BTT6030-2EKA_15 [INFINEON]

Smart High-Side Power Switch Dual Channel;
BTT6030-2EKA_15
型号: BTT6030-2EKA_15
厂家: Infineon    Infineon
描述:

Smart High-Side Power Switch Dual Channel

文件: 总54页 (文件大小:2303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™+ 24V  
BTT6030-2EKA  
Smart High-Side Power Switch  
Dual Channel, 32mΩ  
Data Sheet  
PROFET™+ 24V  
Rev. 1.1, 2015-03-04  
Automotive Power  
BTT6030-2EKA  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
8.1  
8.2  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Data Sheet  
PROFET™+ 24V  
2
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Table of Contents  
8.3  
8.4  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9
9.1  
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Current Consumption One Channel active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Current Consumption Two Channels active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Turn ON / OFF matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Sense Signal maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.3  
9.3.1  
9.3.2  
9.4  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Data Sheet  
PROFET™+ 24V  
3
Rev. 1.1, 2015-03-04  
Smart High-Side Power Switch  
BTT6030-2EKA  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Suitable for 24V Trucks and Transportation System  
Basic Features  
PG-DSO-14-40 EP  
Two channel device  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant)  
AEC qualified  
Description  
The BTT6030-2EKA is a 32 mdual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP,  
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel  
vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially  
designed to drive lamps up to 3 * P21W 24V or 1 * 70W 24V, as well as LEDs in the harsh automotive environment.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
VS(LD)  
Value  
5 V ... 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
Maximum ON state resistance at TJ = 150 °C per channel  
Nominal load current (one channel active)  
Nominal load current (both channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
62 mΩ  
6 A  
4 A  
2240  
Minimum current limitation  
IL5(SC)  
IS(OFF)  
56 A  
Maximum standby current with load at TJ = 25 °C  
500 nA  
Type  
Package  
Marking  
BTT6030-2EKA  
BTT6030-2EKA  
PG-DSO-14-40 EP  
Data Sheet  
PROFET™+ 24V  
4
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Overview  
Diagnostic Functions  
Proportional load current sense for both channels multiplexed  
Open load in ON and OFF  
Short circuit to battery and ground  
Overtemperature  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnect with external components  
Overtemperature protection with latch  
Overvoltage protection with external components  
Voltage dependent current limitation  
Enhanced short circuit operation  
Data Sheet  
PROFET™+ 24V  
5
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Block Diagram  
2
Block Diagram  
Channel 0  
VS  
voltage sensor  
internal  
power  
supply  
over  
T
temperature  
clamp for  
inductive load  
gate control  
&
charge pump  
IN0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load current sense and  
OUT 0  
open load detection  
IS  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
Control and protection circuit equivalent to channel0  
DSEL  
OUT 1  
Block diagram DxS.vsd  
GND  
Figure 1  
Block Diagram for the BTT6030-2EKA  
Data Sheet  
PROFET™+ 24V  
6
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
GND  
IN0  
1
2
3
14  
13  
12  
OUT0  
OUT0  
OUT0  
DEN  
IS  
4
5
11  
10  
NC  
DSEL  
OUT1  
IN1  
NC  
6
7
9
8
OUT1  
OUT1  
Pinout dual SO14.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
GND  
IN0  
Function  
1
GrouND; Ground connection  
2
INput channel 0; Input signal for channel 0 activation  
3
DEN  
IS  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device  
Sense; Sense current of the selected channel  
4
5
DSEL  
IN1  
Diagnostic SELection; Digital signal to select the channel to be diagnosed  
INput channel 1; Input signal for channel 1 activation  
Not Connected; No internal connection to the chip  
6
7, 11  
NC  
8, 9, 10  
12, 13, 14  
Cooling Tab  
OUT1  
OUT0  
VS  
OUTput 1; Protected high side power output channel 11)  
OUTput 0; Protected high side power output channel 01)  
Voltage Supply; Battery voltage  
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected  
together. PCB traces have to be designed to withstand the maximum current which can flow.  
Data Sheet  
PROFET™+ 24V  
7
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IS  
VS  
VDS0  
VS  
IIN0  
IOUT0  
IN0  
IN1  
OUT0  
VIN0  
IIN1  
VDS1  
VOUT0  
VIN1  
IDEN  
DEN  
DSEL  
IS  
VDEN  
IOUT1  
IDSEL  
OUT1  
VDSEL  
I
IS  
VOUT1  
GND  
VIS  
IGND  
voltage and current convention.vsd  
Figure 3  
Voltage and Current Definition  
Data Sheet  
PROFET™+ 24V  
8
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings 1)  
TJ = -40 °C to +150 °C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Number  
Test Condition  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
48  
28  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25 °C  
RL 12 Ω  
RGND = 150 Ω  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
36  
V
V
R
ECU = 20 mΩ  
P_4.1.3  
RCable= 16 m/m  
LCable= 1 µH/m,  
l = 0 or 5 m  
