS = 32V, f=1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics @ TJ = 25°C (unless otherwise stated)  
Conditions  
MOSFET symbol  
showing the  
Parameter  
Min.  
Typ.  
Max. Units  
IS  
Continuous Source Current  
(Body Diode)  
D
S
–––  
–––  
156  
A
G
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
624  
p-n junction diode.  
IS = 94A, VGS = 0V  
IF = 94A, VDD = 20V  
di/dt = 100A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
35  
1.3  
53  
48  
V
ns  
nC  
Qrr  
32  
‰ Mounted to a PCB with small  
clip heatsink (still air)  
‰ Mounted on minimum footprint full size  
board with metalized back and with small  
clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
Notes  through Šare on page 10  
2
www.irf.com  
AUIRF7737L2TR/TR1  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
LARGE-CAN  
MSL1  
Class M4(+/-425V)  
Machine Model  
(per AEC-Q101-002)  
Class H1C(+/-2000V)  
(per AEC-Q101-001)  
N/A  
Human Body Model  
ESD  
Charged Device  
Model  
(per AEC-Q101-005)  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRF7737L2TR/TR1  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
100  
BOTTOM  
BOTTOM  
10  
4.5V  
1
4.5V  
60µs  
PULSE WIDTH  
Tj = 25°C  
60µs  
Tj = 175°C  
PULSE WIDTH  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
6
2.8  
2.5  
2.2  
1.9  
1.6  
1.3  
1.0  
I
= 94A  
D
5
4
3
2
1
0
T = 125°C  
J
T
T
= 125°C  
= 25°C  
J
T = 25°C  
J
Vgs = 10V  
J
4
6
8
10 12 14 16  
18 20  
5
30 55 80 105 130 155 180 205  
I , Drain Current (A)  
D
Fig 4. Typical On-Resistance vs. Drain Current  
V
Gate -to -Source Voltage (V)  
GS,  
Fig 3. Typical On-Resistance vs. Gate Voltage  
1000  
2.0  
V
= 25V  
I
= 94A  
DS  
D
60µs PULSE WIDTH  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 10V  
GS  
100  
10  
1
T
= -40°C  
J
TJ = 25°C  
TJ = 175°C  
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
T , Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
4
www.irf.com  
AUIRF7737L2TR/TR1  
1000  
100  
10  
5.5  
4.5  
3.5  
2.5  
1.5  
T
= -40°C  
J
TJ = 25°C  
TJ = 175°C  
I
= 1.0A  
D
ID = 1.0mA  
ID = 250µA  
ID = 150µA  
V
= 0V  
1.2  
GS  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
-75 -50 -25  
0
25 50 75 100 125 150 175  
V
, Source-to-Drain Voltage (V)  
T , Temperature ( °C )  
SD  
J
Fig 7. Typical Threshold Voltage vs. Junction Temperature  
Fig 8. Typical Source-Drain Diode Forward Voltage  
300  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
250  
rss  
oss  
gd  
= C + C  
T
= 25°C  
J
ds  
gd  
200  
150  
100  
50  
C
iss  
C
T
= 175°C  
oss  
J
C
rss  
V
= 10V  
DS  
380µs PULSE WIDTH  
0
100  
0
20 40 60 80 100 120 140 160  
1
10  
, Drain-to-Source Voltage (V)  
100  
I ,Drain-to-Source Current (A)  
D
V
DS  
Fig 10. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 9. Typical Forward Transconductance Vs. Drain Current  
14  
160  
I = 94A  
D
V
V
= 32V  
= 20V  
DS  
DS  
140  
120  
100  
80  
12  
10  
8
VDS= 8V  
6
60  
4
40  
2
20  
0
0
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
150  
175  
Q , Total Gate Charge (nC)  
T
, Case Temperature (°C)  
G
C
Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 12. Maximum Drain Current vs. Case Temperature  
www.irf.com  
5
AUIRF7737L2TR/TR1  
10000  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
OPERATION IN THIS AREA  
LIMITED BY RDS(on)  
D
TOP  
13A  
24A  
1000  
BOTTOM 94A  
100µsec  
100  
1msec  
10msec  
10  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1
0
0.10  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
, Drain-to-Source Voltage (V)  
DS  
Starting T , Junction Temperature (°C)  
Fig 14. Maximum Avalanche Energy vs. Temperature  
J
Fig 13. Maximum Safe Operating Area  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.02  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.00501  
0.93035  
0.17759  
0.68769  
18.81575  
0.022853  
0.000126  
0.00313  
τ
0.01  
0.05  
τ
J τJ  
τ
C
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 16. Typical Avalanche Current Vs.Pulsewidth  
6
www.irf.com  
AUIRF7737L2TR/TR1  
Notes on Repetitive Avalanche Curves , Figures 16, 17:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 18a, 18b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
120  
100  
80  
60  
40  
20  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 94A  
Single Pulse  
I
D
Tjmax (assumed as 25°C in Figure 16, 17).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 15)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 17. Maximum Avalanche Energy Vs. Temperature  
