AUIRFS8405TRR [INFINEON]

Advanced Process Technology New Ultra Low On-Resistance; 先进的工艺技术新的超低导通电阻
AUIRFS8405TRR
型号: AUIRFS8405TRR
厂家: Infineon    Infineon
描述:

Advanced Process Technology New Ultra Low On-Resistance
先进的工艺技术新的超低导通电阻

文件: 总14页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUIRFS8405  
AUIRFSL8405  
AUTOMOTIVE GRADE  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
l
l
Advanced Process Technology  
D
S
New Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free,RoHSCompliant  
Automotive Qualified *  
VDSS  
40V  
RDS(on) typ.  
max.  
1.9mΩ  
2.3mΩ  
G
ID  
193A  
(Silicon Limited)  
ID  
120A  
(Package Limited)  
Description  
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniquestoachieveextremelylowon-resistancepersilicon  
area. Additional features of this design are a 175°C junction  
operating temperature, fast switching speed and improved  
repetitive avalanche rating. These features combine to make  
this design an extremely efficient and reliable device for use  
inAutomotiveapplicationsandwidevarietyofotherapplications.  
D
D
S
D
S
D
G
D2Pak  
G
TO-262  
AUIRFSL8405  
AUIRFS8405  
Applications  
l
l
l
l
l
Electric Power Steering (EPS)  
Battery Switch  
Start/Stop Micro Hybrid  
Heavy Loads  
G
Gate  
D
Drain  
S
Source  
DC-DCApplications  
Base part number  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRFSL8405  
AUIRFS8405  
TO-262  
D2Pak  
Tube  
Tube  
50  
50  
AUIRFSL8405  
AUIRFS8405  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRFS8405TRL  
AUIRFS8405TRR  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
193  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
137  
A
120  
904  
163  
PD @TC = 25°C  
Maximum Power Dissipation  
W
W/°C  
V
1.1  
Linear Derating Factor  
± 20  
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
1
AUIRFS/SL8405  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
181  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
247  
See Fig. 14, 15, 24a, 24b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
Max.  
0.92  
40  
Units  
°C/W  
Rθ  
Rθ  
Junction-to-Case  
JC  
Junction-to-Ambient (PCB Mount)  
JA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.026 ––– V/°C Reference to 25°C, ID = 1.0mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.2  
1.9  
3.0  
2.3  
3.9  
1.0  
mVGS = 10V, ID = 100A  
VGS(th)  
V
VDS = VGS, ID = 100µA  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
––– ––– 150  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
–––  
2.3  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 100A  
ID = 100A  
gfs  
Qg  
100 ––– –––  
––– 107 161  
S
Total Gate Charge  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
29  
39  
68  
14  
–––  
–––  
–––  
–––  
VDS =20V  
nC  
V
GS = 10V  
Qsync  
ID = 100A, VDS =0V, VGS = 10V  
VDD = 26V  
td(on)  
tr  
Rise Time  
––– 128 –––  
ID = 100A  
ns  
td(off)  
Turn-Off Delay Time  
–––  
–––  
55  
77  
–––  
–––  
RG = 2.7Ω  
VGS = 10V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 5193 –––  
––– 754 –––  
––– 519 –––  
––– 878 –––  
––– 1225 –––  
VGS = 0V  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
pF ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 32V , See Fig. 11  
VGS = 0V, VDS = 0V to 32V  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
2
AUIRFS/SL8405  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
MOSFET symbol  
––– ––– 193  
A
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 904  
S
(Body Diode)  
p-n junction diode.  
VSD  
Diode Forward Voltage  
Peak Diode Recovery  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.9  
1.7  
44  
45  
44  
46  
1.9  
1.3  
V
TJ = 25°C, IS = 100A, VGS = 0V  
dv/dt  
trr  
––– V/ns TJ = 175°C, IS = 100A, VDS = 40V  
–––  
–––  
–––  
–––  
–––  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
ns  
IF = 100A  
di/dt = 100A/µs  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable  
junction temperature. Bond wire current limit is 120A. Note that  
current limitations arising from heating of the device leads may  
occur with some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.036mH, RG = 50,  
IAS = 100A, VGS =10V. Part not recommended for use above  
this value.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques  
refer to application note #AN-994.  
.
.
‰ Rθ is measured at TJ approximately 90°C.  
Š RθJC value shown is at time zero.  
„ ISD 100A, di/dt 1295A/µs, VDD V(BR)DSS, TJ 175°C.  
3
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS/SL8405  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
V
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 100A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
5
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
1.0  
2
3
4
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 100A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
10.0  
8.0  
V
V
= 32V  
= 20V  
= C  
DS  
DS  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
6.0  
C
rss  
4.0  
2.0  
100  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20  
40  
60  
80  
100 120 140  
V
Q , Total Gate Charge (nC)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2013 International Rectifier  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
April 30, 2013  
4
AUIRFS/SL8405  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
Limited by package  
T
= 25°C  
J
10msec  
