BTT3050EJ [INFINEON]

The power transistor is built by an N-channel vertical power MOSFET. The BTT3050EJ is monolithically integrated. The BTT3050EJ is automotive qualified and is optimized for 24 V automotive applications.;
BTT3050EJ
型号: BTT3050EJ
厂家: Infineon    Infineon
描述:

The power transistor is built by an N-channel vertical power MOSFET. The BTT3050EJ is monolithically integrated. The BTT3050EJ is automotive qualified and is optimized for 24 V automotive applications.

文件: 总47页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HITFET+24V BTT3050EJ  
Smart low-side power switch  
Features  
• Single channel device optimized for 24 V applications  
• Electrostatic discharge protection (ESD)  
• Overcurrent, active clamping and overtemperature protection  
• Overtemperature latch shutdown  
• Supply pin undervoltage protection  
• Dedicated status signal  
• Slew-rate control to adjust switching speed  
• PWM switching capability of 20 KHz (duty cycle 10%-90%)  
• Green product (RoHS compliant)  
• AEC qualified  
Potential applications  
Suitable for resistive and inductive loads.  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
BTT3050EJ is a 50 mΩ single channel smart low-side power switch within a PG-TDSO-8 package providing embedded  
protective functions. The power transistor is built by a N-channel vertical power MOSFET. BTT3050EJ is monolithically  
integrated, automotive qualified and optimized for 24 V automotive applications.  
VBAT  
IN  
Load  
Voltage Regulator  
OUT  
CVDD optional:  
e.g. 100nF  
VDD  
VDD  
RSTATUS  
BTT3050EJ  
Micro  
controller  
OUT  
STATUS  
I/O  
Status/ Reset  
IC Logic  
IN  
I/O  
PWM  
SRP  
GND  
RSRP  
GND  
App_01  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
Description  
Table 1  
Product summary  
Parameter  
Symbol  
VOUT  
Values  
0 … 36 V  
63 V  
Operating voltage range  
Maximum load voltage  
ON-state resistance  
VBAT(OUT)  
RDS(ON)_25  
IL(NOM)  
50 mΩ  
Nominal load current  
Minimum current limitation  
4 A  
IL(LIM)  
10 A  
Product type  
Package  
PG-TDSO-8  
Marking  
Ordering code  
BTT3050EJ  
T3050EJ  
BTT3050EJXUMA1  
Datasheet  
2
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
2
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Transient thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
3.4  
4
Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output on-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Resistive load output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Adjustable switching speed and slewrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Output clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Maximum load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.4  
4.5  
5
5.1  
5.2  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional description of the STATUS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6
6.1  
6.1.1  
6.1.2  
6.2  
Supply and input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Supply circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Supply current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overvoltage clamping on output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overcurrent limitation and short circuit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset latch condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Reset via STATUS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset via STATUS pin and IN pin connected together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1  
7.2  
7.3  
7.4  
7.4.1  
7.4.2  
7.5  
Datasheet  
3
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
Table of contents  
8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1  
8.2  
8.3  
8.4  
Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Supply and input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
9
Characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Supply and input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.1  
9.2  
9.3  
10  
10.1  
10.2  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Layout recommendations and considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Datasheet  
4
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
1 Block diagram  
1
Block diagram  
Overtemperature  
Protection  
Latch  
Logic  
Status  
Feedback  
ESD  
Protection  
STATUS  
OUT  
ESD  
Protection  
IN  
Undervoltage  
Protection  
Overvoltage  
Protection  
ESD  
Protection  
Supply  
Unit  
VDD  
SRP  
Gate Driving  
Unit  
ESD  
Protection  
Slewrate  
adjustment  
Overcurrent  
Protection  
GND  
Figure 1  
Block diagram of BTT3050EJ  
Datasheet  
5
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
2 Pin configuration  
2
Pin configuration  
1
2
8
7
IN  
GND  
GND  
VDD  
OUT  
3
4
6
5
STATUS  
SRP  
GND  
NC  
Figure 2  
Table 2  
Pin configuration  
Pin definitions and functions  
Pin  
Symbol  
I/O  
Function  
1
IN  
I
If IN logic is high, switches ON the power DMOS  
If IN logic is low, switches OFF the power DMOS  
2
3