V
15V  
(BR)DSS  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
20V  
0.01  
t
p
I
AS  
Fig 18a. Unclamped Inductive Test Circuit  
Fig 18b. Unclamped Inductive Waveforms  
Id  
Vds  
L
Vgs  
VCC  
DUT  
0
20K  
Vgs(th)  
Fig 19a. Gate Charge Test Circuit  
Qgs1  
Qgs2  
Qgodr  
Qgd  
RD  
VDS  
Fig 19b. Gate Charge Waveform  
VGS  
D.U.T.  
V
DS  
RG  
+
-
90%  
VDD  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
AUIRF7737L2TR/TR1  
Automotive DirectFET® Board Footprint, L6 (Large Size Can).  
Please see AN-1035 for DirectFET® assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
G
8
www.irf.com  
AUIRF7737L2TR/TR1  
Automotive DirectFET® Outline Dimension, L6 Outline (LargeSize Can).  
Please see AN-1035 for DirectFET® assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.040  
0.030  
0.017  
0.057  
0.104  
0.159  
0.214  
0.029  
0.007  
0.003  
A
B
9.05 9.15 0.356  
6.85 7.10 0.270  
5.90 6.00 0.232  
0.55 0.65 0.022  
0.58 0.62 0.023  
1.18 1.22 0.046  
0.98 1.02 0.039  
0.73 0.77 0.029  
0.38 0.42 0.015  
1.35 1.45 0.053  
2.55 2.65 0.100  
3.95 4.05 0.155  
5.35 5.45 0.210  
0.68 0.74 0.027  
0.09 0.17 0.003  
0.02 0.08 0.001  
C
D
E
F
G
H
J
K
L
L1  
L2  
M
P
R
Automotive DirectFET® Part Marking  
"AU" = GATE AND  
AUTOMOTIVE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRF7737L2TR/TR1  
AutomotiveDirectFET® Tape&ReelDimension(Showingcomponentorientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4000 parts. (ordered as AUIRF7737L2TR). For 1000 parts on 7"  
reel, order AUIRF7737L2TR1  
DIMENSIONS  
METRIC  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
METRIC IMPERIAL  
IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
MAX  
12.10  
4.10  
CODE  
MIN  
MIN  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
MAX  
N.C  
MIN  
MAX  
N.C  
4.69  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
A
B
C
D
E
F
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
7.000  
0.795  
0.331  
0.059  
2.460  
N.C  
330.00  
20.20  
12.80  
1.50  
177.80  
20.20  
12.98  
1.50  
N.C  
N.C  
N.C  
16.30  
7.60  
0.520  
N.C  
13.20  
N.C  
13.50  
2.50  
N.C  
7.40  
99.00  
N.C  
3.940  
0.880  
0.720  
0.760  
62.48  
N.C  
100.00  
22.40  
18.40  
19.40  
10.10  
N.C  
N.C  
G
H
G
H
0.650  
0.630  
N.C  
16.40  
15.90  
N.C  
N.C  
0.630  
16.00  
N.C  
0.063  
1.60  
Notes:  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET® Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.024mH, RG = 50, IAS = 94A.  
‡ Pulse width 400µs; duty cycle 2%.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
Š R is measured at TJ of approximately 90°C.  
θ
10  
www.irf.com  
AUIRF7737L2TR/TR1  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the  
right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time  
and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry  
and / or customer specific requirements with regards to product discontinuance and process change notification. All products are  
sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty.  
Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using IR components. To minimize the risks with customer products and applications, customers should provide ad-  
equate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is  
an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are  
specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is  
solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection  
with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are  
designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers  
acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any  
failure to meet such requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
11  

相关型号:

AUIRF7738L2

Advanced Process Technology
INFINEON

AUIRF7738L2TR

Power Field-Effect Transistor, 35A I(D), 40V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-7
INFINEON

AUIRF7738L2TR1

Power Field-Effect Transistor, 35A I(D), 40V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-7
INFINEON

AUIRF7738L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7739L2

Advanced Process Technology
INFINEON

AUIRF7739L2TR

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7739L2TR1

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7739L2TR_10

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7739L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7749L2

Advanced Process Technology
INFINEON

AUIRF7749L2TR

Advanced Process Technology
INFINEON

AUIRF7759L2

Advanced Process Technology
INFINEON