See Chapter 6  
and Figure 53  
2) RI = 2 Ω  
RL = 12 Ω  
Supply voltage for Load dump VS(LD)  
protection  
65  
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
Permanent short circuit  
IN pin toggles  
nRSC1  
100  
k
3) VSupply= 28V  
cycles  
Input Pins  
Voltage at INPUT pins  
VIN  
-0.3  
6
7
V
P_4.1.13  
t < 2 min  
Current through INPUT pins IIN  
-2  
2
mA  
V
P_4.1.14  
P_4.1.15  
Voltage at DEN pin  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin  
Voltage at DSEL pin  
IDEN  
-2  
2
mA  
V
P_4.1.16  
P_4.1.17  
VDSEL  
-0.3  
6
7
t < 2 min  
Current through DSEL pin  
Sense Pin  
IDSEL  
-2  
2
mA  
P_4.1.18  
Voltage at IS pin  
Current through IS pin  
Power Stage  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
50  
mA  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
2.0  
W
TA = 85 °C  
TJ < 150 °C  
Data Sheet  
PROFET™+ 24V  
9
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
Table 2  
TJ = -40 °C to +150 °C; (unless otherwise specified)  
Parameter Symbol  
Absolute Maximum Ratings (cont’d)1)  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Maximum energy dissipation EAS  
85  
mJ  
I
L(0) = 4 A  
P_4.1.23  
Single pulse (one channel)  
TJ(0) = 150 °C  
VS = 28 V  
Voltage at power transistor  
Currents  
VDS  
65  
V
P_4.1.26  
P_4.1.27  
Current through ground pin  
I GND  
-20  
-200  
20  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
ESD susceptibility (all pins)  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
VESD  
-2  
-4  
2
4
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin VESD  
vs. GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test. Specified by design.  
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.  
3) Threshold limit for short circuit failures : 100ppm. Please refer to the legal disclaimer for short circuit capability at the end  
of this document.  
4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001-2010  
5) “CDM” ESDA STM5.3.1  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
PROFET™+ 24V  
10  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range TJ = -40 °C to +150 °C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage  
VNOM  
8
5
V
V
2)  
P_4.2.1  
P_4.2.2  
Extended operating voltage VS(OP)  
48  
V = 4.5 V  
IN  
RL = 12 Ω  
DS < 0.5 V  
V
See Figure 15  
1)  
Minimum functional supply  
voltage  
VS(OP)_MIN  
3.8  
4.3  
3.5  
5
V
V
V = 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 12 Ω  
From IOUT = 0 A  
to  
V
DS < 0.5 V;  
See Figure 15  
See Figure 29  
1)  
Undervoltage shutdown  
VS(UV)  
3
4.1  
V = 4.5 V  
IN  
VDEN = 0 V  
RL = 12 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Figure 15  
See Figure 30  
2)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_1  
850  
5.5  
9
mV  
mA  
P_4.2.13  
P_4.2.5  
Operating current  
VIN = 5.5 V  
One channel active  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Figure 31  
Operating current  
All channels active  
IGND_2  
9
12  
mA  
µA  
VIN = 5.5 V  
P_4.2.6  
P_4.2.7  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Figure 32  
1) VS = 36 V  
Standby current for whole  
device with load (ambiente)  
IS(OFF)  
0.1  
0.5  
V
OUT = 0 V  
VIN floating  
DEN floating  
V
TJ 85 °C  
See Figure 33  
Data Sheet  
PROFET™+ 24V  
11  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
Table 3  
Functional Range (cont’d)TJ = -40 °C to +150 °C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Maximum standby current for IS(OFF)_150  
whole device with load  
15  
µA  
VS = 36 V  
OUT = 0 V  
VIN floating  
DEN floating  
P_4.2.10  
V
V
TJ = 150 °C  
See Figure 33  
Standby current for whole  
device with load, diagnostic  
active  
IS(OFF_DEN)  
0.6  
mA  
2) VS = 36 V  
P_4.2.8  
V
OUT = 0 V  
VIN floating  
DEN = 5.5 V  
V
1) Test at TJ = -40°C only  
2) Not subject to production test. Specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Table 4  
Thermal Resistance  
Symbol  
Parameter  
Values  
Typ.  
5
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to soldering point  
RthJS  
RthJA  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1) 2)  
Junction to ambient  
Both channels active  
29  
1) Not subject to production test. Specified by design.  
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +  
package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35 µm Cu). Where  
applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.  
4.3.1  
PCB set up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 4  
2s2p PCB Cross Section  
Data Sheet  
PROFET™+ 24V  
12  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
PCB bottom view  
PCB top view  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
COOLING  
TAB  
V
8
thermique SO14.vsd  
Figure 5  
PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area  
4.3.2  
Thermal Impedance  
101  
100  
2s2p  
1s0p-600mm²  
1s0p-300mm²  
1s0p-footprint  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
103  
time [s]  
Figure 6  
Typical Thermal Impedance. 2s2p set up according Figure 4  
Data Sheet  
PROFET™+ 24V  
13  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
General Product Characteristics  
70  
60  
50  
40  
30  
20  
10  
1s0p  
0
100  
200  
300  
Area [mm2]  
400  
500  
600  
700  
footprint  
Figure 7  
Typical Thermal Resistance. PCB set up 1s0p  
Data Sheet  