VDD  
I
Logic supply voltage pin, 3.3 V to 5.5 V  
STATUS  
I/O  
RESET thermal latch function by microcontroller and pull-up  
If STATUS logic is high, device is in normal operation  
If STATUS logic is low, device is in overtemperature condition  
4
SRP  
NC  
I
Slew rate control with external resistor  
5
Pin internally not connected  
6,7,8  
GND  
OUT  
I/O  
I/O  
GND; source of power DMOS and logic 1)  
Load connection, drain of power DMOS  
Cooling Tab  
1) All GND pins must be connected together  
VBAT  
VBAT  
VDD  
IDD  
VDD  
RSTATUS  
ZL  
ISTATUS  
VDD  
STATUS  
VSTATUS  
IL, ID  
IIN  
OUT  
IN  
VIN  
VOUT,  
VDS  
ISRP  
SRP  
GND  
VSRP  
RSRP  
GND  
Figure 3  
Naming definition of electrical parameters  
Datasheet  
6
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings  
1) T = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Output voltages  
Output voltage  
VOUT  
-0.3  
-0.3  
63  
36  
V
V
Internally clamped  
PRQ-296  
PRQ-297  
Battery voltage for  
short circuit protection  
(extended range)  
VBAT(SC)  
VIN = 5 V; TA = 25°C, 125°C (3  
samp./temp.);  
RECU (pin OUT) = 20 mΩ;  
RCABLE (pin OUT) = 16 mΩ;  
LCABLE (pin OUT) = 1 µH/m;  
LSC (pin OUT) = 5 µH + Lcable;  
l = 40 m  
Power stage  
Load current  
IL  
0
IL(LIM)  
A
PRQ-298  
Logic pins  
Input voltage  
Status voltage  
SRP voltage  
VIN  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
6.5  
V
V
V
V
PRQ-299  
PRQ-300  
PRQ-301  
PRQ-302  
VSTATUS  
VSRP  
VDD  
Supply voltage  
Energy capability  
Energy single pulse  
EAS  
100  
50  
mJ  
mJ  
IL(0) = IL(NOM); VBAT = 28 V; TJ(0)  
150°C  
=
=
PRQ-303  
PRQ-306  
Energy repetitive pulse EAR(20M)  
20 M cycles  
IL(0) = IL(NOM); VBAT = 28 V; TJ(0)  
105°C  
Temperatures  
Junction temperature TJ  
-40  
-55  
150  
150  
°C  
°C  
PRQ-308  
PRQ-309  
Storage temperature  
TSTG  
ESD susceptibility  
2)  
ESD susceptibility (all  
pins except OUT tab, to  
GND)  
VESD  
-2  
-4  
2
4
kV  
kV  
PRQ-310  
PRQ-311  
HBM  
2)  
ESD susceptibility (OUT VESD_OUT  
tab to GND)  
HBM  
(table continues...)  
Datasheet  
7
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
3 General product characteristics  
Table 3  
(continued) Absolute maximum ratings  
1) T = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
3)  
ESD susceptibility (all  
pins)  
VESD_CDMA  
VESD_CDMC  
-500  
500  
V
PRQ-312  
PRQ-313  
CDM  
3)  
ESD susceptibility  
(corner pins)  
-750  
750  
V
CDM  
1)  
2)  
3)  
Not subject to production test, specified by design  
ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)  
ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
datasheet. Fault conditions are considered as outside normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
3.2  
Functional range  
Table 4  
Functional range  
Symbol  
Parameter  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
1)  
Battery voltage range  
for nominal operation  
VBAT(NOR)  
VDD(NOR)  
VDD(EXT1)  
6
36  
V
PRQ-314  
PRQ-316  
PRQ-315  
1)  
Supply voltage range  
for nominal operation  
3.3  
3.0  
5.5  
5.5  
V
1)  
Supply voltage range  
for extended_1  
operation  
V
Parameter deviations possible  
1)  
Supply voltage range  
for extended_2  
operation  
VDD(EXT2)  
5.5  
6.5  
V
PRQ-551  
VBAT < 46 V;  
Parameter deviations possible  
1)  
Junction temperature TJ  
-40  
2.2  
150  
160  
°C  
PRQ-318  
PRQ-319  
1)  
External resistor range RSRP  
for adjustable slewrate  
operation  
kΩ  
1)  
Not subject to production test, specified by design  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical characteristics table.  
Datasheet  
8
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
3 General product characteristics  
3.3  
Thermal resistance  
Table 5  
Parameter  
Thermal resistance  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
1)  
Junction to case  
RthJC  
3.0  
35  
45  
K/W  
PRQ-320  
PRQ-321  
PRQ-322  
2)  
1)  
Junction to ambient  
2s2p  
RthJA(2s2p)  
RthJA(1s0p)  
K/W  
3)  
1)  
Junction to ambient  
(1s0p + 600 mm2Cu)  
K/W  
4)  
1)  
2)  
Not subject to production test, specified by design  
Specified RthJC value is simulated at natural convection on a cold plate setup. Bottom of the package is fixed to  
ambient temperature. TAMB = 85°C. Device loaded with 1 W power.  
Specified RthJA value is according to Jedec JESD51-2, -7 at natural convection of FR4 2s2p board; the product  
(chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x  
35 µm Cu). TAMB = 85°C. Device loaded with 1 W power.  
Specified RthJA value is according to Jedec JESD51-2, -7 at natural convection on FR4 1s0p board; the product  
(chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm board with additional heatspreading copper area of  
600 m2 and 70 µm thickness. TAMB = 85°C. Device loaded with 1 W power.  
3)  
4)  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to  
www.jedec.org.  
Datasheet  
9
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
3 General product characteristics  
3.4  
Transient thermal impedance  