1
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1.0  
0.1  
1
10  
100  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
50  
48  
46  
44  
42  
40  
200  
150  
100  
50  
Id = 1.0mA  
Limited By Package  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
D
TOP  
17A  
36A  
BOTTOM 100A  
-5  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
5
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS/SL8405  
10  
1
D = 0.50  
0.20  
0.10  
0.1  
0.05  
0.02  
0.01  
0.01  
0.001  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 24a, 24b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
200  
180  
160  
140  
120  
100  
80  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
60  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
40  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
20  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
6
AUIRFS/SL8405  
8.0  
6.0  
4.0  
2.0  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
= 100A  
D
I
I
I
= 100µA  
= 1.0mA  
= 1.0A  
D
D
D
T
= 125°C  
J
T = 25°C  
J
4
6
8
10 12 14  
16 18 20  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 16. On-Resistance vs. Gate Voltage  
Fig 17. Threshold Voltage vs. Temperature  
10  
200  
I = 60A  
I = 60A  
F
F
V
= 34V  
V
= 34V  
R
R
8
6
4
2
0
T = 25°C  
T = 25°C  
J
J
150  
100  
50  
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 19 - Typical Stored Charge vs. dif/dt  
Fig. 18 - Typical Recovery Current vs. dif/dt  
12  
10  
8
200  
150  
100  
50  
I = 100A  
F
I = 100A  
F
V
= 34V  
V
= 34V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
Fig. 20 - Typical Recovery Current vs. dif/dt  
7
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS/SL8405  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
= 5.5V  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
GS  
0
100  
200  
300  
400  
500  
I , Drain Current (A)  
D
Fig 22. Typical On-Resistance vs. Drain Current  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
8
AUIRFS/SL8405  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 24b. Unclamped Inductive Waveforms  
Fig 24a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 25a. Switching Time Test Circuit  
Fig 25b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 26a. Gate Charge Test Circuit  
www.irf.com © 2013 International Rectifier  
Fig 26b. Gate Charge Waveform  
9
April 30, 2013  
AUIRFS/SL8405  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
PartNumber  
AUIRFS8405  
DateCode  
Y= Year  
WW= Work Week  
IRLogo  
YWWA  
A=Automotive,LeadFree  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
10  
AUIRFS/SL8405  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
PartNumber  
AUIRFSL8405  
DateCode  
Y= Year  
WW= Work Week  
IRLogo  
YWWA  
A=Automotive,LeadFree  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
11  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS/SL8405  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
www.irf.com © 2013 International Rectifier  
April 30, 2013  
12  
AUIRFS/SL8405  
Qualification Information†  
Automotive  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification. IR’s  
Industrial and Consumer qualification level is granted by extension of the higher  
Automotive level.  
TO-262  
D2 PAK  
N/A  
MSL1  
Class M3 (+/- 400V)††  
Machine Model  
AEC-Q101-002  
Class H1C (+/- 2000V)††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000V)††  
AEC-Q101-005  
Charged Device Model  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Highest passing voltage.  
13  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS/SL8405  
IMPORTANTNOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompaniedbyallassociatedwarranties,conditions,limitations,andnotices. Reproductionofthisinformationwithalterations  
is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of  
third parties may be subject to additional restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservice  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, orinotherapplicationsintendedtosupportorsustainlife, orinanyotherapplicationinwhichthefailureoftheIR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
feesarisingoutof, directlyorindirectly, anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledgeandagreethatanyuseofIRproductsnotcertifiedbyDLAasmilitary-grade,inapplicationsrequiringmilitarygrade  
products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and regulatory  
requirements in connection with such use.  
IRproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificIRproducts  
are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”.  
Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
14  

相关型号:

AUIRFS8407

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8407-7P

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFS8407-7TRL

HEXFET® Power MOSFET
INFINEON

AUIRFS8407-7TRR

HEXFET® Power MOSFET
INFINEON

AUIRFS8407TRL

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8408

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8408-7P

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON

AUIRFS8408-7TRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFS8408TRL

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8408TRR

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8409

AUTOMOTIVE GRADE
INFINEON

AUIRFS8409-7P

HEXFETPower MOSFET
INFINEON