PROFET™+ 24V  
14  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-state Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
20  
Figure 8  
Typical ON-state Resistance  
A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope, which  
is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 9 shows the typical timing when switching a resistive load.  
IN  
VIN _H  
VIN _L  
t
VOUT  
90% VS  
dV/dt  
ON  
dV/dt  
OFF  
tON  
tOFF_DELAY  
70% VS  
30% VS  
10% VS  
tON_DELAY  
tOFF  
t
Switching times.vsd  
Figure 9  
Switching a Resistive Load Timing  
Data Sheet  
PROFET™+ 24V  
15  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
IN  
LOGIC  
IL  
VBAT  
OUT  
GND  
ZGND  
VOUT  
VIN  
L, RL  
Output clamp.svg  
Figure 10 Output Clamp (OUT0 and OUT1)  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 11 Switching an Inductive Load Timing  
Data Sheet  
PROFET™+ 24V  
16  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTT6030-2EKA. This energy can  
be calculated with following equation:  
VS VDS(AZ)  
--------------------------------  
RL  
RL × IL  
L
RL  
× ln 1 –  
------  
--------------------------------  
VS VDS(AZ)  
E = VDS(AZ)  
×
×
+ IL  
(1)  
Following equation simplifies under the assumption of RL = 0 .  
VS  
1
2
2
--  
E = × L × I × 1 –  
--------------------------------  
VS VDS(AZ)  
(2)  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the  
maximum allowed energy dissipation as a function of the load current.  
Figure 12 Maximum Energy Dissipation Single Pulse, TJ(0) = 150 °C; VS = 28V  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV  
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output  
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular  
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not  
be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be observed. If  
the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the  
diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a  
parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and reflects the output  
state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection  
function are available.  
Data Sheet  
PROFET™+ 24V  
17  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
VBAT  
VS  
Gate driver  
VINV  
IL(INV)  
Device  
logic  
INV
Comp.  
OUT  
GND  
ZGND  
inverse current.svg  
Figure 13 Inverse Current Circuitry  
Data Sheet  
PROFET™+ 24V  
18  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 5  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
55  
Unit Note /  
Test Condition  
Number  
Min.  
RDS(ON)_150 40  
Max.  
ON-state resistance per  
channel  
62  
mΩ  
IL = IL4 = 7 A  
P_5.5.1  
VIN = 4.5 V  
TJ = 150 °C  
See Figure 8  
ON-state resistance per  
channel  
RDS(ON)_25  
IL(NOM)1  
32  
6
mΩ  
A
1) TJ = 25 °C  
P_5.5.21  
P_5.5.2  
P_5.5.3  
Nominal load current  
One channel active  
1) TA = 85 °C  
TJ < 150 °C  
Nominal load current  
All channels active  
IL(NOM)2  
4
A
Output voltage drop limitation VDS(NL)  
at small load currents  
10  
70  
22  
75  
mV  
V
IL = IL0 = 50 mA P_5.5.4  
See Figure 34  
Drain to source clamping  
voltage  
VDS(AZ)  
66  
I
DS = 20 mA  
P_5.5.5  
P_5.5.6  
P_5.5.8  
See Figure 11  
V
DS(AZ) = [VS - VOUT  
]
See Figure 35  
2)  
Output leakage current per  
IL(OFF)  
0.05  
2
0.5  
10  
µA  
µA  
V floating  
IN  
channel; TJ 85 °C  
VOUT = 0 V  
TJ 85°C  
Output leakage current per  
IL(OFF)_150  
VIN floating  
channel; TJ = 150 °C  
VOUT = 0 V  
TJ = 150 °C  
Slew rate  
30% to 70% VS  
V/dtON  
-V/dtOFF  
dV/dt  
0.3  
0.3  
-0.15  
20  
0.8  
0.8  
0
1.4  
1.4  
0.15  
150  
150  
50  
V/µs RL = 12 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
P_5.5.14  
P_5.5.15  
P_5.5.16  
P_5.5.17  
P_5.5.18  
See Figure 9  
Slew rate  
70% to 30% VS  
V/µs  
V/µs  
µs  
See Figure 36  
See Figure 37  
See Figure 38  
See Figure 39  
See Figure 40  
Slew rate matching  
dV/dtON - dV/dtOFF  
Turn-ON time to VOUT = 90% tON  
VS  
50  
55  
0
Turn-OFF time to VOUT = 10% tOFF  
VS  
20  
µs  
Turn-ON / OFF matching  
OFF - tON  
tSW  
-50  
µs  
t
Turn-ON time to VOUT = 10% tON_delay  
VS  
30  
30  
70  
µs  
Turn-OFF time to VOUT = 90% tOFF_delay  
70  
µs  
VS  
Data Sheet  
PROFET™+ 24V  
19  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Power Stage  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
0.6  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
mJ  
1) RL = 12 Ω  
OUT = 90% VS  
P_5.5.19  
V
VS = 36 V  
See Figure 41  
Switch OFF energy  
EOFF  
0.8  
mJ  
1) RL = 12 Ω  
P_5.5.20  
VOUT = 10% VS  
VS = 36 V  
See Figure 42  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Data Sheet  
PROFET™+ 24V  
20  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction of  
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal  
operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTT6030-2EKA to ensure switching OFF of the channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches  
the situation.  
ZGND is recommended to be a resistor in serias to a diode.  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL  
RDSEL  
DEN  
RDEN  
IOUT(GND)  
IN0  
LOGIC  
RIN  
RIN  
IN1  
OUT  
ZDESD  
GND  
RIS  
ZGND  
Loss of ground protection.svg  
Figure 14 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.  
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the  