Figure 4  
ZthJA = f(tp)  
Typical transient thermal impedance ZthJA = f(tp), TA = 85°C.  
In Figure 4 the value is according to Jedec JESD51-2, at natural convection on FR4 boards. Where applicable a thermal  
via array under the exposed pad contacted the first inner copper layer. The device is dissipating 1 W power.  
Datasheet  
10  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
4
Power stage  
4.1  
Output on-state resistance  
Figure 5  
Typical on-state resistance RDS(ON) = f(TJ); VDD = VIN = 5 V, 3 V  
Figure to be updated.  
The on-state resistance depends on the supply voltage (VDD) as well as on the junction temperature (TJ). Figure  
5 shows these dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The  
behavior in reverse polarity is described in Reverse current capability.  
Datasheet  
11  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
4.2  
Resistive load output timing  
VIN  
VIN(TH)H  
VIN(TH)L  
t
VOUT  
VBAT  
80 %  
-(ΔV/Δt)ON  
(ΔV/Δt)OFF  
20 %  
tDON  
tF  
tDOFF  
tR  
t
tOFF  
tON  
Figure 6  
Definition of power output timing for resistive load  
Figure 6 shows the typical timing when switching a resistive load.  
Both -(ΔV/Δt)ON and (ΔV/Δt)OFF can be calculated using the following formulas:  
Turn-on slew rate: -(ΔV/Δt)ON = (0.6 x VBAT) / tF  
Turn-off slew rate: (ΔV/Δt)OFF = (0.6 x VBAT) / tR  
NB: the coefficient 0.6 is based on 20% to 80% of VBAT, this is how the measurement of ΔV is defined.  
As shown in Figure 6 tON and tOFF can be calculated from delay time (tDON, tDOFF) and falling/rising time (tF, tR) using  
the following formulas:  
Turn-on time: tON = tDON + tF  
Turn-off time: tOFF = tDOFF + tR  
4.3  
Adjustable switching speed and slewrate  
SRP  
Driver  
&
RSRP(int)  
RSRP  
ESD  
Logic  
GND  
Figure 7  
Simplified SRP circuit  
Figure 7 shows the slew rate control circuit of BTT3050EJ. The circuit includes an ESD protection mechanism via a  
zener structure.  
Datasheet  
12  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
In order to optimize the switching speed of the MOSFET to a specific application, an external resistor can be  
connected between SRP pin and GND to select the desired slew rate (see switching timings in Power stage) . The  
adjustment of the slew rate also allows to balance between electromagnetic emissions and power dissipation.  
To reduce the number of external components, the SRP pin can be connected directly to GND. This sets the slew rate  
at its largest value enabling fast switching timings.  
It is not recommended to connect directly SRP pin to VDD or to leave it floating (open).  
The accuracy of the switching speed is dependent on the accuracy of the external resistor used. It is recommended to  
use short connections between the SRP pin and either RSRP, GND bias.  
Figure 8 shows the typical relation between switching speed and the external SRP resistor (RSRP).  
Figure 8  
Typical, simplified diagram representing the relation between RSRP and tON, tOFF; VDD = 5 V;  
RLoad = 6.8 Ω, 10 Ω  
Datasheet  
13  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
4.3.1  
Output clamping  
VBAT  
VBAT  
ZL  
IL  
OUT (DMOS Drain)  
VOUT  
GND ( DMOS Source)  
IGND  
Figure 9  
Output clamp circuitry  
VIN  
t
IOUT  
t
VOUT  
VOUT(CLAMP)  
VBAT  
t
Figure 10  
Switching an inductive load  
When switching off inductive loads with low-side switches, the drain-source voltage VOUT rises above the battery  
potential due to the inductance tendency to continue driving the current. To prevent unwanted high voltages the  
device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping operation mode  
the device heats up as it dissipates the energy from the inductance. Therefore the maximum allowed load inductance  
is limited. See Figure 9 and Figure 10 for more details.  
Note:  
Repetitive switching of an inductive load by VDD instead of using the input pin IN is a not recommended  
operation and may affect the device reliability and reduce the lifetime.  
Datasheet  
14  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
4.3.2  
Maximum load inductance  
During the demagnetization of inductive loads, energy has to be dissipated by the device.  
This energy can be calculated by (1):  
VBAT VOUT CLAMP  
RL × IL  
L
(1)  
(2)  
E = VOUT CLAMP  
×
× ln 1 −  
+ IL  
×
RL  
VBAT VOUT CLAMP  
RL  
The (2) is simplified under the assumption of RL = 0:  
VBAT  
1
2
E
=
LIL × 1 −  
2
VBAT VOUT CLAMP  
Figure 11 shows the inductance for a given current that the device BTT3050EJ can withstand.  
For maximum single avalanche energy please refer to EAS parameter in Table 3.  
Figure 11  
Maximum load inductance for single pulse: L = f(IL); TJ(0) = 150°C; VBAT = 28 V  
Datasheet  
15  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
4 Power stage  
4.4  
Reverse current capability  
A reverse battery situation means that the device’s drain is pulled below GND potential to -VBAT. In this situation  
the load is driven by a current through the intrinsic body diode of BTT3050EJ and all protections, such as current  
