CPV363MUPBF [INFINEON]

Insulated Gate Bipolar Transistor, 13A I(C), 600V V(BR)CES, N-Channel;
CPV363MUPBF
型号: CPV363MUPBF
厂家: Infineon    Infineon
描述:

Insulated Gate Bipolar Transistor, 13A I(C), 600V V(BR)CES, N-Channel

文件: 总8页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 5.024A  
CPV363MU  
IGBT SIP MODULE  
Ultra-Fast IGBT  
1
Features  
• Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for high operating frequency (over 5kHz)  
See Fig. 1 for Current vs. Frequency curve  
D1  
D2  
D3  
D4  
D5  
D6  
Q1  
Q2  
Q3  
Q4  
Q5  
3
6
9
4
15  
10  
16  
Q6  
12  
18  
Product Summary  
7
13  
19  
Output Current in a Typical 20 kHz Motor Drive  
5.4 ARMS per phase (1.7 kW total) with T C = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 80% (See Figure 1)  
Description  
The IGBT technology is the key to International Rectifier's advanced line of  
IMS (Insulated Metal Substrate) Power Modules. These modules are more  
efficient than comparable bipolar transistor modules, while at the same time  
having the simpler gate-drive requirements of the familiar power MOSFET.  
This superior technology has now been coupled to a state of the art materials  
system that maximizes power throughput with low thermal resistance. This  
package is highly suited to motor drive applications and where space is at a  
premium.  
IMS-2  
Absolute Maximum Ratings  
Parameter  
Collector-to-Emitter Voltage  
Max.  
600  
13  
Units  
V
VCES  
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current  
IC @ TC = 100°C  
6.8  
ICM  
40  
A
ILM  
Clamped Inductive Load Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
40  
IF @ TC = 100°C  
6.1  
IFM  
40  
VGE  
±20  
V
VRMS  
W
VISOL  
Isolation Voltage, any terminal to case, 1 min.  
Maximum Power Dissipation, each IGBT  
2500  
36  
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
14  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55-0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
°C/W  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink,flat,greased surface  
3.5  
5.5  
θJC (DIODE)  
θCS (MODULE)  
0.1  
Wt  
Weight of module  
20 (0.7)  
g (oz)  
Revision 1  
C-749  
CPV363MU  
Electrical Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
V
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage  
0.63  
V/°C VGE = 0V, IC = 1.0mA  
IC = 6.8A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
1.9 2.4  
VGE = 15V  
2.3  
1.8  
V
IC = 13A  
See Fig. 2, 5  
IC = 6.8A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
Gate Threshold Voltage  
3.0  
5.5  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-11  
6.0  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance  
4.0  
S
VCE = 100V, IC = 6.8A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
250  
2500  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
1.4 1.7  
1.3 1.6  
V
IC = 12A  
See Fig. 13  
IC = 12A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±500 nA  
Switching Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
29 36  
4.8 6.8  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
IC = 6.8A  
Qge  
Qgc  
td(on)  
tr  
nC  
ns  
VCC = 400V  
See Fig. 8  
TJ = 25°C  
12  
25  
15  
17  
IC = 6.8A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
92 200  
93 190  
VGE = 15V, RG = 23Ω  
Energy losses include "tail" and  
diode reverse recovery.  
See Fig. 9, 10, 11, 18  
Eon  
Eoff  
Ets  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
0.23  
0.13  
mJ  
ns  
0.36 0.62  
td(on)  
tr  
td(off)  
tf  
25  
15  
60  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
IC = 6.8A, VCC = 480V  
VGE = 15V, RG = 23Ω  
Energy losses include "tail" and  
diode reverse recovery.  
VGE = 0V  
Turn-Off Delay Time  
Fall Time  
160  
200  
0.71  
660  
100  
11  
Ets  
Total Switching Loss  
Input Capacitance  
mJ  
pF  
ns  
A
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
42  
TJ = 25°C See Fig.  
80 120  
3.5 6.0  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF = 12A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
5.6  
10  
V R = 200V  
Qrr  
80 180  
220 600  
nC  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
180  
116  
Notes:  
Repetitive rating; V GE=20V, pulse width  
limited by max. junction temperature.  
( See fig. 20 )  
VCC=80%(VCES), VGE=20V, L=10µH,  
RG= 23, ( See fig. 19 )  
Pulse width 5.0µs,  
single shot.  
Pulse width 80µs; duty factor 0.1%.  
C-750  
CPV363MU  
10  
8
3.1  
2.5  
6
1.9  