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch  
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM  
range. Figure 15 sketches the undervoltage mechanism.  
Data Sheet  
PROFET™+ 24V  
21  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
VOUT  
undervoltage behavior . vsd  
VS  
VS(UV)  
VS(OP)  
Figure 15 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16  
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power  
transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground  
potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises almost to that  
potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to  
overvoltage, the BTT6030-2EKA remains ON. In the case the BTT6030-2EKA was OFF, prior to overvoltage, the  
power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output  
transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no  
longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts  
the short circuit robustness, as well as the maximum energy EAS capability.  
ISOV  
ZIS(AZ)  
VS  
I N 1  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
IN1  
I N 0  
RIN  
OUT  
ZDESD  
GND  
RIS  
ZGND  
Overvoltage protection.svg  
Figure 16 Overvoltage Protection with External Components  
Data Sheet  
PROFET™+ 24V  
22  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in  
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins  
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a  
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL  
,
RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used  
to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL  
RIN = RSENSE = 10 k. ZGND is recommended to be a resistor in series to a diode.  
=
During reverse polarity, no protection functions are available.  
Micro controller  
protection diodes  
ZIS(AZ)  
VS  
ZD(AZ)  
ZDS(AZ)  
IS  
RSENSE  
VDS(REV)  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
-VS(REV)  
IN1  
I N 0  
RIN  
OUT  
ZDESD  
GND  
ZGND  
RIS  
Reverse Polarity.svg  
Figure 17 Reverse Polarity Protection with External Components  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6030-2EKA offers  
several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects  
the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of  
the current limitation as a function of the drain to source voltage.  
Data Sheet  
PROFET™+ 24V  
23  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
8
13  
18  
23  
28  
33  
38  
43  
48  
Drain Source Voltage VDS (V)  
Figure 18 Current Limitation (typical behavior)  
6.5.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF  
latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the  
situation.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is  
switched ON again. Only the IN pin signal toggling can re-activate the power strage. (latch behavior).  
Data Sheet  
PROFET™+ 24V  
24  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
IN  
t
IL  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
TJ(SC)  
Temperature  
protection phase  
ΔTJ(SW)  
TA  
tsIS(FAULT)  
t
t
tsIS(OC_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
tsIS(OFF)  
VDEN  
0V  
t
Hard start.vsd  
Figure 19 Overload Protection  
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application dependant  
and cannot be described.  
Data Sheet  
PROFET™+ 24V  
25  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 6  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Loss of Ground  
Output leakage current while IOUT(GND)  
GND disconnected  
0.1  
mA  
mV  
1) 2) VS = 48 V  
See Figure 14  
P_6.6.1  
P_6.6.2  
Reverse Polarity  
Drain source diode voltage  
during reverse polarity  
VDS(REV)  
200  
65  
610  
700  
75  
IL = - 4 A  
TJ = 150 °C  
See Figure 17  
Overvoltage  
Overvoltage protection  
VS(AZ)  
70  
V
I
SOV = 5 mA  
P_6.6.3  
See Figure 16  
Overload Condition  
3)  
Load current limitation  
IL5(SC)  
IL28(SC)  
TJ(SW)  
TJ(SC)  
56  
70  
35  
80  
84  
A
A
K
V
= 5 V  
P_6.6.4  
P_6.6.7  
P_6.6.8  
P_6.6.10  
DS  
See Figure 43  
2) VDS = 42 V  
See Figure 43  
4) See Figure 19  
Load current limitation  
Dynamic temperature  
increase while switching  
Thermal shutdown  
temperature  
150  
170 4) 200 4) °C  
30  
5) See Figure 19  
Thermal shutdown hysteresis TJ(SC)  
K
5) 4) See Figure 19 P_6.6.11  
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = -40°C only  
4) Functional test only  
5) Test at TJ = +150°C only  
Data Sheet  
PROFET™+ 24V  
26  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purpose, the BTT6030-2EKA provides a combination of digital and analog signals at pin IS. These  
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case  
DEN is activated, the sense current of the channel X is enabled/disabled via associated pin DSEL. Table 7 gives  
the truth table.  
Table 7  
Diagnostic Truth Table  
DEN  
DSEL  
IS  
0
1
1
don’t care  
Z
0
1
Sense output 0 IIS(0)  
Sense output 1 IIS(1)  
7.1  
IS Pin  
The BTT6030-2EKA provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at  
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic  
mechanism is described on Figure 20. The accuracy of the SENSE depends on temperature and load current.  
The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the matching  
between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it is not  