limitation, overtemperature or overvoltage clamping, are not active.  
In inverse or reverse operation via the reverse body diode, the device is dissipating a power loss which is defined by  
the driven current and the voltage drop on the body diode.  
4.5  
Characteristics  
Please see Power stage for Electrical characteristics tables.  
Datasheet  
16  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
5 Diagnostics  
5
Diagnostics  
BTT3050EJ provides a latching digital fault feedback signal on the STATUS pin triggered by an overtemperature  
shutdown.  
VDD  
RSTATUS  
120W  
Driver  
STATUS  
RSTATUS(int)  
10KW  
&
RDIAG(int)  
ESD  
Logic  
GND  
Figure 12  
Simplified diagnosis circuit  
Figure 12 shows the diagnosis circuit of BTT3050EJ. The circuit includes an ESD protection mechanism via a zener  
structure. Note that RSTATUS(int) + RDIAG(int) = RSTATUS(LATCH)  
.
5.1  
Functional description of the STATUS pin  
BTT3050EJ provides digital status information via the STATUS pin to give feedback to a connected microcontroller.  
The readout of the diagnosis signal is only possible if the STATUS pin has a dedicated connection to the  
microcontroller and the appropriate pull-up resistor RSTATUS is in place. See Figure 32 for recommended values of  
the external components.  
The device is able to operate via STATUS pin and IN pin connected together, however, this condition will inhibit the  
readout of the diagnosis signal.  
In normal operation (no thermal shutdown) the STATUS pin's logic is set "high". It is pulled up via an external resistor  
(RSTATUS) to VDD.  
Internally it is connected to an open drain MOSFET through an internal resistor.  
In case of a thermal shutdown (fault) the internal MOSFET, connected to the STATUS pin, pulls its voltage down to  
GND providing a "low" level signal to the microcontroller VSTATUS(LATCH)  
.
Fault mode operation remains active independently from the INPUT pin state until it is reset.  
To reset the latch fault signal of BTT3050EJ, the STATUS pin has to be externally pulled up. This behavior is shown in  
Figure 15. For other configurations and how to reset the latch OFF of the DMOS, please see Reset latch condition.  
5.2  
Characteristics  
Please see Diagnostics for Electrical characteristics tables.  
Datasheet  
17  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
6 Supply and input stage  
6
Supply and input stage  
VDD  
RDD  
Driver  
&
ESD  
Logic  
IN  
RIN  
ESD  
GND  
Figure 13  
Simplified supply and input circuit  
Figure 13 shows the supply and input circuit of BTT3050EJ. Both terminals include an ESD protection mechanism via  
a zener structure.  
6.1  
Supply circuit  
The device's supply is not internally regulated but provided by an external supply. Therefore a reverse polarity  
protected and buffered (3.3 V..5.5 V) voltage supply is required at VDD pin. To achieve the best RDS(ON) and the fastest  
switching speed a 5 V supply is required.  
6.1.1  
Undervoltage shutdown  
In order to ensure a stable device behavior under all allowed conditions the supply voltage VDD is monitored.  
The output switches off if the supply voltage VDD drops below the switch-off threshold VDD(TH)L  
.
If the supply voltage VDD drops below the supply voltage reset threshold VDD(RESET) a reset of the STATUS signal and the  
latch-off state will occur.  
The device functions are only given for supply voltages above the supply voltage threshold VDD(TH)H  
.
6.1.2  
Supply current consumption  
The supply current consumption is determined by the state of the input voltage, being low, with the IDD(OFF) and being  
high, with the IDD(ON)  
.
Afer a thermal shutdown, when the device is in OFF latch mode, the current consumption values matches the normal  
ON state IDD(ON) as long as input is high.  
However in PWM the consumption depends on the switching frequency. The higher the frequency, the higher the  
IDD(PWM)  
.
Figure 14 shows the typical relation between the supply current consumption and the switching frequency  
considering a duty-cycle of 50%.  
Datasheet  
18  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
6 Supply and input stage  
Figure 14  
Typical IDD(PWM) versus switching frequency at 50% duty cycle  
6.2  
Characteristics  
Please see Supply and input stage for Electrical characteristics tables.  
Datasheet  
19  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
7 Protection functions  
7
Protection functions  
BTT3050EJ provides embedded protection functions. Integrated protection functions are designed to prevent  
IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside"  
normal operations. Protection functions are not to be used for continuous or repetitive operation. BTT3050EJ has  
implemented a latched overtemperature shutdown function.  
In the event of overtemperature shutdown the device will remain OFF until the latch is reset via STATUS pin.  
7.1  
Overvoltage clamping on output  
BTT3050EJ limits the drain-source voltage VDS at a certain level VOUT(CLAMP)  