1.2  
0.6  
S
4
TC= 90°C  
TJ = 125°C  
Power Factor = 0.8  
Modulation Depth = 0.8  
VCC = 60% of Rated Voltage  
2
0
0
0.1  
1
10  
100  
f, Frequency (kHz)  
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave  
1000  
1000  
100  
100  
10  
1
T
= 150°C  
T
= 25°C  
J
J
10  
T
= 150°C  
J
T
= 25°C  
J
1
V
= 15V  
V
= 100V  
C C  
G E  
20µs P ULSE W IDTH  
5µs PULSE W IDTH  
0.1  
5
10  
15 20  
1
10  
V
, G ate-to-E m itter Voltage (V)  
VCE , Collector-to-Emitter Voltage (V)  
G E  
Fig. 3 - Typical Transfer Characteristics  
Fig. 2 - Typical Output Characteristics  
C-751  
CPV363MU  
25  
20  
15  
10  
5
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 15V  
V
= 15V  
G E  
G E  
80µs P ULSE W IDTH  
I
= 24A  
C
I
= 12A  
= 6.0A  
C
C
I
0
-60 -40 -20  
0
20  
40  
60  
80 1 00 120 140 160  
25  
50  
75  
100  
125  
150  
T
, Case Temperature (°C)  
TC , Case Temperature (°C)  
C
Fig. 5 - Collector-to-Emitter Voltage vs.  
Fig. 4 - Maximum Collector Current vs.  
Case Temperature  
Case Temperature  
10  
D
=
0.50  
0.20  
1
0.10  
0.0 5  
P
D M  
0 .02  
0 .01  
0.1  
t
1
SIN G LE P UL SE  
t
2
(T H ER M A L R E SP O NS E)  
N otes:  
1 . D uty factor D  
=
t
/ t  
2
1
2. Pea k T = P  
x Z  
+ T  
C
D M  
J
thJC  
1
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case  
C-752  
CPV363MU  
20  
16  
12  
8
1400  
1200  
1000  
800  
600  
400  
200  
0
V
I
= 400V  
= 12A  
V
C
C
C
= 0V,  
f = 1MHz  
CE  
C
GE  
ies  
= C + C  
,
C
ce  
SHORTED  
ge  
gc  
= C  
res  
oes  
gc  
= C + C  
ce  
gc  
C
ies  
C
oes  
C
res  
4
0
0
5
10  
15  
20  
25  
30  
1
10  
100  
Q g , Total Gate Charge (nC)  
VCE , Collector-to-Emitter Voltage (V)  
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
10  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
R
V
V
= 23  
= 15V  
= 480V  
V
V
T
I
= 480V  
= 15V  
= 25°C  
= 12A  
G
GE  
CC  
CC  
G E  
C
C
I
= 24A  
C
I
I
= 12A  
= 6.0A  
C
C
1
0.1  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
0
10  
20  
30  
40  
50  
60  
T , Case Temperature (°C)  
R G , Gate Resistance (  
)  
C
W
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Case Temperature  
C-753  
CPV363MU  
3.0  
1000  
100  
10  
= 23  
R
T
V
V
G
V
T
= 20V  
= 125°C  
G E  
J
= 150°C  
= 480V  
= 15V  
C
CC  
G E  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
SAFE OPE RATING A RE A  
1
0.1  
5
10  
15  
20  
25  
1
10  
100  
1000  
V
, C olle ctor-to-E m itter V oltage (V )  
I
, Collector-to-E mitter Current (A)  
C
CE  
Fig. 12 - Turn-Off SOA  
Fig. 11 - Typical Switching Losses vs.  
Collector-to-Emitter Current  
100  
T = 150°C  
J
T = 125°C  
J
10  
T = 25°C  
J
1
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
Forward Voltage Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
C-754  
CPV363MU  
100  
10  
1
160  
120  
80  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
I
= 24A  
F
I
= 24A  
F
I
= 12A  
F
I
= 12A  
F
I
= 6.0A  
F
I
= 6.0A  
F
40  
0
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
10000  
600  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
1000  
400  
I
= 6.0A  
F
I
= 24A  
F
I
= 12A  
F
I
= 12A  
F
100  
200  
I
= 24A  
F
I
= 6.0A  
F
10  
100  
0
100  
1000  
1000  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
C-755  
CPV363MU  
90% Vge  
+Vge  
Same type  
device as  
D.U.T.  
Vce  
90% Ic  
10% Vce  
Ic  
Ic  
430µF  
80%  
5% Ic  
of Vce  
D.U.T.  
td(off)  
tf  
t1+5µS  
Eoff = Vce ic dt  
t1  
Fig.18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Vce ie dt  
Eon =  
t2  
t4  
Erec = Vd id dt  
t3  
t1  
DIODE REVERSE  
t1  
RECOVERY ENERGY  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
Refer to Section D for the following:  
Appendix D: Section D - page D-6  
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a  
Fig. 19 - Clamped Inductive Load Test Circuit  
Fig. 20 - Pulsed Collector Current Test Circuit  
Package Outline 5 - IMS-2 Package (13 pins)  
Section D - page D-14  
C-756  

相关型号:

CPV364M4F

IGBT SIP MODULE
INFINEON

CPV364M4K

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

CPV364M4KPBF (Short Circuit Rated Ultrafast IGBT)
VISHAY

CPV364M4U

IGBT SIP MODULE
INFINEON

CPV364M4UPBF

IGBT SIP Module (Ultrafast IGBT)
VISHAY

CPV364MF

IGBT SIP MODULE Fast IGBT
INFINEON

CPV364MK

IGBT SIP MODULE Short Circuit Rated UltraFast IGBT
INFINEON

CPV364MM

Short Circuit Rated Fast IGBT
INFINEON

CPV364MU

IGBT SIP MODULE Ultra-Fast IGBT
INFINEON
FERROXCUBE
FERROXCUBE