recommended to share the IS pin with other devices if these devices are using another battery feed. The  
consequence is that the unsupplied device would be fed via the IS pin of the supplied device.  
Vs  
IIS1  
=
IIS0  
=
IL1 / kILIS  
IL0 / kILIS  
IIS(FAULT)  
ZIS(AZ)  
0
1
FAULT  
IS  
DEN  
0
1
DSEL  
Sense schematic.svg  
Figure 20 Diagnostic Block Diagram  
Data Sheet  
PROFET™+ 24V  
27  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 8 gives a quick reference for the state of the IS pin during device operation.  
Table 8 Sense Signal, Function of Operation Mode  
Operation Mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input level Channel X  
DEN1)  
Output Level Diagnostic Output  
OFF  
H
Z
Z
Z
Z
~ GND  
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
2)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
Overtemperature TJ(SW)  
IIS(FAULT)  
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
3)  
~ VS  
4)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
5)  
~ VS  
IIS(OL) < IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin.  
2) With additional pull-up resistor.  
3) The output current has to be smaller than IL(OL)  
.
4) After maximum tINV  
.
5) The output current has to be higher than IL(OL)  
.
Data Sheet  
PROFET™+ 24V  
28  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7.3  
SENSE Signal in the Nominal Current Range  
Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down  
resistor RIS is connected to the IS pin. This resistor has to be higher than 560 to limit the power losses in the  
sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal SENSE, assuming an ideal kILIS factor  
value. The red curves show the accuracy the device provides across full temperature range, at a defined current.  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
min/max Sense Current  
typical Sense Current  
0
0
1
2
3
4
5
6
7
8
9
10  
I
[A]  
L
BTT6030-2EKA  
Figure 21 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy  
requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and  
temperature conditions, the BTT6030-2EKA allows limited derating of the kILIS value, at nominal load current (IL3;  
TJ = +25 °C). This derating is described by the parameter kILIS. Figure 22 shows the behavior of the SENSE  
current, assuming one calibration point at nominal load at +25 °C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration  
point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
Data Sheet  
PROFET™+ 24V  
29  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
calibrated k  
ILIS  
min/max k  
ILIS  
typical k  
ILIS  
0
1
2
3
4
5
6
7
8
9
10  
I
[A]  
L
BTT6030-2EKA  
Figure 22 Improved SENSE Accuracy with One Calibration Point  
7.3.2  
SENSE Signal Timing  
Figure 23 shows the timing during settling and disabling of the SENSE.  
VINx  
t
IL  
tONx  
tOFFx  
tONx  
90% of  
IL static  
t
t
VDEN  
IIS  
tsIS(LC)  
tsIS(chC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IIS static  
t
t
VDSEL  
VINy  
t
ILy  
tONy  
t
current sense settling disabling time.vsd  
Figure 23 SENSE Settling / Disabling Timing  
Data Sheet  
PROFET™+ 24V  
30  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
Open Load in ON Diagnostic  
7.3.3.1  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power  
DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the  
SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL)  
.
Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue  
curve shows the ideal kILIS ratio.  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL .vsd  
Figure 24 Current Sense Ratio for Low Currents  
7.3.3.2  
Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be  
taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete  
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc.... in the  
application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x  
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by  
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched  
to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be  
used as well for short circuit to battery detection, see Chapter 7.3.4.  
Data Sheet  
PROFET™+ 24V  
31  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
ROL  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
RIS  
ZGND  
RPD  
VOL(OFF)  
Rleakage  
Open Load in OFF.svg  
Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3  
Open Load Diagnostic Timing  
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
shutdown with load  
RDS(ON) x IL  
t
t
IOUT  
tsIS(FAULT_OL_ON_OFF)  
IIS  
tsIS(LC)  
t
Error Settling Disabling Time.vsd  
Figure 26 SENSE Signal in Open Load Timing  
Data Sheet  
PROFET™+ 24V  
32  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7.3.4  
SENSE Signal with OUT in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTT6030-2EKA, which can be recognized at the SENSE  
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,  
an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
comp.  
IS  
OUT  
VOL(OFF)  
GND  
ZGND  
RSC_VS  
RIS  
Short circuit to Vs.svg  
Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the  
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal  
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature  
condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is  
activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage. If no reset of the  
latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, eventhough the DMOS is OFF.  
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state during  
OFF state and indicate open load in ON during ON state. The unaffected channel indicates normal behavior as  
long as the IINV current is not exceeding the maximum value specified in Chapter 5.4.  
Data Sheet  
PROFET™+ 24V  
33  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Function  
Table 9  
Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Load Condition Threshold for Diagnostic  
1)  
Open load detection  
threshold in OFF state  
VS - VOL(OFF)  
4
6
V
V = 0 V  
DEN = 4.5 V  
P_7.5.1  
IN  
V
See Figure 26  
Open load detection  
threshold in ON state  
IL(OL)  
4
25  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 5 μA  
P_7.5.2  
See Figure 24  
See Figure 46  
Sense Pin  
1)  
IS pin leakage current when IIS_(DIS)  
sense is disabled  
1
0.02  
1
µA  
V
V = 4.5 V  
DEN = 0 V  
P_7.5.4  
P_7.5.6  
IN  
V
IL = IL4 = 7 A  
2)  
Sense signal saturation  
voltage  
VS - VIS  
3.5  
V = 0 V  
IN  
V
V
OUT = VS > 10 V  
DEN = 4.5 V  
(RANGE)  
IIS = 6 mA  
See Figure 47  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
15  
40  
mA VIS = VIN = VDSEL = 0 V P_7.5.7  
V
V
OUT = VS > 10 V  
DEN = 4.5 V  
See Figure 20  
See Figure 48  
Sense pin maximum voltage VIS(AZ)  
65  
70  
75  
V
IIS = 5 mA  
P_7.5.3  
See Figure 20  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
L0 = 50 mA  
Current sense ratio  
L1 = 0.5 A  
Current sense ratio  
L2 = 2 A  
Current sense ratio  
L3 = 4 A  
Current sense ratio  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
-50%  
-25%  
-12%  
-9%  
-8%  
-5  
2450  
2360  
2240  
2240  
2240  
0
+50%  
+25%  
+12%  
+9%  
+8%  
+5  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 21  
P_7.5.8  
I
P_7.5.9  
TJ = -40 °C; 150 °C  
I
P_7.5.10  
P_7.5.11  
P_7.5.12  
P_7.5.17  
I
I
I
L4 = 7 A  
kILIS derating with current and kILIS  
%
2) kILIS3 versus kILIS2  
See Figure 22  
temperature  
Diagnostic Timing in Normal Condition  
Data Sheet  
PROFET™+ 24V  
34  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
2)  
Current sense settling time to tsIS(ON)  
ILIS function stable after  
150  
µs  
V
= VIN = 0 to  
P_7.5.18  
DEN  
k
4.5 V  
positive input slope on both  
INput and DEN  
VS = 28 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 4 A  
See Figure 23  
1)  
Current sense settling time  
with load current stable and  
transition of the DEN  
tsIS(ON_DEN)  
10  
20  
µs  
µs  
V = 4.5 V  
P_7.5.19  
P_7.5.20  
IN  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL3 = 4 A  
See Figure 23  
1)  
Current sense settling time to tsIS(LC)  
IIS stable after positive input  
slope on current load  
V = 4.5 V  
IN  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL2 = 2 A to IL = IL3  
= 4 A  
See Figure 23  
Diagnostic Timing in Open Load Condition  
1)  
Current sense settling time to tsIS(FAULT_OL_  
100  
µs  
V = 0V  
P_7.5.22  
IN  
IIS stable for open load  
detection in OFF state  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
OUT = VS = 28 V  
OFF)  
C
V
See Figure 26  
Diagnostic Timing in Overload Condition  
2)  
Current sense settling time to tsIS(FAULT)  
IIS stable for overload  
detection  
150  
µs  
µs  
V = VDEN = 0 to  
P_7.5.24  
P_7.5.32  
IN  
4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
V
DS = 24 V  
See Figure 19  
2)  
Current sense over current  
blanking time  
tsIS(OC_blank)  
350  
V = VDEN = 4.5 V  
IN  
RIS = 1.2 kΩ  
C
SENSE < 100 pF  
DS = 5 V to 0 V  
See Figure 19  
V
Data Sheet  
PROFET™+ 24V  
35  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
Diagnostic disable time  
DEN transition to  
tsIS(OFF)  
20  
µs  
V = 4.5 V  
P_7.5.25  
IN  
V
DEN = 4.5 V to 0 V  
IIS < 50% IL /kILIS  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL3 = 4 A  
See Figure 23  
Current sense settling time  
from one channel to another  
tsIS(ChC)  
20  
µs  
V
V
V
IN0 = VIN1 = 4.5 V  
DEN = 4.5 V  
DSEL = 0 to 4.5 V  
P_7.5.26  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
I
I
L(OUT0) = IL3 = 4 A  
L(OUT1) = IL2 = 2 A  
See Figure 23  
1) DSEL pin select channel 0 only.  
2) Not subject to production test, specified by design  
Data Sheet  
PROFET™+ 24V  
36  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage  
thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly  
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input  
circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the  
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via a  
4.7kΩ input resistor.  
IN  
GND  
Input circuitry.vsd  
Figure 28 Input Pin Circuitry  
8.2  
DEN / DSEL Pin  
The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same  
structure to INput pins, please refer to Figure 28.  
8.3  
Input Pin Voltage  
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,  
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown  
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a  
hysteresis is implemented. This ensures a certain immunity to noise.  
Data Sheet  
PROFET™+ 24V  
37  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Input Pins  
8.4  
Electrical Characteristics  
Table 10  
Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, TJ = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