.
The overvoltage clamping is overruling the other protection functions. Power dissipation has to be limited not to  
exceed the maximum allowed junction temperature.  
This function is also used in terms of inductive clamping. Please see also Output clamping for more details.  
7.2  
Thermal protection  
The device is protected against overtemperature due to overload and/or bad cooling conditions by an integrated  
temperature sensor.  
The thermal protection is available when the device is active. In the event of overtemperature shutdown TJ(SD), the  
device will remain OFF until the device is reset via STATUS pin.  
Please see Figure 15 and Figure 16.  
7.3  
Overcurrent limitation and short circuit behavior  
BTT3050EJ provides an overcurrent limitation intended to protect against short circuit or overcurrent conditions.  
When the drain current reaches the current limitation level IL(LIM), the device will limit the current at that level.  
While doing so, the power dissipation will heat up the device. Once the device reaches the overtemperature shutdown  
threshold TJ(SD), it will automatically shutdown and remain OFF until it is reset via STATUS pin.  
7.4  
Reset latch condition  
The reset of the latch OFF mode is done in two stages that need to be performed in the correct sequence.  
During the first stage the voltage at the STATUS pin must be below the VSTATUS(RESET)L threshold for a time t  
> tSTATUS(RESET)L  
.
In the second stage of the reset sequence, the STATUS pin voltage needs to be pulled-up above the VSTATUS(RESET)H  
threshold for a time t > tSTATUS(RESET)H  
The total reset time needed is given by the sum of tSTATUS(RESET)L and tSTATUS(RESET)H  
The following paragraphs explain more in detail the reset functionality in different conditions.  
.
.
7.4.1  
Reset via STATUS pin  
If the temperature protection shutdowns the device, it will remain latched OFF independently of the input signal at IN  
pin. Simultaneously, the STATUS pin signal will be signalized low VSTATUS(LATCH). In order to reset the latch condition,  
the STATUS pin needs to remain below VSTATUS(RESET)L for a time t > tSTATUS(RESET)L before being externally pulled-up to  
VSTATUS(RESET)H for a time t > tSTATUS(RESET)H  
.
Please refer to Figure 15 and the application diagram in Figure 32.  
This configuration allows the device to be driven with high frequency PWM signal via the IN pin without a risk of  
resetting the device in case it goes in protection shutdown mode (latch OFF).  
Datasheet  
20  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
7 Protection functions  
External pull-up  
STATUS pin high  
tSTATUS(RESET)H  
tSTATUS(RESET)L  
Overcurrent event  
Thermal shutdown  
No reset via IN  
IN  
t
VSTATUS  
VSTATUS(RESET)H  
VSTATUS(RESET)L  
VSTATUS(LATCH)  
t
ID, IL  
Current limitation  
IL(LIM)  
t
TJ  
TJ(SD)  
t
VOUT  
t
Total RESET time  
Figure 15  
Mechanism to reset latch condition via STATUS pin  
7.4.2  
Reset via STATUS pin and IN pin connected together  
If STATUS and IN pins are connected together (no RSTATUS pull-up external resistor), the voltage provided through the  
IN pin will prevent to signalize the STATUS low.  
To reset the device under this condition, the STATUS – IN connection need to be pulled-down to VSTATUS(RESET)L for a  
time t > tSTATUS(RESET)L before being pulled-up to VSTATUS(RESET)H for a time t > tSTATUS(RESET)H  
.
Please refer to Figure 16 and the application diagram in Figure 33.  
If no diagnosis of the device is required, this configuration avoids the need of a dedicated I/O from the microcontroller  
for the STATUS pin. The maximum frequency allowed in PWM mode via IN pin preventing to reset the device is  
constrained by the tSTATUS(RESET)L and tSTATUS(RESET)H times.  
Datasheet  
21  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
7 Protection functions  
External pull-down  
IN pin low  
External pull-up  
IN pin high  
tSTATUS(RESET)H  
tSTATUS(RESET)L  
Overcurrent event  
Thermal shutdown  
VIN,  
VSTATUS  
VSTATUS(RESET)H  
VSTATUS(RESET)L  
t
ID, IL  
Current limitation  
IL(LIM)  
t
TJ  
TJ(SD)  
t
t
VOUT  
Total RESET time  
Figure 16  
Mechanism to reset latch condition with STATUS pin and IN pin connected together  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependent and cannot be described.  
7.5  
Characteristics  
Please see Protection for Electrical characteristic tables.  
Datasheet  
22  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
8 Electrical characteristics  
8
Electrical characteristics  
Please note that Electrical characteristics shows the deviation of a parameter at a given input voltage and junction  
temperature. Typical values show the typical parameters expected from manufacturing and in typical application  
condition. All voltages and currents naming and polarity in accordance to Figure 3.  
8.1  
Power stage  
Please see Power stage for parameters description and further details.  
Table 6 Power stage  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Static characteristics  
On-state resistance at RDS(ON)_5_25  
50  
63  
mΩ  
mΩ  
mΩ  
mΩ  
IL = IL(NOM); VDD = 5 V; TJ = 25°C  
PRQ-168  
5 V supply and 25°C  
On-state resistance at RDS(ON)_5_150  
5 V supply and 150°C  
85  
100  
78  
IL = IL(NOM); VDD = 5 V; TJ = 150°C PRQ-169  
On-state resistance at RDS(ON)_3_25  
3 V supply and 25°C  
63  
IL = IL(NOM); VDD = 3 V; TJ = 25°C  
PRQ-172  
On-state resistance at RDS(ON)_3_150  
3 V supply and 150°C  
105  
130  
IL = IL(NOM); VDD = 3 V; TJ = 150°C PRQ-173  
1) TJ < 150°C; TA = 85°C; VDD = 5 V PRQ-174  
Nominal load current  
IL(NOM)  
4.0  
0
1
A
OFF state load current, IL(OFF)_85  
output leakage current  
µA  
2) TJ ≤ 85°C  
PRQ-175  
OFF state load current, IL(OFF)_150  
Output leakage current  
at 150°C  
2
10  
µA  
V
TJ = 150°C  
PRQ-176  
Reverse diode  
Reverse diode forward -VDS  
voltage  
0.6  
1
VIN = 0 V  
PRQ-177  
Switching times. RSRP = short to GND; VBAT = 28 V; VDD = 5 V; RLoad = 10 Ω.  
Turn-on delay time  
tDON_5(0)  
tDOFF_5(0)  
tF_5(0)  
1.2  
1.0  
0.5  
2.7  
2.8  
1.4  
6.8  
5.5  
2.5  
µs  
µs  
µs  
PRQ-178  
PRQ-179  
PRQ-180  
Turn-off delay time  
Turn-on output fall  
time  
Turn-off output rise  
time  
tR_5(0)  
0.3  
0.8  
2.0  
µs  
PRQ-181  
(table continues...)  
Datasheet  
23  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
8 Electrical characteristics  
Table 6  
(continued) Power stage  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Switching times. RSRP = 5.8 KΩ; VBAT = 28 V; VDD = 5 V; RLoad = 10 Ω.  
Turn-on delay time  
tDON_5(5K8)  
tDOFF_5(5K8)  
tF_5(5K8)  
1.7  
1.4  
1.1  
3.1  
4.5  
2.1  
6.9  
7.6  
3.6  
µs  
µs  
µs  
PRQ-182  
PRQ-183  
PRQ-184  
Turn-off delay time  
Turn-on output fall  
time  
Turn-off output rise  
time  
tR_5(5K8)  
1.0  
1.7  
2.9  
µs  
PRQ-328  
Switching times. RSRP = 58 KΩ; VBAT = 28 V; VDD = 5 V; RLoad = 10 Ω.  
Turn-on delay time  
tDON_5(58K)  
tDOFF_5(58K)  
tF_5(58K)  
5.5  
6.6  
5.7  
10.5 15.3 µs  
20.4 40.9 µs  
11.3 18.6 µs  
PRQ-329  
PRQ-330  
PRQ-331  
Turn-off delay time  
Turn-on output fall  
time  
Turn-off output rise  
time  
tR_5(58K)  
6.9  
12.8 19.3 µs  
PRQ-332  
Switching times. RSRP = 1 MΩ; VBAT = 28 V; VDD = 5 V; RLoad = 10 Ω.  
Turn-on delay time  
tDON_5(1M)  
tDOFF_5(1M)  
tF_5(1M)  
9.3  
17.0 42.2 µs  
PRQ-337  
PRQ-338  
PRQ-339  
Turn-off delay time  
10.4 44.2 139  
µs  
Turn-on output fall  
time  
8.9  
26.7 64.7 µs  
Turn-off output rise  
time  
tR_5(1M)  
8.9  
27.1 68.2 µs  
PRQ-340  
1)  
2)  
Not subject to production test, calculated by RthJA and RDS(ON)  
Not subject to production test, specified by design  
8.2  
Protection  
Please see Protection functions for parameter description and further details.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
Datasheet  
24  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
8 Electrical characteristics  
Table 7  
Protection  
TJ = -40°C to +150°C, VBAT = 28 V; all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Thermal shutdown  
1)  
Thermal shutdown  
TJ(SD)  
150  
175  
4.5  
200  
°C  
µs  
V
= 5 V  
PRQ-185  
PRQ-189  
DD  
junction temperature  
1)  
Overtemperature  
shutdown STATUS  
delay at 5 V  
tTJ(SD)5  
Delay time to trigger STATUS  
signal;  
VDD = 5 V;  
TAMB = 25°C  
1)  
Overtemperature  
shutdown STATUS  
delay at 3 V  
tTJ(SD)3  
4.2  
µs  
PRQ-191  
Delay time to trigger STATUS  
signal;  
VDD = 3 V;  
TAMB = 25°C  
Overvoltage protection/clamping  
Drain clamp voltage  
VOUT(CLAMP)  
63  
10  
72  
16  
83  
22  
V
A
VIN = 0 V; ID > 50 mA  
PRQ-193  
PRQ-196  
Current limitation  
2)  
Current limitation level IL(LIM)_5  
V
= 5 V  
DD  
1)  
2)  
Not subject to production test, specified by design  
Parameter tested at VBAT = 5 V; specified up to VBAT = 36 V  
8.3  
Supply and input stage  
Please see Supply and input stage for description and further details.  
Table 8  
Supply and input stage  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Supply  
Supply on threshold  
voltage high  
VDD(TH)H  
VDD(TH)L  
2.4  
2.3  
2.8  
2.7  
3
V
V
PRQ-202  
PRQ-203  
1)  
Supply off threshold  
voltage low  
2.9  
DMOS switches OFF below  
threshold  
(table continues...)  
Datasheet  
25  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
8 Electrical characteristics  
Table 8  
(continued) Supply and input stage  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Supply current,  
continuous ON  
operation  
IDD(ON)  
150  
250  
µA  
µA  
ON-state; VDD = 5.5 V; VIN = 5 V; PRQ-206  
IL(0) = IL(NOM)  
2)  
Standby supply current IDD(OFF)  
0.3  
3
V = 0 V; VDD = 5.5 V  
IN  
PRQ-212  
Input  
Input on threshold  
voltage; 5.5 V supply  
VIN(TH)H_5.5  
1.9  
1.2  
1.2  
0.7  
20  
2.4  
1.5  
1.5  
1
2.8  
1.8  
1.8  
1.2  
80  
V
VDD = 5.5 V  
PRQ-213  
PRQ-214  
PRQ-219  
PRQ-220  
PRQ-222  
Input off threshold  
voltage; 5.5 V supply  
VIN(TH)L_5.5  
VIN(TH)H_3  
VIN(TH)L_3  
V
VDD = 5.5 V  
Input on threshold  
voltage; 3 V supply  
V
VDD = 3 V  
Input off threshold  
voltage; 3 V supply  