INput Pins Characteristics  
Low level input voltage range VIN(L)  
High level input voltage range VIN(H)  
-0.3  
2
0.8  
6
V
See Figure 49  
See Figure 50  
1) See Figure 51 P_8.4.3  
P_8.4.1  
P_8.4.2  
V
Input voltage hysteresis  
Low level input current  
High level input current  
VIN(HYS)  
IIN(L)  
IIN(H)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
2
VIN = 5.5 V  
See Figure 52  
DEN Pin  
Low level input voltage range VDEN(L)  
High level input voltage range VDEN(H)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
DSEL Pin  
VDEN(HYS)  
IDEN(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
V
DEN = 0.8 V  
DEN = 5.5 V  
IDEN(H)  
2
V
Low level input voltage range VDSEL(L)  
High level input voltage range VDSEL(H)  
-0.3  
2
0.8  
6
V
P_8.4.11  
P_8.4.12  
P_8.4.13  
P_8.4.14  
P_8.4.15  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDSEL(HYS)  
IDSEL(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
V
DSEL = 0.8 V  
DSEL = 5.5 V  
IDSEL(H)  
2
V
1) Not subject to production test, specified by design  
Data Sheet  
PROFET™+ 24V  
38  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9
Characterization Results  
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed  
at 8 V, 28 V and 36 V, from -40°C to 160°C. When no dependency to voltage is seen, only one curve (28 V) is  
sketched.  
9.1  
General Product Characteristics  
9.1.1  
Minimum Functional Supply Voltage  
P_4.2.3  
4,2  
Figure 29 Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ)  
9.1.2  
Undervoltage Shutdown  
P_4.2.4  
,
Figure 30 Undervoltage Threshold VS(UV) = f(TJ)  
Data Sheet  
PROFET™+ 24V  
39  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.1.3  
Current Consumption One Channel active  
P_4.2.5  
8V  
4
Figure 31 Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS)  
9.1.4  
Current Consumption Two Channels active  
P_4.2.6  
8V  
4
Figure 32 Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS)  
9.1.5  
Standby Current for Whole Device with Load  
P_4.2.7, P_4.2.10  
8V  
Figure 33 Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
40  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.2  
Power Stage  
9.2.1  
Output Voltage Drop Limitation at Low Load Current  
P_5.5.4  
8V  
Figure 34 Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ;VS) ; IL = IL(0) = 50mA  
9.2.2  
Drain to Source Clamp Voltage  
P_5.5.5  
Figure 35 Drain to Source Clamp Voltage VDS(AZ) = f(TJ)  
Data Sheet  
PROFET™+ 24V  
41  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.2.3  
Slew Rate at Turn ON  
P_5.5.11  
,
8V  
Figure 36 Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 12 Ω  
9.2.4  
Slew Rate at Turn OFF  
P_5.5.12  
,
8V  
Figure 37 Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 12 Ω  
9.2.5  
Turn ON  
P_5.5.14  
8V  
70  
Figure 38 Turn ON tON = f(TJ;VS), RL = 12 Ω  
Data Sheet  
PROFET™+ 24V  
42  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.2.6  
Turn OFF  
P_5.5.15  
8V  
70  
Figure 39 Turn OFF tOFF = f(TJ;VS), RL = 12 Ω  
9.2.7  
Turn ON / OFF matching  
P_5.5.16  
8V  
Figure 40 Turn ON / OFF matching ΔtSW = f(TJ;VS), RL = 12 Ω  
Data Sheet  
PROFET™+ 24V  
43  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.2.8  
Switch ON Energy  
P_5.5.19  
Figure 41 Switch ON Energy EON = f(TJ;VS), RL = 12 Ω  
9.2.9  
Switch OFF Energy  
P_5.5.20  
Figure 42 Switch OFF Energy EOFF = f(TJ;VS), RL = 12  
Data Sheet  
PROFET™+ 24V  
44  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.3  
Protection Functions  
9.3.1  
Overload Condition in the Low Voltage Area  
P_6.6.4  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Junction Temperature [°C]  
Figure 43 Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS)  
9.3.2  
Overload Condition in the High Voltage Area  
P_6.6.7  
Figure 44 Overload Condition in the High Voltage Area IL42(SC) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
45  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.4  
Diagnostic Mechanism  
9.4.1  
Current Sense at no Load  
36V  
Figure 45 Current Sense at no Load IL(OL) = f(TJ;VS), IL = 0  
9.4.2  
Open Load Detection Threshold in ON State  
P_7.5.2  
8V  
Figure 46 Open Load Detection ON State Threshold IL(OL) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
46  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.4.3  
Sense Signal Maximum Voltage  
P_7.5.3  
1
8V  
Figure 47 Sense Signal Maximum Voltage VS - VIS(RANGE) =f(TJ;VS)  
9.4.4  
Sense Signal maximum Current  
P_7.5.7  
8V  
Figure 48 Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
47  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.5  
Input Pins  
9.5.1  
Input Voltage Threshold ON to OFF  
P_8.4.1  
1,2  
8V  
Figure 49 Input Voltage Threshold VIN(L) = f(TJ;VS)  
9.5.2  
Input Voltage Threshold OFF to ON  
P_8.4.2  
1,2  
8V  
Figure 50 Input Voltage Threshold VIN(H) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
48  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Characterization Results  
9.5.3  
Input Voltage Hysteresis  
P_8.4.3  
8V  
Figure 51 Input Voltage Hysteresis VIN(HYS) = f(TJ;VS)  
9.5.4  
Input Current High Level  
P_8.4.5  
8V  
Figure 52 Input Current High Level IIN(H) = f(TJ;VS)  
Data Sheet  
PROFET™+ 24V  
49  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Application Information  