V
VDD = 3 V  
Input pull down current IIN  
45  
µA  
VIN ≤ 5.5 V; VDD ≤ 5.5 V  
1)  
2)  
Undervoltage shutdown protection doesn't reset the OFF latch mode  
Not subject to production test, specified by design  
8.4  
Diagnostics  
Please see Diagnostics for parameters description and further details.  
Table 9  
Diagnostics  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
Diagnostics  
6)  
Status pin latch voltage VSTATUS(LATCH)  
1
V
PRQ-227  
1)  
V
= 5 V; RSTATUS = 100  
DD  
kOhm; 3 V ≤ VIN ≤ 5 V; latched  
fault signal  
2)  
Status pin reset  
threshold low  
VSTATUS(RESET)L_5  
1
1.4  
2.2  
1.7  
2.6  
V
V
V
= 5 V  
PRQ-228  
PRQ-229  
DD  
3)  
Status pin reset  
threshold high  
VSTATUS(RESET)H_5 1.7  
tSTATUS(RESET)L_5  
V = 5 V  
DD  
6) 4)  
6) 5)  
Status reset low time  
1
1.6  
35  
2.4  
70  
ms  
µs  
V
V
= 5 V  
= 5 V  
PRQ-230  
PRQ-231  
DD  
Status reset high time tSTATUS(RESET)H_5 20  
DD  
(table continues...)  
Datasheet  
26  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
8 Electrical characteristics  
Table 9  
(continued) Diagnostics  
TJ = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or condition  
P-Number  
Min. Typ. Max.  
2)  
Status pin reset  
threshold low  
VSTATUS(RESET)L_3 0.7  
VSTATUS(RESET)H_3 1.2  
tSTATUS(RESET)L_3 0.5  
1
1.2  
1.9  
2.3  
50  
1
V
PRQ-232  
PRQ-233  
PRQ-234  
PRQ-235  
PRQ-236  
VDD = 3 V  
3)  
Status pin reset  
threshold high  
1.6  
1
V
VDD = 3 V  
6) 4)  
Status reset low time  
ms  
VDD = 3 V  
6) 5)  
Status reset high time tSTATUS(RESET)H_3  
8
15  
µs  
VDD = 3 V  
6)  
Status pin leakage  
current (no latch)  
ISTATUS(NOLATCH)  
µA  
3 V ≤ VDD ≤ 5.5 V;  
VSTATUS ≤ 5.5 V;  
0 V ≤ VIN ≤ 5.5 V  
Status pin internal  
resistance (latch active)  
RSTATUS(LATCH)  
7
10  
15  
KΩ  
RSTATUS(LATCH) = RSTATUS(int)  
+ RDIAG(int)  
PRQ-237  
1)  
Latch feedback signal voltage drop considering VDD = 5 V and RSTATUS = 100 kΩ.  
2)  
3)  
4)  
5)  
6)  
Voltage threshold needed at the STATUS pin to initialize the reset sequence of the latch OFF mode. If STATUS pin  
and IN pin are connected together, same voltage threshold applies.  
Voltage threshold needed at the STATUS pin to complete the reset sequence of the latch OFF mode. If STATUS  
pin and IN pin are connected together, same voltage range applies.  
Time needed to remain below VSTATUS(RESET)L to initialize the reset sequence of the latch OFF mode. See Chapter  
6.4 for more information.  
Time needed to remain above VSTATUS(RESET)H afer VSTATUS(RESET)L is applied to conlude the reset sequence.  
See Chapter 6.4 for more information.  
Not subject to production test, specified by design.  
Datasheet  
27  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
9
Characterization results  
Typical performance characteristics.  
9.1  
Power stage  
Figure 17  
Typical RDS(ON) vs. VDD; IL = IL(NOM); VIN = 3 V; VDD = 3.. 5.5 V; VBAT = 28 V; RSRP = 0 Ω  
Datasheet  
28  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 18  
Typical IL(OFF) vs. TJ at VIN = 0 V; VDD = 0 V, 5 V; VBAT = 28, 36, 58 V; TJ = -40, 25, 85, 105, 150°C  
Datasheet  
29  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 19  
Typical destruction point EAS versus IL at TJ(0) = 150°C, VBAT = 28 V; IL(NOM), 2 x IL(NOM)  
Figure 20  
Typical EAR versus IL at TJ(0) = 25, 105°C, VBAT = 28 V; Nr. cycles = 20 Mio cycles; IL = IL(NOM), 2 x  
IL(NOM)  
Datasheet  
30  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 21  
Typical EON and EOFF vs. RSRP at TA = 25°C, VDD = 3 V and 5.5 V; VBAT = 28 V; IN = 5 V; STATUS =  
pulled-up to VDD; RLOAD = 6.8Ω  
Dynamic characteristics  
Datasheet  
31  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 22  
Typical tF, tR, tDON, tDOFF versus RSRP at VIN = 5 V; VDD = 5 V; VBAT = 28 V; RL= 6.8 Ω, 10 Ω; RSRP  
=
(0 kΩ, 2.2 kΩ,5.8 kΩ, 10 kΩ,58 kΩ, 160 kΩ, open); TJ = -40 .. 150°C  
Datasheet  
32  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 23  
Typical tF, tR, tDON, tDOFF versus RSRP at VIN = 3 V; VDD = 3 V; VBAT = 28 V; RL = 6.8 Ω, 10 Ω; RSRP  
=
(0 kΩ, 2.2 kΩ, 5.8 kΩ, 10 kΩ,58 kΩ, 160 kΩ, open); TJ = -40 .. 150°C  
Datasheet  
33  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
9.2  
Protection  
Figure 24  
Typical IL(LIM) versus VDD = 3, 6.5 V; VIN = 5 V; VBAT = 0 .. 63 V; TJ = -40, 25, 85, 105, 150°C  
Datasheet  
34  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 25  
Typical time to shut down tTJ(SD) versus IL; VBAT= 28 V; VDD = 3.3, 5 V; VIN = 5 V; RthJA(2s2p)  
Datasheet  
35  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
9.3  
Supply and input stage  
Figure 26  
Typical VDD(TH) versus TJ at TJ = -40 .. 150°C; VDD(TH)H and VDD(TH)L; VIN = 3 V; RLOAD = 150 kΩ;  
RSRP = GND; VBAT = 28 V  
Datasheet  
36  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 27  
Typical IDD(ON) versus RSRP at TJ = -40 .. 150°C, IL = IL(NOM); VIN = 3 V; VDD = 5 V; VBAT = 28  
V; RSRP = GND  
Datasheet  
37  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 28  
Typical IDD(ON) versus VDD at VDD = 3 .. 6.5 V; TJ = -40 .. 150°C; IL = IL(NOM); VIN = 3 V; VBAT = 28 V;  
RSRP = GND  
Datasheet  
38  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 29  
Typical IDD(LIM) versus VDD at VDD = 3 .. 6.5 V; TJ = -40 .. 150°C; VIN = 3 V; RSRP = GND; VBAT = 5 V  
Datasheet  
39  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 30  
Typical VIN(TH) versus VDD VIN(TH)H and VIN(TH)L ; VDD = 3 .. 6.5 V; TJ =-40 ... 150°C; RLOAD = 150  
kΩ; RSRP = GND; VBAT = 28 V  
Datasheet  
40  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
9 Characterization results  
Figure 31  
Typical ITjSD versus VDD at VIN = 3 .. 5.5 V; VDD = 3, 6.5 V; IL = IL(NOM); VBAT = 28 V  
Datasheet  
41  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
10 Application information  
10  
Application information  
10.1  
Layout recommendations and considerations  
As consequences of the fast switching times for high currents (INOM and above), special care has to be taken to the  
PCB layout. Stray inductances have to be minimized, as BTT3050EJ has no separate pin for power ground and logic  
ground. Therefore, it is recommended:  
To ensure that the offset between the ground connection of the SRP resistor and ground pins of the device  
is minimized. RSRP should be placed next to the device and directly connected to the GND pins, to avoid any  
influence of GND shif to SRP functionality.  
To ensure that the offset between the ground of the VDD supply and the ground of the pins of the device is  
minimized.  
The maximum parasitic capacitance between the SRP line and GND (CSRP) has to be less than 10 pF to avoid any  
influence on SRP functionality (e.g. switching times).  
10.2  
Application diagrams  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Recommended values for VIN = VDD = 5 V: RSTATUS = 100 kΩ.  
Table 10  
RSRP switching modes  
RSRP_min  
RSRP_max Unit  
Behavior  
0
2.2  
kΩ  
kΩ  
kΩ  
Fast switching mode. SRP pin can be connected to GND.  
Adjustable switching mode  
Slow switching mode  
2.2  
160  
160  
1000  
For switching timings, please refer to Power stage.  
Datasheet  
42  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
10 Application information  
VBAT  
IN  
Load  
Voltage Regulator  
OUT  
CVDD optional:  
e.g. 100nF  
VDD  
VDD  
RSTATUS  
BTT3050EJ  
Micro  
controller  
OUT  
STATUS  
I/O  
Status/ Reset  
IC Logic  
IN  
I/O  
PWM  
SRP  
GND  
RSRP  
GND  
App_01  
Figure 32  
Application diagram to use IN pin and STATUS pin independently  
Datasheet  
43  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
10 Application information  
VBAT  
IN  
IN  
Load  
Voltage Regulator 01  
Voltage Regulator 02  
OUT  
OUT  
CVDD optional:  
e.g. 100nF  
VDD  
VDD  
BTT3050EJ  
Micro  
controller  
OUT  
STATUS  
I/O  
Status/ Reset  
IC Logic  
IN  
I/O  
PWM  
SRP  
GND  
RSRP  
GND  
App_03  
Figure 33  
Application diagram to use IN pin and STATUS pin simultaneously with different supply and  
microcontroller voltage class  
Example given for VIN = 3.3 V; VDD = 5 V allows to maintain an optimal RDS(ON) while driving the input with a 3.3 V  
microcontroller. This configuration does not make possible the readout of the fault signal and will reset the latch OFF  
via IN pin (see parameters in Diagnostics ).  
For RSRP recommended values, please see Table 10.  
Note:  
This are very simplified examples of an application circuit. The function must be verified in the real  
application.  
Datasheet  
44  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
11 Package  
11  
Package  
Figure 34  
PG-TDSO-8  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free  
finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Datasheet  
45  
Rev. 1.00  
2022-01-18  
HITFET+24V BTT3050EJ  
Smart low-side power switch  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
Rev.1.00  
2022-01-18  
Datasheet creation  
Datasheet  
46  
Rev. 1.00  
2022-01-18  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-01-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-jxg1642157686944  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

BTT6010-1EKA

Smart High-Side Power Switch
INFINEON

BTT6010-1EKA_15

Smart High-Side Power Switch
INFINEON

BTT6010-1EKB

Smart High-Side Power Switch Single Channel
INFINEON

BTT6010-1EKB_15

Smart High-Side Power Switch Single Channel
INFINEON

BTT6010-1ERA

The BTT6010-1ERA is a 10mΩ single channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis
INFINEON

BTT6010-1ERB

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 5 x P21W 24V or 1x H55W 12V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT60101EKAXUMA1

Buffer/Inverter Based Peripheral Driver, 9A, PDSO14, SOP-14
INFINEON

BTT6020-1EKA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT60201EKAXUMA1

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6030-1ERA

PROFET™+ 24V | Automotive Smart High-Side Switch
INFINEON

BTT6030-2EKA

Smart High-Side Power Switch Dual Channel
INFINEON

BTT6030-2EKA_15

Smart High-Side Power Switch Dual Channel
INFINEON