10  
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
T1  
OUT  
VS  
GND  
Z
CVS  
VDD  
VS  
RDEN  
I/O  
I/O  
DEN  
OUT0  
COUT  
OT3  
OUT4  
RDSEL  
DSEL  
RIN  
RIN  
I/O  
I/O  
IN0  
IN1  
Micro  
controller  
Bulb  
OUT1  
COUT  
Bulb  
RSENSE  
IS  
A/D  
GND  
GND  
CSENSE  
D
Figure 53 Application Diagram with BTT6030-2EKA  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Table 11  
Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTT6030-2EKA channels OFF during loss of ground  
RDEN  
RDSEL  
RPD  
10 kΩ  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTT6030-2EKA immunity to electomagnetic noise  
ROL  
RIS  
1.5 kΩ  
1.2 kΩ  
Ensures polarization of the BTT6030-2EKA output during open load in OFF  
diagnostic  
Sense resistor  
Data Sheet  
PROFET™+ 24V  
50  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Application Information  
Table 11  
Bill of Material (cont’d)  
Purpose  
Reference Value  
RSENSE  
4.7 kΩ  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro  
controller specification.  
CSENSE  
COUT  
T1  
100 pF  
10nF  
Sense signal filtering.  
Protection of the device during ESD and BCI  
Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic  
RGND  
D
27 Ω  
Protection of the BTT6030-2EKA during overvoltage  
Protection of the BTT6030-2EKA during reverse polarity  
Protection of the device during overvoltage  
BAS21  
Z
58 V Zener  
diode  
CVS  
100 nF  
Filtering of voltage spikes at the battery line  
10.1  
Further Application Information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit http://www.infineon.com/profet  
Data Sheet  
PROFET™+ 24V  
51  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Package Outlines  
11  
Package Outlines  
0.35 x 45˚  
1)  
0.1  
3.ꢀ  
0.1 C D 2x  
8˚ MAX.  
8˚ MAX.  
0˚...8˚  
0.08  
Seating Plane  
C
C
1.27  
0˚...8˚  
2)  
0.0ꢀ  
0.2  
0.41  
6
M
M
0.2  
D
0.2  
C A-B D 14x  
D
Bottom View  
0.25  
6.4  
A
14  
8
1
7
1
7
14  
8
B
0.1 C A-B 2x  
0.1  
8.65  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.13 max.  
3) JEDEC reference MS-012 variation BB  
PG-DSO-14-33,-40,-43 V02  
Figure 54 PG-DSO-14-40 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Data Sheet  
PROFET™+ 24V  
52  
Rev. 1.1, 2015-03-04  
BTT6030-2EKA  
Revision History  
12  
Revision History  
Version Date  
1.1  
Changes  
2015-03-04 Chapter 4.1 - Changed test condition of P_4.1.4 and adapted footnote, erased footnote for P_4.1.3  
Chapter 4.3 /Table 4 /Footnote 2 - corrected misleading wording in text, P_4.3.2 updated Rthja value  
Chapter 4.3.2 - changed wording in title of figure 6  
Chapter 5.5. - typo in Parameter Name P_5.5.3  
Chapter 6.1 - updated text  
Chapter 6.3 - updated text  
Chapter 6.4 - corrected typo, changed Rin recommendation to 10k  
Chapter 6.5.1 - updated figure "Current Limitation (typical behavior)"  
Chapter 6.5.2 - changed wording in text, updated figure "Overload Protection"  
Chapter 7 - corrected typo in text  
Chapter 7.3 - updated Figure "Current Sense for Nominal Load"  
Chapter 7.3.1 - updated Figure "Improved Current Sense Accuracy with one calibration point"  
Chapter 7.3.3.3 - corrected wording in text, updated figure "SENSE Signal in Open Load Timing"  
Chapter 7.3.5 - changed wording in text  
Chapter 7.4 - P_7.5.9, P_7.5.10, P_7.5.11, P_7.5.12, P_7.5.17 updated  
Chapter 7.4 - P_7.5.32 - changed Name and Symbol  
Chapter 8.1 - corrected typo in text  
Chapter 8.2 - corrected typos in text  
Chapter 10 - Updated Application Diagram and BOM table  
Chapter 11 - updated package drawing  
1.0  
2013-08-07 Creation of the document  
Data Sheet  
PROFET™+ 24V  
53  
Rev. 1.1, 2015-03-04  
Edition 2015-03-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2015 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteris-  
tics. With respect to any examples or hints given herein, any typical values stated herein and/or any information  
regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabili-  
ties of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any  
third party.  
Legal Disclaimer for short-circuit capability  
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below  
the threshold limit.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  

相关型号:

BTT6030-2ERA

The BTT6030-2ERA is a 32mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 3 x P21W24V or 1 x 70W 24V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT6030-2ERB

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT60302EKAXUMA1

Buffer/Inverter Based Peripheral Driver, 4A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT6050-1EKA

Smart High-Side Power Switch Single Channel
INFINEON

BTT6050-1EKA_15

Smart High-Side Power Switch Single Channel
INFINEON

BTT6050-1ERA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT6050-2EKA

Buffer/Inverter Based Peripheral Driver, 3A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT60502EKAXUMA1

Buffer/Inverter Based Peripheral Driver, 3A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT6100-2ERA

The BTT6100-2ERA is a 100mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 1x P21W 24V or 1x R10W 12V, as well as LEDs in the harsh automotive environment. Diagnostic.
INFINEON

BTT6200-1EJA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-1ENA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON