CYPD5125-40LQXI [INFINEON]

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD;
CYPD5125-40LQXI
型号: CYPD5125-40LQXI
厂家: Infineon    Infineon
描述:

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD

光电二极管
文件: 总44页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
EZ-PD™ CCG5  
USB Type-C Port Controller  
EZ-PD™ CCG5, USB Type-C Port Controller  
General Description  
EZ-PD™ CCG5 is a dual USB Type-C controller that complies with the latest USB Type-C and PD standards. EZ-PD CCG5 provides  
a complete dual USB Type-C and USB-Power Delivery port control solution for PCs, notebook, and dock. It can also be used in dual  
role and downstream-facing port applications. EZ-PD CCG5 uses Cypress’ proprietary M0WS8 technology with a 32-bit, 48-MHz  
Arm® Cortex®-M0 processor with 128-KB flash and integrates two complete Type-C Transceivers including the Type-C termination  
resistors, RP and RD. CCG5 also integrates high-voltage regulator. CCG5 is available in 40-QFN (1 port[3]) and 96-BGA (2 ports)  
packages.  
32-bit MCU Subsystem  
48-MHz Arm Cortex-M0 CPU  
Applications  
PCs, Notebook, and Dock  
128-KB Flash  
Thunderbolt hosts and devices  
12-KB SRAM  
Features  
Integrated Digital Blocks  
Up to two integrated timers and counters to meet response  
times required by the USB-PD protocol  
Type-C and USB-PD Support  
Integrated USB Power Delivery (USB-PD) 3.0 support  
Four run-time serial communication blocks (SCBs) with  
reconfigurable I2C, SPI, or UART functionality  
Two integrated USB-PD Type-C ports  
Integrated UFP[1] (RD) and current sources for DFP[2] (RP) on  
both Type-C ports  
Clocks and Oscillators  
Integrated oscillator eliminating the need for an external clock  
Integrated dead battery termination for DRP (Power  
Source/Sink) applications  
Low-Power Operation  
2.75 V to 21.5 V operation  
Integrated VCONN FETs to power EMCA cables  
Integrated fast role swap and extended data messaging  
Integrated high-voltage LDO, operational up to 21.5 V  
Integrated 2x USB Analog Mux  
System-Level ESD on CC, D±, and SBU Pins  
±8-kVContactDischargeand±15-kVAirGapDischargebased  
on IEC61000-4-2 level 4C  
Integrated 2x SBU Analog Mux  
Hot-Swappable I/Os  
Port 1 I2C pins and CC1, CC2 pins are hot-swappable  
Integrated 2x USB Charger detect blocks – BC v1.2, Apple  
Charging (source only)  
Integrated overvoltage protection (OVP) and overcurrent  
protection (OCP) on the VBUS  
Packages  
Integrated OCP protection on the VCONN  
6.0 mm 6.0 mm, 0.6 mm, 40-pin QFN  
6.0 mm 6.0 mm, 1.0 mm, 96-ball BGA  
Supports industrial temperature range (–40 °C to +85 °C)  
Integrated high-voltage protection on CC and SBU pins to  
protectagainstaccidentalshortstotheVBUSpinontheType-C  
connector  
Integrated current sense amplifier that supports high-side  
current sensing  
Integrated gate drivers for external VBUS PFET control on  
Type-C Ports  
Supports high-voltage tolerant PFET-controlled GPIOs  
Notes  
1. UFP refers to Power Sink.  
2. DFP refers to Power Source.  
3. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Cypress Semiconductor Corporation  
Document Number: 002-17682 Rev. *M  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 28, 2019  
EZ-PD™ CCG5  
Logic Block Diagram  
CCG5: Single--Chip Type- C Controller  
MCU Subsystem  
I/O Subsystem  
CC  
Integrated Digital Blocks  
2x TCPWM  
ARM  
CORTEX-M0  
48 MHz  
SCB  
VCONN  
(I2 C, SPI, UART)  
SCB  
(I2 C, SPI, UART)  
28 GPIO  
Pins  
Flash  
(128KB)  
SCB  
(I2 C, SPI, UART)  
SCB  
(I2C, SPI, UART)  
SRAM  
(12KB)  
USB PD Subsystem x2  
Baseband MAC  
VBUS OVP  
Protection  
System  
Resources  
HV Protection  
On CC & SBU  
Baseband PHY  
Under Voltage  
Protection  
Hi-Voltage LDO  
( 21.5V)  
2x SBU Analog  
Mux Switch  
1x8- bit SAR ADC  
2x VCONN FETs  
2x Gate Drivers  
2x2 USB Analog  
Mux Switch  
VBUS/VCONN OCP  
Protection  
2x USB Charge  
Detect  
Document Number: 002-17682 Rev. *M  
Page 2 of 43  
EZ-PD™ CCG5  
Contents  
Functional Overview ........................................................4  
USB-PD Subsystem (SS) ............................................4  
CPU and Memory Subsystem .....................................6  
Power System Overview ..................................................7  
Peripherals ..................................................................8  
GPIO ...........................................................................8  
Pinouts ..............................................................................9  
Application Diagrams .....................................................16  
Electrical Specifications ................................................21  
Absolute Maximum Ratings .......................................21  
Device-Level Specifications ......................................22  
Digital Peripherals .....................................................25  
System Resources ....................................................26  
Ordering Information ......................................................34  
Ordering Code Definitions .........................................34  
Packaging ........................................................................35  
Acronyms ........................................................................37  
Document Conventions .................................................38  
Units of Measure .......................................................38  
References and Links To Applications Collaterals ....39  
Document History Page .................................................40  
Sales, Solutions, and Legal Information ......................43  
Worldwide Sales and Design Support .......................43  
Products ....................................................................43  
PSoC® Solutions ......................................................43  
Cypress Developer Community .................................43  
Technical Support .....................................................43  
Document Number: 002-17682 Rev. *M  
Page 3 of 43  
EZ-PD™ CCG5  
Functional Overview  
USB-PD Subsystem (SS)  
USB-PD Physical Layer  
To support the latest USB-PD 3.0 specification, CCG5 has imple-  
mented the Fast Role Swap (FRS) feature. The FRS feature  
enables externally powered docks and hubs to rapidly switch to  
bus power when their external power supply is removed. CCG5  
also supports DeepSleep in notebook systems where CCG5 is  
expecting FRS detection.  
The CCG5 has two USB-PD subsystems consisting of the  
USB-PD physical layer (PHY) block and supporting circuits. The  
USB-PD PHY consists of a transmitter and receiver that commu-  
nicate BMC and 4b/5b encoded data over the CC channel based  
on the PD 3.0 standard. All communication is half-duplex. The  
PHY practices collision avoidance to minimize communication  
errors on the channel.  
For more details, refer to Section 6.3.17 in the USB-PD 3.0  
specification.  
CCG5 is designed to be fully interoperable with revision 3.0 of  
the USB Power Delivery specification as well as revision 2.0 of  
the USB Power Delivery specification.  
In addition, the CCG5 USB-PD block includes all termination  
resistors (RP and RD) and their switches as required by the USB  
Type-C spec. RP and RD resistors are required to implement  
connection detection, plug orientation detection, and for estab-  
lishing the USB source/sink roles.  
CCG5 supports Extended Messages containing data of up to 260  
bytes. The Extended Messages will be larger than expected by  
the USB-PD 2.0 hardware. To accommodate Revision 2.0 based  
systems, a Chunking mechanism is implemented such that  
messages are limited to Revision 2.0 sizes unless it is  
discovered that both systems support longer message lengths.  
The integrated RP resistor enables CCG5 to be configured as a  
DFP. The RP resistor is implemented as a current source and can  
be programmed to support the complete range of current  
capacity on the VBUS defined in the USB Type-C Spec.  
The RD resistor is used to identify CCG5 as a UFP in a DRP  
application. The RD resistor on CC pins is required even when  
the part is not powered for dead battery termination detection  
and charging.  
Figure 1. USB-PD Subsystem  
To/From System Resources  
vref  
iref  
To/ from AHB  
From AMUX  
8-bit ADC  
VCONN FET Enable  
TxRx Enable  
V5V  
VCONN  
FETs  
Digital Baseband PHY  
Tx_data  
Enable Logic  
from AHB  
Tx  
SRAM  
4b5b  
Encoder  
BMC  
Encoder  
SOP  
Insert  
Rp  
TX  
CC1  
RD1  
CC2  
CRC  
Rx_data  
to AHB  
RX  
Rx  
4b5b  
SOP  
BMC  
SRAM  
Decoder  
Detect  
Decoder  
Ref  
DB  
Rd  
Comp  
RD2  
Active  
Rd  
CC control  
CC detect  
8kV IEC ESD  
Analog Baseband PHY  
Deep Sleep Vref &  
Iref Gen (common  
for both ports)  
Deep Sleep Reference Enable  
Functional, Wakeup Interrupts  
RD1 shorted to CC1 and RD2 shorted to CC2 for DRP applications using  
bondwire. For DFP applications, RD1 and RD2 not shorted to CC1 and CC2.  
Dead Battery (DB) Rd termination removed after MCU boots up  
vref, iref  
Document Number: 002-17682 Rev. *M  
Page 4 of 43  
EZ-PD™ CCG5  
VCONN FET  
SBU Mux  
CCG5 has two power supply inputs, V5V_P1 and V5V_P2 pins,  
for providing power to EMCA cables through integrated VCONN  
FETs. There are two VCONN FETs for each PD port to power  
either CC1 or CC2 pins. These FETs can provide 1.5-W power  
over VCONN on the CC1 and CC2 pins for the EMCA cables.  
CCG5 also supports integrated OCP on VCONN.  
The SBU switch mux contains 2x1 Mux and a single 2x2 cross  
bar SBU switch per the Type-C port. The 2x1 MUX enables you  
to select between the Display Port or Thunderbolt alternate  
mode and the single-ended 2x2 switch enables you to route  
signals to the appropriate SBU1/2 based on CC (Type-C plug)  
orientation.  
The AUX port of the SBU switch supports only differential  
signals. Non-differential signals on the AUX port cause signal  
coupling at the output of the SBU switch. The LS port of the SBU  
switch supports both non-differential and differential signals.  
ADC  
The USB-PD subsystem contains one 8-bit successive approxi-  
mation register (SAR) for analog-to-digital conversions (ADC).  
The ADCs include an 8-bit DAC and a comparator. The DAC  
output forms the positive input of the comparator. The negative  
input of the comparator is from a 4-input multiplexer. The four  
inputs of the multiplexer are a pair of global analog multiplex  
busses, an internal bandgap voltage, and an internal voltage  
proportional to the absolute temperature. All GPIOs on the chip  
have access to the ADCs through the chip-wide analog mux bus.  
The CC1 and CC2 pins of both Type-C ports are not available to  
connect to the mux bus.  
Figure 2. CCG5 SBU Crossbar Switch Block Diagram  
USB HS Mux  
To meet the HS eye diagram requirements with sufficient margin,  
follow these guidelines:  
The HS Mux contains a 2×2 cross bar switch to route the system  
D± lines to the Type-C top or bottom ports based on the CC  
(Type-C plug) orientation. The unused D± top or bottom lines can  
be connected to a UART (Debug) port. The maximum operating  
frequency of UART must be 1 Mbps.  
It is recommended to keep the total USB HS signal trace  
lengths (USB 2.0 host to CCG5 + CCG5 to Type-C connector  
pins) to 4 inches.  
Total USB HS signal trace lengths can be increased up to 8  
inches by adjusting the drive strength on the USB 2.0 host.  
The HS Mux also contains charger detection/emulation for  
detecting USB BC 1.2 (source only) and Apple terminations. The  
charger detection block is connected to the D± from the system  
as shown in Figure 3.  
The differential impedance across the DP/DM signal traces  
shall be 90 Ω.  
Trace width shall be 6 mils.  
Air Gap (distance between lines) shall be 8 mils.  
Figure 3. CCG5 DP/DM Switch Block Diagram  
Overvoltage and Undervoltage Protection on VBUS  
Overcurrent Protection on VBUS  
CCG5 implements an undervoltage/overvoltage (UV/OV)  
detection circuit for the VBUS supply. The threshold for OV and  
UV detection can be set independently. Both UV and OV detector  
have programmable thresholds and is controlled by the  
firmware.  
CCG5 integrates a high-side current sense amplifier to detect  
overcurrent on the VBUS. Overcurrent protection is enabled by  
sensing the current through the 10-msense resistor connected  
between the “CSP_Px” and “CSN_Px” pins.  
Document Number: 002-17682 Rev. *M  
Page 5 of 43  
EZ-PD™ CCG5  
VBUS Discharge  
CPU and Memory Subsystem  
CCG5 also has integrated VBUS discharge FETs and resistors  
for each port. It is used to discharge VBUS to meet the USB-PD  
specification timing on a detach condition and negative voltage  
transition.  
CPU  
The Cortex-M0 CPU in EZ-PD CCG5 is part of the 32-bit MCU  
subsystem, which is optimized for low-power operation with  
extensive clock gating.  
VBUS Regulator  
The CPU also includes a serial wire debug (SWD) interface,  
which is a 2-wire form of JTAG. The debug configuration used for  
EZ-PD CCG5 has four break-point (address) comparators and  
two watchpoint (data) comparators.  
CCG5 can operate from three power supplies – VSYS, VBUS_P1  
and VBUS_P2. CCG5 integrates the regulator (that supports up to  
21.5 V) to derive operating supply voltage. The VSYS always  
,
takes priority over VBUS_P1/VBUS_P2. In the absence of VSYS  
the regulator powers CCG5 either from VBUS_P1 or VBUS_P2.  
,
Flash  
The EZ-PD CCG5 device has a flash module with a flash accel-  
erator, tightly coupled to the CPU to improve average access  
times from the flash block. The flash block is designed to deliver  
two wait states (WS) access time at 48 MHz. The flash accel-  
erator delivers 85% of single-cycle SRAM access performance  
on average. Part of the flash module can be used to emulate  
EEPROM operation if required.  
PFET Gate Driver for VBUS  
CCG5 supports the consumer-side and provider-side external  
power FET Drivers for PFET. The VBUS_P_CTRL and  
VBUS_C_CTRL gate drivers can drive only low or high-Z, thus  
requiring an external pull-up. These pins are VBUS  
voltage-tolerant.  
SROM  
Charger Detect  
A supervisory ROM that contains boot and configuration routines  
is provided.  
CCG5 integrates battery charger emulation and detection for  
USB BC.1.2, Apple charge (source only).  
SRAM  
IEC Compliant VBUS, CC, D±, and SBU Lines  
CCG5 supports 12-KB SRAM.  
The chip supports IEC-compliant ESD protection on VBUS, CC,  
D±, and SBU lines.  
High-Voltage Tolerant SBU and CC Lines  
The chip supports high-voltage tolerant SBU and CC lines. In the  
case of SBU/CC short to VBUS through connectors, these lines  
will be protected internally.  
Document Number: 002-17682 Rev. *M  
Page 6 of 43  
EZ-PD™ CCG5  
Power System Overview  
Table 1. CCG5 Power Modes  
Mode  
Description  
Figure 4 provides an overview of the EZ-PD CCG5 power  
system. CCG5 can operate from three possible external supply  
sources: VBUS_P1/VBUS_P2 (4 V–21.5 V) or VSYS (2.75 V–5.5 V).  
The VBUS_P1 and VBUS_P2 supply is regulated inside the chip  
with a LDO. The switched supply, VDDD, is either used directly  
Power is valid and XRES is not asserted. An  
internal reset source is asserted or Sleep  
Controller is sequencing the system out of reset.  
RESET  
ACTIVE  
Power is valid and CPU is executing instructions.  
Main regulator and most blocks are shut off.  
inside some analog blocks or further regulated down to VCCD  
,
which powers majority of the core using the regulators. CCG5  
has two different power modes: Active and Deep sleep. Transi-  
tions between these power modes are managed by the power  
system. A separate power domain, VDDIO, is provided for the  
GPIOs. The VDDD and VCCD pins, both outputs of regulators, are  
brought out for connecting a 1 µF and 0.1 µF capacitor respec-  
tively for the regulator stability only. The VCCD pin is not  
supported as a power supply. VDDD can source 2 mA (max) for  
external load.  
DEEP SLEEP Deep Sleep regulator powers logic, but only  
low-frequency clock if available.  
Figure 4. EZ-PD CCG5 Power System  
LDO  
LDO  
VBUS_P1  
VBUS_P2  
VDDD  
VSYS  
CC1_P2  
CC2_P2  
CC2_P1  
V5V_P2  
CC1_P1  
V5V_P1  
VDDIO  
Core Regulator  
(SRSS-Lite)  
VCCD  
2 x CC  
Tx/Rx  
GPIOs  
Core  
VSS  
Document Number: 002-17682 Rev. *M  
Page 7 of 43  
EZ-PD™ CCG5  
Peripherals  
Serial Communication Blocks (SCB)  
GPIO  
EZ-PD CCG5 has 28 GPIOs that includes the I2C and SWD pins,  
which can also be used as GPIOs. The I2C pins from only SCB  
1 are overvoltage-tolerant. The number of available GPIOs vary  
with the part numbers. The GPIO block implements the following:  
EZ-PD CCG5 has four SCBs, which can be configured to  
implement an I2C, SPI, or UART interface. The hardware I2C  
blocks implement full multi-master and slave interfaces capable  
of multimaster arbitration. In the SPI mode, the SCB blocks can  
be configured to act as a Master/slave.  
Seven drive strength modes:  
Input only  
In the I2C mode, the SCB blocks are capable of operating at  
speeds up to 1 Mbps (Fast Mode Plus) and have flexible  
buffering options to reduce interrupt overhead and latency for the  
CPU. These blocks also support I2C that creates a mailbox  
address range in the memory of EZ-PD CCG5 and effectively  
reduce I2C communication to reading from and writing to an  
array in memory. In addition, the blocks support 8-deep FIFOs  
for receive and transmit which, by increasing the time given for  
the CPU to read data, greatly reduce the need for clock  
stretching caused by the CPU not having read data on time.  
The I2C peripherals are compatible with the I2C Standard-mode,  
Fast-mode, and Fast-mode Plus devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus  
I/Os are implemented with GPIO in open-drain modes.  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
Input threshold select (CMOS or LVTTL)  
Individual control of input and output buffer enabling/disabling  
in addition to the drive strength modes  
Hold mode for latching previous state (used for retaining I/O  
state in Deep Sleep mode)  
Selectable slew rates for dV/dt related noise control to improve  
EMI  
The I2C port on SCB 2, SCB 3 and SCB 4 blocks of EZ-PD CCG5  
are not completely compliant with the I2C spec in the following:  
During power-on and reset, the I/O pins are forced to the disable  
state so as not to crowbar any inputs and/or cause excess  
turn-on current. A multiplexing network known as a high-speed  
I/O matrix is used to multiplex between various signals that may  
connect to an I/O pin.  
The GPIO cells for SCB 2 to SCB 4 I2C port are not  
overvoltage-tolerant and, therefore, cannot be hot-swapped or  
powered up independently of the rest of the I2C system.  
Fast-mode Plus has an IOL specification of 20 mA at a VOL of  
0.4 V. The GPIO cells can sink a maximum of 10-mA IOL with  
a VOL maximum of 0.6 V.  
Fast-mode and Fast-mode Plus specify minimum Fall times,  
which are not met with the GPIO cell; Slow strong mode can  
help meet this spec depending on the bus load.  
Timer/Counter/PWM Block (TCPWM)  
EZ-PD CCG5 has up to two TCPWM blocks. Each implements  
a 16-bit timer, counter, pulse-width modulator (TCPWM), and  
quadrature decoder functionality. The block can be used to  
measure the period and pulse width of an input signal (timer),  
find the number of times a particular event occurs (counter),  
generate PWM signals, or decode quadrature signals.  
Document Number: 002-17682 Rev. *M  
Page 8 of 43  
EZ-PD™ CCG5  
Pinouts  
Table 2. Pinout for CYPD5125-40LQXIT[4]  
Group Name  
Pin Name  
CC1  
Port  
Pin  
9
Description  
Analog  
Analog  
Analog  
Analog  
P4.0  
USB PD connector detect/Configuration Channel 1  
USB PD connector detect/Configuration Channel 2  
USB 2.0 DP from the Host System  
USB 2.0 DM from the Host System  
UART TX from Host System/GPIO  
UART RX from Host System/GPIO  
USB 2.0 DP from Bottom of Type-C Connector  
USB 2.0 DM from Bottom of Type-C Connector  
USB 2.0 DM from Top of Type-C Connector  
USB 2.0 DP from Top of Type-C Connector  
Sideband Use signal  
USB Type-C  
CC2  
7
DPLUS_SYS  
DMINUS_SYS  
UART_TX/GPIO  
UART_RX/GPIO  
DPLUS_BOT  
DMINUS_BOT  
DMINUS_TOP  
DPLUS_TOP  
SBU2  
23  
24  
29  
30  
26  
25  
27  
28  
34  
35  
36  
37  
38  
39  
P4.1  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Mux  
SBU1  
Sideband Use signal  
AUX_P  
Auxiliary signal for DisplayPort  
AUX_N  
Auxiliary signal for DisplayPort  
LSTX  
Thunderbolt Link Management UART Rx  
Thunderbolt Link Management UART Tx  
LSRX  
Full rail control I/O for enabling/disabling Provider load PFET of  
USB Type-C Port 1  
0: Path ON  
VBUS_P_CTRL  
VBUS_C_CTRL  
Analog  
Analog  
11  
12  
High Z: Path OFF  
VBUS Control  
VBUS OCP  
Full rail control I/O for enabling/disabling Consumer load PFET of  
USB Type-C port1  
0: Path ON  
High Z: Path OFF  
CSP  
CSN  
Analog  
Analog  
P1.6  
1
40  
6
Current Sense positive Input for VBUS side external Rsense  
Current sense negative for other side of external Rsense  
SWD I/O/GPIO  
SWD_IO/AR_RST/GPIO  
SWD Clock/ I2C config line.  
I2C config line is used to select the I2C address of HPI interface.  
The state of line decides the 7 bit I2C address for HPI.  
I2C Config Line Floating: 0x08  
SWD_CLK/I2C_CFG_EC/ GPIO  
P1.0  
2
Pulled up with 1 K: 0x42  
Pulled down with 1 K: 0x40  
SCB2 I2C Data/GPIO  
I2C_SDA_SCB2_TBT/GPIO  
I2C_SCL_SCB2_TBT/GPIO  
I2C_INT_TBT/GPIO  
P1.1  
P1.2  
P1.3  
P2.4  
3
4
SCB2 I2C Clock/GPIO  
5
TBT interrupt for port 1/GPIO  
GPIOs and Serial  
Interfaces  
OVP_TRIP/I2C_SDA_SCB4/GPIO  
14  
VBUS overvoltage output indicator for port 1/SCB4 I2C Data  
VBUS undervoltage or OCP Output Indicator for Port1 / SCB4 I2C  
Clock / GPIO  
UV_OCP_TRIP/I2C_SCL_SCB4/GPIO  
P2.3  
13  
I2C_SDA_SCB1_EC/GPIO  
I2C_SCL_SCB1_EC/GPIO  
I2C_INT_EC/GPIO  
P5.0  
P5.1  
P2.5  
P3.0  
P3.6  
P3.7  
16  
17  
15  
18  
20  
21  
SCB1 I2C Data / GPIO  
SCB1 I2C Clock / GPIO  
Embedded Controller interrupt/GPIO  
HPD/GPIO  
Hot Plug Detect I/O for port 1/GPIO  
I2C_SDA_SCB3 / GPIO / VSEL_2  
I2C_SCL_SCB3 / GPIO /VSEL_1  
SCB3 I2C Data or GPIO or voltage selection control for VBUS  
SCB3 I2C Clock or GPIO or voltage selection control for VBUS  
Note  
4. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Document Number: 002-17682 Rev. *M  
Page 9 of 43  
EZ-PD™ CCG5  
Table 2. Pinout for CYPD5125-40LQXIT[4] (continued)  
Group Name  
Pin Name  
XRES  
Port  
Pin  
10  
Description  
Reset  
Analog  
Power  
Power  
Reset input (Active LOW)  
VBUS  
22  
19  
VBUS Input for Port 1 (4 V to 21.5 V)  
VSYS  
2.75 V to 5.5 V supply for the system  
VDDD supply output  
1. VSYS powered - (Min: VSYS-50 mV) 2.7 V to 5.5 V  
2. VBUS powered - 3.15 V to 3.65 V  
VDDD  
Power  
31  
Power  
VDDIO  
VCCD  
Power  
Power  
Power  
32  
33  
8
At system-level short the VDDD to VDDIO  
1.8 V regulator output for filter capacitor. This pin cannot drive  
external load.  
V5V  
VSS  
4.85 V to 5.5 V supply for VCONN FET of Type-C Port 1  
Ground  
Ground EPAD Ground  
Note  
4. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Figure 5. 40-Pin QFN Pin Map (Top View) for CYPD5125-40LQXIT[5]  
1
2
3
CSP  
SWD_CLK / I2C_CLK_CFG  
I2C_SDA_SCB2_TBT  
I2C_SCL_SCB2_TBT  
I2C_INT_TBT  
30  
29  
28  
27  
UART_RX  
UART_TX  
DPLUS_TOP  
DMINUS_TOP  
4
5
6
40-QFN  
(Top View)  
DPLUS_BOT  
DMINUS_BOT  
DMINUS_SYS  
DPLUS_SYS  
26  
25  
24  
23  
SWD_IO/ AR_RST  
7
8
9
CC2  
V5V  
CC1  
XRES  
VBUS  
22  
21  
10  
I2C_SCL_SCB3 / VSEL_1  
Note  
5. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Document Number: 002-17682 Rev. *M  
Page 10 of 43  
EZ-PD™ CCG5  
Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI  
Ball  
Group Name  
Pin Name  
Port  
Description  
Location  
CC1_P1  
CC2_P1  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
P4.1  
K2  
USB PD connector detect/Configuration Channel 1  
USB PD connector detect/Configuration Channel 2  
USB PD connector detect/Configuration Channel 1  
USB PD connector detect/Configuration Channel 2  
Auxiliary signal for DisplayPort  
USB Type-C Port 1  
H2  
CC1_P2  
K9  
USB Type-C Port 2  
CC2_P2  
K10  
B11  
C11  
A11  
A10  
A3  
AUX_P_P1  
AUX_N_P1  
Auxiliary signal for DisplayPort  
LSRX_P1  
Thunderbolt Link Management UART Rx  
Thunderbolt Link Management UART Tx  
Sideband Use signal  
LSTX_P1  
SBU1_P1  
SBU2_P1  
A4  
Sideband Use signal  
DMINUS_SYS_P1  
DPLUS_SYS_P1  
UART_RX_P1/GPIO  
UART_TX_P1/GPIO  
DMINUS_BOT_P1  
DPLUS_BOT_P1  
DMINUS_TOP_P1  
DPLUS_TOP_P1  
AUX_P_P2  
A7  
USB 2.0 DM from the Host System  
USB 2.0 DP from the Host System  
UART Rx from Host System/GPIO  
UART Tx from Host system/GPIO  
MUX Type-C Port 1  
A6  
A9  
P4.0  
A8  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
P0.2  
C1  
USB 2.0 DM from Bottom of Type-C Connector  
USB 2.0 DP from Bottom of Type-C Connector  
USB 2.0 DM from Top of Type-C Connector  
USB 2.0 DP from Top of Type-C Connector  
Auxiliary signal for DisplayPort  
B1  
A2  
A1  
D11  
E11  
L11  
K11  
E1  
AUX_N_P2  
Auxiliary signal for DisplayPort  
LSRX_P2  
Thunderbolt Link Management UART Rx  
Thunderbolt Link Management UART Tx  
Sideband Use signal  
LSTX_P2  
SBU1_P2  
SBU2_P2  
F1  
Sideband Use signal  
DMINUS_SYS_P2  
DPLUS_SYS_P2  
UART_RX_P2/GPIO  
UART_TX_P2/GPIO  
DMINUS_BOT_P2  
DPLUS_BOT_P2  
DMINUS_TOP_P2  
DPLUS_TOP_P2  
G11  
F11  
J11  
H11  
L1  
USB 2.0 DM from the Host System  
USB 2.0 DP from the Host System  
UART Rx from Host System/GPIO  
UART Tx from Host system/GPIO  
MUX Type-C Port 2  
P0.1  
Analog  
Analog  
Analog  
Analog  
USB 2.0 DM from Bottom of Type-C Connector  
USB 2.0 DP from Bottom of Type-C Connector  
USB 2.0 DM from Top of Type-C Connector  
USB 2.0 DP from Top of Type-C Connector  
K1  
H1  
G1  
Full rail control I/O for enabling/disabling Provider load PFET  
of USB Type-C Port 1  
0: Path ON  
VBUS_P_CTRL_P1  
VBUS_C_CTRL_P1  
Analog  
Analog  
K3  
K4  
High Z: Path OFF  
VBUSControlType-C  
Port1  
Full rail control I/O for enabling/disabling Consumer load PFET  
of USB Type-C Port 1  
0: Path ON  
High Z: Path OFF  
Document Number: 002-17682 Rev. *M  
Page 11 of 43  
EZ-PD™ CCG5  
Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI (continued)  
Ball  
Location  
Group Name  
Pin Name  
Port  
Description  
Full rail control I/O for enabling/disabling Provider load PFET  
of USB Type-C Port 2.  
0: Path ON  
High Z: Path OFF  
VBUS_P_CTRL_P2  
Analog  
B4  
VBUSControlType-C  
Port2  
Full rail control I/O for enabling/disabling Consumer load PFET  
of USB Type-C Port 2.  
0: Path ON  
VBUS_C_CTRL_P2  
Analog  
B5  
High Z: Path OFF  
CSP_P1  
CSN_P1  
CSP_P2  
CSN_P2  
GPIO  
Analog  
Analog  
Analog  
Analog  
P3.1  
J1  
B3  
L2  
K8  
L7  
Current Sense Positive Input for P1  
Current Sense Negative Input for P1  
Current Sense Positive Input for P2  
Current Sense Negative Input for P2  
GPIO  
VBUS OCP  
I2C_SDA_SCB4/OVP_TRIP_P1/  
GPIO  
VBUS overvoltage output indicator for Port 1 / SCB4 I2C Data/  
GPIO  
P2.4  
K5  
OVP_TRIP_P2 / GPIO  
VSEL_1_P2 / GPIO  
UV_OCP_TRIP_P1/GPIO  
HPD_P1/GPIO  
P2.2  
P0.0  
P1.4  
P3.0  
P3.4  
L8  
L4  
VBUS overvoltage output indicator for Port 2 / GPIO  
Voltage selection control for VBUS on Port 2 / GPIO  
VBUS undervoltage of OCP output indicator for Port 1/GPIO  
Hot Plug Detect I/O for Port 1 /GPIO  
B6  
K7  
HPD_P2/GPIO  
E10  
Hot Plug Detect I/O for Port 2 /GPIO  
VCONN_OCP_TRIP_P2/  
GPIO  
P3.3  
B9  
VCONN OCP output indicator for Port 2 / GPIO  
VCONN_OCP_TRIP_P1/GPIO  
UV_OCP_TRIP_P2/GPIO  
VSEL_2_P2 / GPIO  
P3.5  
P1.5  
P2.0  
B8  
B7  
VCONN OCP output indicator for Port 1/ GPIO  
VBUS undervoltage or OCP output indicator for Port 2/GPIO  
Voltage selection control for VBUS on Port 2 / GPIO  
H10  
I2C_SCL_SCB1_EC/  
GPIO  
P5.1  
P5.0  
L6  
K6  
SCB1 I2C Clock  
SCB1 I2C Data  
I2C_SDA_SCB1_EC/  
GPIO  
GPIOs and Serial  
Interfaces  
I2C_INT_EC/GPIO  
I2C_SCL_SCB2_TBT/GPIO  
I2C_SDA_SCB2_TBT/GPIO  
I2C_INT_TBT_P1/GPIO  
I2C_INT_TBT_P2/GPIO  
P2.5  
P1.2  
P1.1  
P1.3  
P2.1  
L5  
E2  
D2  
F2  
G2  
I2C interrupt line  
SCB2 I2C Clock/GPIO  
SCB2 I2C Data /GPIO  
I2C interrupt line/GPIO  
I2C interrupt line  
I2C_SCL_SCB3 / VSEL_1_P1  
/GPIO  
SCB3 I2C Clock/ Voltage selection control for VBUS on Port 1/  
GPIO  
SCB3 I2C Data / Voltage selection control for VBUS on Port 1  
/GPIO  
P3.7  
P3.6  
L10  
J10  
I2C_SDA_SCB3 / VSEL_2_P1 /  
GPIO  
I2C_SCL_SCB4/GPIO  
I2C_SDA_SCB4/GPIO  
SWD_IO/AR_RST# /GPIO  
P2.3  
P3.2  
P1.6  
F10  
G10  
B2  
SCB4 I2C Clock /GPIO  
SCB4 I2C Data /GPIO  
SWD I/O / AR Reset / GPIO  
SWD Clock / I2C config line / GPIO.  
I2C config line is used to select the I2C address of HPI interface.  
The state of line decides the 7 bit I2C address for HPI.  
I2C Config Line Floating: 0x08  
SWD_CLK/I2C_CFG_EC/GPIO  
XRES  
P1.0  
C2  
H6  
Pulled up with 1 K: 0x42  
Pulled down with 1 K: 0x40  
Reset  
Analog  
Reset input (Active LOW)  
Document Number: 002-17682 Rev. *M  
Page 12 of 43  
EZ-PD™ CCG5  
Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI (continued)  
Ball  
Location  
Group Name  
Pin Name  
Port  
Description  
VBUS_P1  
VBUS_P2  
VSYS  
Power  
Power  
Power  
D1  
L3  
A5  
VBUS Input for Port 1 (4 V to 21.5 V)  
VBUS Input for Port 2 (4 V to 21.5 V)  
2.75 V to 5.5 V supply for the system  
VDDD supply output  
VDDD  
VCCD  
Power  
Power  
D10  
B10  
1. VSYS powered - (Min: VSYS-50 mV) 2.7 V to 5.5 V  
2. VBUS powered - 3.15 V to 3.65 V  
Power  
1.8 V regulator output for filter capacitor. This pin cannot drive  
external load.  
VDDIO  
V5V_P1  
V5V_P2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
DNU  
C10  
J2  
At system-level short the VDDD to VDDIO  
4.85 V to 5.5 V supply for VCONN FET of Type-C Port 1  
L9  
4.85 V to 5.5 V supply for VCONN FET of Type-C Port 2  
D5  
D6  
D7  
D8  
E4  
E5  
E6  
E7  
E8  
F4  
F5  
F6  
F7  
F8  
G4  
G5  
G6  
G7  
H7  
G8  
H4  
H5  
H8  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Not Connect  
Not Connect  
Not Connect  
Not Connect  
NC  
DNU  
No Connect  
NC  
DNU  
NC  
DNU  
Document Number: 002-17682 Rev. *M  
Page 13 of 43  
EZ-PD™ CCG5  
Figure 6. 96-Pin BGA Pin Map for CYPD5225-96BXZI, CYPD5235-96BZXI, and CYPD5236-96BZXI  
1
2
3
4
5
6
7
8
9
10  
11  
DPLUS_TO DMINUS_TOP  
DPLUS_SY DMINUS_S UART_Tx_P UART_Rx_  
A
B
SBU1_P1  
SBU2_P1  
VSYS  
LSTx_P1  
LSRx_P1  
P_P1  
_P1  
S_P1  
YS_P1  
1 / P4.0  
P1 / P4.1  
SWD_DATA/  
TBT_RST# /  
P1.6  
P1.4 /  
P1.5 /  
P3.5 /  
P3.3 /  
DPLUS_BO  
T_P1  
VBUS_P_C VBUS_C_CT  
TRL_P2  
CSN_P1  
UV_OCP_T UV_OC_TRI VCON_OCP VCON_OCP  
VCCD  
VDDIO  
VDDD  
AUX_P_P1  
AUX_N_P1  
AUX_P_P2  
AUX_N_P2  
RL_P2  
RIP_P1  
P_P2  
_TRIP_P1  
_TRIP_P2  
SWD_CLK/  
I2C_CFG_EC/  
P1.0  
DMINUS_B  
OT_P1  
C
D
E
I2C_SDA_SC  
B 2 _ T B T /  
P1.1  
VBUS_P1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I2C_SCL_SCB  
2 _ T B T /  
HPD_P2 /  
P3.4  
SBU1_P2  
SBU2_P2  
GND  
P1.2  
I2C_INT_TBT_  
P1/ P1.3  
DPLUS_SYS_  
P2  
F
G
H
GND  
GND  
DNU  
GND  
GND  
DNU  
GND  
GND  
GND  
GND  
GND  
GND  
DNU  
DNU  
SCL_4 / P2.3  
DPLUS_TO I2C_INT_TBT_  
SDA_4 /  
P3.2  
DMINUS_SYS  
_P2  
P_P2  
P2/ P2.1  
DMINUS_T  
OP_P2  
VSEL_2_P2/ UART_Tx_P2/  
CC2_P1  
XRES  
P2.0  
P0.1  
SDA_3/  
VSEL_2_P1/  
P3.6  
UART_Rx_P2  
/ P0.2  
J
K
L
CSP_P1  
V5V_P1  
CC1_P1  
CSP_P2  
I2C_SDA_S I2C_SDA_S  
CB4/OVP_T CB1_EC /  
DPLUS_BO  
T_P2  
VBUS_P_C VBUS_C_C  
H P D _ P 1 /  
P3.0  
CSN_P2  
CC1_P2  
V5V_P2  
CC2_P2  
LSTx_P2  
LSRx_P2  
TRL_P1  
TRL_P1  
RIP_P1/P2.4  
P5.0  
I2C_SCL_S  
CB1_EC /  
P5.1  
SCL_3 /  
VSEL_1_P1/  
P3.7  
DMINUS_B  
OT_P2  
VSEL_1_P2 I2C_INT_EC  
/P0.0 / P2.5  
OVP_TRIP_  
P2/P2.2  
VBUS_P2  
P3.1  
Type-C Port  
1
Type-C Port  
2
Power Pins  
GND  
GPIOs  
Document Number: 002-17682 Rev. *M  
Page 14 of 43  
EZ-PD™ CCG5  
Table 4 through Table 7 provide the various configuration options for the serial interfaces.  
Table 4. Serial Communication Block (SCB1) Configuration  
QFN Pin BGA Pin  
UART  
SPI  
I2C  
GPIO Functionality  
16  
17  
K6  
L6  
I2C_SDA_SCB1  
I2C_SCL_SCB1  
GPIO  
GPIO  
VCONN OCP output indicator for port 1/  
GPIO  
B8  
UART_CTS_SCB1  
20  
21  
J10  
L10  
UART_TX_SCB1  
UART_RX_SCB1  
SPI_SEL_SCB1  
SPI_MISO_SCB1  
I2C_SDA_SCB3/ VSEL_2_P1 /GPIO  
I2C_SCL_SCB3 / VSEL_1_P1/GPIO  
18  
29  
30  
K7  
A8  
A9  
UART_RTS_SCB1  
HPD_P1/GPIO  
SPI_MOSI_SCB1  
SPI_CLK_SCB1  
UART_TX_P1/GPIO  
UART_RX_P1/GPIO  
Note: UART TX and RX of the SCB1 is also the I2C SDA and SCL of the SCB3. So if SCB 3 is in use, then SCB1 cannot be used for  
UART and SPI.  
Table 5. Serial Communication Block (SCB2) Configuration  
QFN Pin BGA Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
SWD_CLK/I2C_CFG_EC/GPIO  
I2C_SDA_SCB2_TBT/GPIO  
I2C_SCL_SCB2_TBT/GPIO  
I2C_INT_TBT_P1/GPIO  
2
3
4
5
C2  
D2  
E2  
F2  
UART_RX_SCB2  
UART_TX_SCB2  
UART_CTS_SCB2  
UART_RTS_SCB2  
SPI_SEL_SCB2  
SPI_MOSI_SCB2  
SPI_MISO_SCB2  
SPI_CLK_SCB2  
I2C_SDA_SCB2  
I2C_SCL_SCB2  
Table 6. Serial Communication Block (SCB3) Configuration  
QFN Pin BGA Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
20  
21  
J10  
L10  
G2  
H10  
L4  
I2C_SDA_SCB3 UART_TX_SCB1/VSEL_2_P1 /GPIO  
I2C_SCL_SCB3 UART_RX_SCB1 / VSEL_1_P1/GPIO  
UART_CTS_SCB3  
UART_TX_SCB3  
UART_RX_SCB3  
UART_RTS_SCB3  
SPI_MISO_SCB3  
SPI_MOSI_SCB3  
SPI_SEL_SCB3  
SPI_CLK_SCB3  
I2C_INT_TBT_P2/GPIO  
VSEL_2_P2 / GPIO  
VSEL_1_P2 / GPIO  
OVP_TRIP_P2 / GPIO  
L8  
Table 7. Serial Communication Block (SCB4) Configuration  
QFN Pin BGA Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
13  
14  
F10  
G10  
L7  
I2C_SCL_SCB4 GPIO  
I2C_SDA_SCB4 GPIO  
UART_TX_SCB4  
UART_CTS_SCB4  
UART_RX_SCB4  
UART_RTS_SCB4  
SPI_MOSI_SCB4  
SPI_MISO_SCB4  
SPI_SEL_SCB4  
SPI_CLK_SCB4  
GPIO  
B9  
VCONN_OCP_TRIP_P2/GPIO  
HPD_P2/GPIO  
E10  
Document Number: 002-17682 Rev. *M  
Page 15 of 43  
EZ-PD™ CCG5  
Application Diagrams  
Figure 8 and Figure 9 illustrate the Dual Type-C Port and Single[6] Type-C port Thunderbolt Notebook DRP application diagrams using  
a CCG5 device respectively. The Type-C port can be used as a power provider/power consumer.  
The CCG5 device communicates with the embedded controller (EC), which manages the Battery Charger Controller (BCC) to control  
the charging and discharging of the internal battery. It also updates the Thunderbolt Controller via I2C to route the High-speed signals  
coming from the Type-C port to the USB host (during normal mode) or the Graphics processor unit (during Display port Alternate  
mode) or the Thunderbolt Host (during Thunderbolt Alternate mode) based on the alternate mode negotiation.  
For the dual Type-C notebook application (Figure 8), these Type-C ports can be power providers or power consumers simultaneously.  
The CCG5 device controls the transfer of USB 2.0 D± lines from the top and bottom of the Type-C receptacle to the D± lines of the  
USB Host controller. CCG5 also handles the routing of SBU1 and SBU2 lines from the Type-C receptacle to the Thunderbolt controller  
for the Link management. CCG5 offers ESD Protection on D± and SBU lines as well as VBUS Short protection on SBU and CC lines.  
The CCG5 device has an integrated VCONN FET for applications that need to provide power for accessories and cables using the  
VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS.  
The 10-mresistor between the 5-V supply and FETs is used for overcurrent detection on the VBUS. The VBUS_P_CTRL pin of  
CCG5 has an in-built VBUS monitoring circuit that can detect OVP and UVP on VBUS.  
CCG5 also has an in-built VBUS discharge circuit that is used to quickly discharge VBUS after the Type-C connection is detached.  
The internal resistance (as listed in Table 41) of this VBUS discharge circuit is expected to be sufficient for typical CCG5 applications.  
However, customers can include an optional VBUS discharge circuit as shown in Figure 7 using any available GPIO. This optional  
circuit can be added to the design if the discharge time using the in-built VBUS discharge circuit needs to be further reduced; that is,  
VBUS transition time from higher to lower voltages can be further reduced using the external VBUS discharge circuit shown in Figure 7.  
This optional external circuit comprises of a N-channel MOSFET and the CCG5 device can be used to enable or disable it as  
appropriate.  
Figure 7. Optional External VBUS Discharge Circuit  
V BU S  
200  
C C G 5 G P IO Pin  
(VB U S _D ISC H AR G E _PIN )  
100 K   
Note  
6. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Document Number: 002-17682 Rev. *M  
Page 16 of 43  
EZ-PD™ CCG5  
Figure 8. CCG5 in a Dual Port Notebook Application using CYPD5225-96BZXI  
VBUS_OUT_P2  
VBUS_OUT_P1  
5V  
5V  
BSC030P03NS3  
BSC030P03NS3  
BSC030P03NS3  
BSC030P03NS3  
8
7
6
5
8
7
6
5
0.01  
0.01  
8
7
6
5
8
7
6
5
3
2
1
3
2
1
3
2
1
3
2
1
10µF  
50V  
Provider  
Path  
Provider  
Path  
10µF  
50V  
1µF  
35V  
1µF  
35V  
Power  
Subsystem  
49.9K  
49.9K  
1%  
1%  
4
4
4
4
Consumer  
Path  
Consumer  
Path  
BSC030P03NS3  
8
BSC030P03NS3  
8
7
6
5
BSC030P03NS3  
BSC030P03NS3  
8
7
6
5
7
8
3
2
1
3
3
2
1
7
6
5
3
2
1
2
1
6
5
K8  
CSN_P2  
L2  
CSP_P2  
B3  
CSN_P1  
J1  
CSP_P1  
1µF  
35V  
1µF  
35V  
K3  
K4  
B4  
B5  
VBUS_P_CTRL_P1  
VBUS_C_CTRL_P1  
49.9K  
1%  
49.9K  
1%  
4
VBUS_P_CTRL_P2  
VBUS_C_CTRL_P2  
4
4
4
VBUS  
VBUS  
10µF  
50V  
VDDD  
1K  
10µF  
50V  
Note:  
CCG5 devices I2C address is determined by SWD_CLK pin.  
1K resistors not populated I2C address 0x08 (default)  
1K resistor connected to GND I2C address 0x40  
1K resistor connected to VDDD  
=
C2  
A8  
X
SWD_CLK/I2C_CFG_EC/P1.0  
UART_TX_P1/P4.0  
UART_RX_P1/P4.1  
=
1K  
A9  
X
=
I2C address 0x42  
A4  
A3  
A1  
B8  
A8  
SBU2  
SBU2_P1  
F1  
E1  
G1  
H1  
K1  
L1  
B8  
A8  
SBU2  
SBU2_P2  
SBU1_P1  
SBU1  
D+  
A6  
A7  
B6  
B7  
SBU1  
D+  
SBU1_P2  
DPLUS_TOP_P1  
A6  
A7  
B6  
B7  
A2  
DPLUS_TOP_P2  
DMINUS_TOP_P1  
D-  
B1  
C1  
DMINUS_TOP_P2  
D-  
DPLUS_BOT_P1  
DMINUS_BOT_P1  
D+  
D+  
DPLUS_BOT_P2  
DMINUS_BOT_P2  
D-  
B5  
A5  
D-  
H2  
K2  
CC2_P1  
CC1_P1  
CC2  
CC1  
B5  
A5  
K10  
K9  
CC2_P2  
CC1_P2  
CC2  
CC1  
390pF  
390pF  
390pF  
390pF  
L8  
X
OVP_TRIP_P2/P2.2  
VDDD  
Type-C  
Receptacle  
2
Type-C  
Receptacle  
1
L10  
SCL_3/VSEL_1_P1/P3.7  
UART_TX_P2/P0.1  
X
D10  
VDDD  
H11  
X
J11  
X
CCG5  
(CYPD5225-96BZXI)  
96-BGA  
1µF  
0.1 µF  
C10  
A5  
VDDIO  
UART_RX_P2/P0.2  
3.3V  
G10  
X
F10  
X
J10  
X
B7  
X
B8  
X
B9  
X
B6  
X
SDA_4/P3.2  
SCL_4/P2.3  
VSYS  
VCCD  
0.1µF  
10V  
1µF  
10V  
B10  
0.1µF  
SDA_3/VSEL_2_P1/P3.6  
UV_OCP_TRIP_P2/P1.5  
VCON_OCP_TRIP_P1/P3.5  
5V (from System)  
J2  
L9  
GND  
V5V_P1  
V5V_P2  
GND  
VCON_OCP_TRIP_P2/P3.3  
UV_OCP_TRIP_P1/P1.4  
3.3V  
L4  
X
H6  
L5  
VSEL_1_P2/P0.0  
VSEL_2_P2/P2.0  
NC1  
XRES  
2.2 K   
2.2 K   
H10  
X
0.1µF  
2.2 K  
2.2 K  
2.2 K  
2.2 K  
G8  
X
2.2 K  
I2C_INT_EC/P2.5  
H4  
X
NC2  
Embedded  
Controller  
L6  
K6  
E2  
I2C_SCL_SCB1_EC/P5.1  
I2C_SDA_SCB1_EC/P5.0  
H5  
X
NC3  
NC4  
H8  
X
I2C_SDA_SCB4/  
OVP_TRIP_P1/P2.4  
K5  
X
L7  
X
I2C_SCL_SCB2_TBT/P1.2  
I2C_SDA_SCB2_TBT/P1.1  
I2C_INT_TBT_P1/P1.3  
D2  
F2  
P3.1  
GND  
D5, D6, D7, D8, E4, E5,  
E6, E7, E8, F4, F5, F6, F7,  
F8, G4, G5, G6, G7, H7  
G2  
I2C_INT_TBT_P2/P2.1  
VBUS_OUT_P2  
VBUS_OUT_P1  
3.3V  
D1  
L3  
VBUS_P1  
VBUS_P2  
10K  
100K  
3.3V  
100K  
B2  
SWD_IO/TBT_RST/P1.6  
AUX_N_P1  
C11  
B11  
A10  
A11  
E11  
D11  
AUX_N_P2  
AUX_P_P2  
LSTX_P2  
0.1 µF  
0.1µF  
0.1 µF  
0.1 µF  
AUX_P_P1  
LSTX_P1  
K11  
L11  
LSRX_P2  
LSRX_P1  
8
8
100K  
Data Lines  
100K  
Data Lines  
3.3V  
3.3V  
10K  
DNP  
10K  
DNP  
K7  
E10  
HPD_P1/P3.0  
HPD_P2/P3.4  
D+_SYS_P2  
F11  
D-_SYS_P2 D+_SYS_P1  
G11 A6  
D-_SYS_P1  
A7  
100K  
100K  
Note:  
Route D+ and D- Host lines to system  
USB Host Controller  
DPSRC_HPD  
DPSRC_HPD  
LSRX  
LSTX  
LSRX  
LSTX  
DPSRC_AUX_P  
DPSRC_AUX_P  
DPSRC_AUX_N  
I2C_SCL  
DPSRC_AUX_N  
RESET_N  
Thunderbolt Controller  
I2C_SDA  
I2C_INT_P1  
I2C_INT_P2  
USB2_D_P  
USB2_D_N  
USB2_D_P  
USB2_D_N  
Note:  
Follow recommendations from manufacturer  
for Thunderbolt Controller connections  
X
X
X
X
Document Number: 002-17682 Rev. *M  
Page 17 of 43  
EZ-PD™ CCG5  
Figure 9 illustrates a Single Port Thunderbolt Notebook DRP application diagram using CYPD5125-40LQXIT[7]  
.
Figure 9. CCG5 in a Single Port Notebook Application using CYPD5125-40LQXIT[7]  
VBUS_OUT  
5 V  
BSC030P03NS3  
BSC030P03NS3  
8
7
6
5
0.01  
8
7
6
5
Provider Path  
3
2
1
3
2
1
10 µF  
50 V  
1 µF  
35 V  
Power  
Subsystem  
49.9K  
1%  
4
4
Consumer Path  
BSC030P03NS3  
BSC030P03NS3  
8
7
6
5
8
7
3
2
1
3
Note:  
2
1
6
5
40  
CSN  
1
1µF  
35V  
CCG5 device s I2C address is determined by SWD_CLK pin.  
1K resistors not populated = I2C address 0x08 (default)  
1K resistor connected to GND = I2C address 0x40  
1K resistor connected to VDDD = I2C address 0x42  
VDDD  
1 K  
11  
12  
CSP  
VBUS_P_CTRL  
VBUS_C_CTRL  
49.9K  
1%  
4
4
2
SWD_CLK/I2C_CFG_EC/P1.0  
1 K  
VDDD  
31  
VDDD  
VBUS  
1µF  
10 µF  
50 V  
0.1 µF  
32  
19  
VDDIO  
3.3 V  
VSYS  
VCCD  
1 µF  
29  
X
0.1 µF  
UART_TX/P4.0  
UART_RX/P4.1  
33  
30  
X
0.1 µF  
34  
35  
28  
B8  
A8  
5 V (from System)  
VBUS_OUT  
SBU2  
SBU1  
D+  
SBU2  
SBU1  
8
VCONN_V5V  
VBUS  
A6  
A7  
B6  
B7  
DPLUS_TOP  
22  
10  
27  
DMINUS_TOP  
3.3 V  
D-  
CCG5  
26  
25  
XRES  
[7]  
DPLUS_BOT  
D+  
0.1µF  
(CYPD5125-40LQXIT  
40-QFN  
)
DMINUS_BOT  
D-  
2.2 K  
B5  
A5  
7
9
CC2  
CC1  
CC2  
CC1  
2.2 K  
2.2 K  
15  
I2C_INT_EC/P2.5  
3.3 V  
EMBEDDED  
CONTROLLER  
17  
16  
390 pF  
390 pF  
I2C_SCL_SCB1_EC/P5.1  
I2C_SDA_SCB1_EC/P5.0  
TYPE-C  
RECEPTACLE  
10 K  
DNP  
18  
HPD/P3.0  
20  
100 K  
X
SDA_3/VSEL_2/P3.6  
3.3 V  
21  
14  
SCL_3/VSEL_1/P3.7  
X
3.3V  
SDA_4/OVP_TRIP/P2.4  
X
13  
2.2 K  
SCL_4/UV_OCP_TRIP/P2.3  
X
DPSRC_HPD  
100 K  
10 K  
2.2 K  
2.2 K  
8
6
SWD_IO/TBT_RST/P1.6  
AUX_N  
4
3
RESET_N  
I2C_SCL_SCB2_TBT/P1.2  
I2C_SDA_SCB2_TBT/P1.1  
37  
DPSRC_AUX_N  
Data Lines  
0.1 µF  
0.1 µF  
36  
38  
39  
GND  
AUX_P  
LSTX  
DPSRC_AUX_P  
LSTX  
5
I2C_INT_TBT/P1.3  
EPAD  
41  
Thunderbolt Controller  
LSRX  
LSRX  
DPLUS_SYS  
23  
DMINUS_SYS  
24  
100 K  
Note:  
Route D+ and D - Host lines to system  
USB Host Controller  
X
X
Note:  
Follow recommendations from manufacturer for  
Thunderbolt Controller connections  
Note  
7. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Document Number: 002-17682 Rev. *M  
Page 18 of 43  
EZ-PD™ CCG5  
Figure 10 illustrates the Dual Type-C Port Thunderbolt device/dock upstream application diagram using a CCG5 device. The CCG5  
device communicates with the power system over I2C, which manages the power provided to the upstream Type-C ports. It also  
updates the Thunderbolt Controller over I2C based on the alternate mode negotiation to sink Thunderbolt or USB or DisplayPort Data.  
The CCG5 device controls the transfer of USB 2.0 D± lines from the top and bottom of the Type-C receptacle to the D± lines of the  
Thunderbolt Controller and Billboard controller. CCG5 also handles the routing of SBU1 and SBU2 lines from the Type-C receptacle  
to the Thunderbolt controller for the link management. As mentioned in Features, CCG5 offers ESD Protection on D± and SBU lines  
as well as VBUS Short protection on SBU and CC lines.  
Figure 10. CCG5 in a Dual port Thunderbolt Device/Dock Upstream Port Application using CYPD5235-96BXZI  
VBUS_OUT_P2  
VBUS_OUT_P1  
0.01  
0.01  
Power  
Power  
Subsystem  
Subsystem  
Provider  
Path  
Provider  
Path  
I2C  
EN  
INT  
EN  
INT  
K5  
G10  
F10  
K8  
B7  
B6  
L2  
CSP_P2  
L7  
B3  
CSN_P1  
J1  
I2C_SDA_SCB4/  
OVP_TRIP_P1/  
CSN_P2  
P1.5 P1.4  
SDA_4/P3.2 SCL_4/P2.3  
P3.1  
CSP_P1  
P2.4  
X
X
B4  
B5  
VBUS_P_CTRL_P2  
VBUS_C_CTRL_P2  
VBUS_P_CTRL_P1  
VBUS_C_CTRL_P1  
K3  
K4  
X
X
L3  
VBUS_P2  
D1  
VBUS  
VBUS_P1  
VBUS  
10µF  
50V  
VDDD  
1K  
10µF  
50V  
C2  
SWD_CLK/I2C_CFG_EC/P1.0  
1K  
A3, A4  
A1, A2  
SBU1/2  
D+/-_T  
D+/-_B  
SBU1/2_P1  
F1, E1  
G1, H1  
SBU1/2  
D+/-_T  
D+/-_B  
SBU1/2_P2  
DP/M_TOP_P1  
DP/M_TOP_P2  
B1, C1  
H2, K2  
DP/M_BOT_P1  
CC1/2_P1  
K1, L1  
DP/M_BOT_P2  
CC1/2_P2  
CC1/2  
K10, K9  
CC1/2  
390pF  
390pF  
L10  
X
SCL_3/VSEL_1_P1/P3.7  
VDDD  
Type-C  
Receptacle  
2
Type-C  
Receptacle  
1
D10  
VDDD  
CCG5  
(CYPD5235-96BZXI)  
96-BGA  
1µF  
0.1µF  
C10  
A5  
VDDIO  
3.3V  
J10  
X
VSYS  
VCCD  
SDA_3/VSEL_2_P1/P3.6  
0.1µF  
10V  
1µF  
10V  
B10  
0.1µF  
B8  
X
VCON_OCP_TRIP_P1/P3.5  
5V (from System)  
J2  
L9  
GND  
V5V_P1  
V5V_P2  
GND  
3.3V  
H6  
B9  
XRES  
0.1µF  
RESET  
I2C_SDA/SCL/INT  
G8  
X
NC1  
NC2  
NC3  
NC4  
VCON_OCP_TRIP_P2/P3.3  
I2C_INT_EC/P2.5  
L5  
L6  
H4  
X
I2C_SCL_SCB1_EC/P5.1  
I2C_SDA_SCB1_EC/P5.0  
USB Billboard  
(CY7C65215)  
H5  
X
K6  
H8  
X
H11  
A8  
D+  
UART_TX_P2/P0.1  
UART_TX_P1/P4.0  
UART_RX_P2/P0.2  
UART_RX_P1/P4.1  
USB FullSpeed  
J11  
A9  
D-  
SPI_Master  
D5, D6, D7, D8, E4, E5,  
E6, E7, E8, F4, F5, F6, F7,  
F8, G4, G5, G6, G7, H7  
GND  
L4, L8, G2, H10  
E2  
4
SPI_Master  
I2C_SCL_SCB2_TBT/P1.2  
I2C_SDA_SCB2_TBT/P1.1  
I2C_INT_TBT_P1/P1.3  
3.3V  
D2  
F2  
10K  
B2  
G2  
I2C_INT_TBT_P2/P2.1  
AUX_P/N_P2  
SWD_IO/TBT_RST/P1.6  
AUX_P/N_P1  
B11, C11  
E11, D11  
0.1µF  
0.1µF  
K11, L11  
A10, A11  
LSTX/RX_P2  
4
LSTX/RX_P1  
8
8
Data Lines  
Data Lines  
SPI  
Slave  
Flash  
3.3V  
3.3V  
10K  
DNP  
10K  
DNP  
K7  
E10  
HPD_P1/P3.0  
HPD_P2/P3.4  
D+_SYS_P2  
F11  
D-_SYS_P2 D+_SYS_P1  
D-_SYS_P1  
A7  
100K  
100K  
G11  
A6  
USB2_P  
USB2_N  
USB2_P  
USB2_N  
DPSRC_HPD  
DPSRC_HPD  
LSTX/RX  
Port B  
LSTX/RX  
Port A  
DPSRC_AUX_P/N  
DPSRC_AUX_P/N  
I2C_SCL  
I2C_SDA  
Thunderbolt Controller  
4
RESET_N  
I2C_INT_P1  
I2C_INT_P2  
SPI_Master  
Note:  
Follow recommendations from manufacturer  
for Thunderbolt Controller connections for  
device/dock schematics  
Document Number: 002-17682 Rev. *M  
Page 19 of 43  
EZ-PD™ CCG5  
Figure 11 illustrates the Dual Type-C Port dock downstream application diagram using a CCG5 device. The CCG5 negotiates power  
contract with the connected device on the downstream Type-C port and controls the power system. It also controls the data mux via  
I2C based on the alternate mode negotiation to source USB SuperSpeed and/or DisplayPort on the downstream Type-C port. As  
mentioned above, the CCG5 device offers ESD Protection on D± and SBU lines as well as VBUS Short protection on SBU and CC  
lines.  
Figure 11. CCG5 in a Dual port Dock Downstream Port Application using CYPD5236-96BXZI  
VBUS_OUT_P2  
VBUS_OUT_P1  
5V  
5V  
BSC030P03NS3  
BSC030P03NS3  
BSC030P03NS3  
BSC030P03NS3  
8
7
6
5
8
7
6
5
0.01  
0.01  
8
7
6
5
8
7
6
5
3
2
1
3
2
1
3
2
1
3
2
1
10µF  
50V  
Provider  
Path  
Provider  
Path  
10µF  
50V  
1µF  
35V  
1µF  
35V  
Power  
Subsystem  
49.9K  
1%  
49.9K  
1%  
4
4
4
4
K8  
L2  
B3  
CSN_P1  
J1  
CSN_P2  
CSP_P2  
CSP_P1  
K3  
B4  
VBUS_P_CTRL_P1  
VBUS_C_CTRL_P1  
VBUS_P2  
VBUS_P_CTRL_P2  
K4  
X
X
B5  
VBUS_C_CTRL_P2  
L3  
D1  
VBUS  
VBUS_P1  
VBUS  
10µF  
50V  
VDDD  
10µF  
50V  
1K  
C2  
SWD_CLK/I2C_CFG_EC/P1.0  
1K  
A3, A4  
A1, A2  
SBU1/2  
D+/-_T  
D+/-_B  
SBU1/2_P1  
F1, E1  
G1, H1  
SBU1/2  
D+/-_T  
SBU1/2_P2  
DP/M_TOP_P1  
DP/M_TOP_P2  
B1, C1  
DP/M_BOT_P1  
CC1/2_P1  
K1, L1  
D+/-_B  
CC1/2  
DP/M_BOT_P2  
CC1/2_P2  
H2, K2  
L8  
CC1/2  
K10, K9  
OVP_TRIP_P2/P2.2  
X
390pF  
390pF  
L10  
SCL_3/VSEL_1_P1/P3.7  
X
DS  
DS  
VDDD  
Type-C  
Receptacle  
2
J10  
Type-C  
Receptacle  
1
SDA_3/VSEL_2_P1/P3.6  
UV_OCP_TRIP_P2/P1.5  
VCON_OCP_TRIP_P1/P3.5  
X
D10  
VDDD  
VDDIO  
B7  
B8  
CCG5  
(CYPD5236-96BZXI)  
96-BGA  
X
X
1µF  
0.1µF  
C10  
A5  
3.3V  
VSYS  
VCCD  
0.1µF  
10V  
1µF  
10V  
B6  
L4  
UV_OCP_TRIP_P1/P1.4  
VSEL_1_P2/P0.0  
X
X
B10  
0.1µF  
5V (from System)  
H10  
K5  
VSEL_2_P2/P2.0  
X
X
J2  
GND  
V5V_P1  
V5V_P2  
I2C_SDA_SCB4/  
OVP_TRIP_P1/P2.4  
L9  
GND  
H6  
G10  
F10  
3.3V  
XRES  
SDA_4/P3.2  
SCL_4/P2.3  
To Port 1& 2  
Data Mux  
0.1µF  
RESET  
B9  
L5  
L6  
X
X
X
X
G8  
H4  
NC1  
NC2  
NC3  
NC4  
VCON_OCP_TRIP_P2/P3.3  
I2C_INT_EC/P2.5  
I2C_SDA/SCL/INT  
MCU  
Cypress FM0  
I2C_SCL_SCB1_EC/P5.1  
I2C_SDA_SCB1_EC/P5.0  
H5  
H8  
K6  
H11  
X
UART_TX_P2/P0.1  
UART_TX_P1/P4.0  
A8  
X
J11  
X
A9  
USB2.0 FS  
UART_RX_P2/P0.2  
UART_RX_P1/P4.1  
D5, D6, D7, D8, E4, E5,  
E6, E7, E8, F4, F5, F6, F7,  
X
GND  
F8, G4, G5, G6, G7, H7  
E2  
X
I2C_SCL_SCB2_TBT/P1.2  
I2C_SDA_SCB2_TBT/P1.1  
I2C_INT_TBT_P1/P1.3  
3.3V  
D2  
X
F2  
X
10K  
B2  
G2  
X
I2C_INT_TBT_P2/P2.1  
AUX_P/N_P2  
SWD_IO/TBT_RST/P1.6  
AUX_P/N_P1  
E11, D11  
B11, C11  
0.1µF  
0.1µF  
A10, A11  
X
K11, L11  
X
LSTX/RX_P2  
LSTX/RX_P1  
8
8
Data Lines  
Data Lines  
3.3V  
3.3V  
10K  
10K  
DNP  
To P2  
DisplayPort  
Source  
To P1  
DisplayPort  
Source  
DNP  
K7  
E10  
HPD_P1/P3.0  
HPD_P2/P3.4  
D+/-_SYS_P2  
F11 G11  
D+/-_SYS_P1  
A6 A7  
100K  
100K  
USB DS 1_HS  
USB DS 2_HS  
AUX_P/N  
AUX_P/N  
I2C from  
CCG5  
Port 1  
Data Mux  
Port 2  
Data Mux  
I2C from  
CCG5  
Full Speed  
USB 3.1  
USB3.1 HUB  
USB DS 3_HS  
USB DS 1_SS  
USB 3.1  
USB DS 2_SS  
USB US  
From P1  
DisplayPort  
Source  
From P2  
DisplayPort  
Source  
From Upstream Host  
Document Number: 002-17682 Rev. *M  
Page 20 of 43  
EZ-PD™ CCG5  
Electrical Specifications  
Absolute Maximum Ratings  
Table 8. Absolute Maximum Ratings[8]  
Parameter  
VSYS_MAX  
Description  
Min  
Typ  
Max  
6
Unit  
V
Details/Conditions  
Digital supply relative to VSS  
V5V_P1_MAX  
V5V_P2_MAX  
VBUS_P1_MAX  
VBUS_P2_MAX  
VDDIO_MAX  
Max supply voltage relative to VSS  
Max supply voltage relative to VSS  
Max VBUS voltage relative to Vss  
Max VBUS voltage relative to Vss  
Max supply voltage relative to VSS  
6
V
6
V
24  
24  
VDDD  
V
V
Absolute max  
V
Inputs to GPIO, DP/DM mux (UART,  
SYS,DP/DM_top/botpins),SBUmux  
(AUX, LS, SBU1/2 pins)  
VGPIO_ABS  
–0.5  
VDDIO + 0.5  
V
IGPIO_ABS  
Maximum current per GPIO  
–25  
25  
mA  
mA  
GPIO injection current, Max for VIH  
VDDD, and Min for VIL < VSS  
>
Absolute max, current  
injected per pin  
IGPIO_INJECTION  
–0.5  
0.5  
Electrostatic discharge human body  
model  
Applicable for all pins except  
SBU pins  
ESD_HBM  
2200  
1100  
V
V
Electrostatic discharge human body  
model for SBU1, SBU2 pins  
ESD_HBM_SBU[9]  
Only applicable to SBU pins  
Electrostatic discharge charged  
device model  
ESD_CDM  
LU  
500  
V
Pin current for latch up  
–200  
200  
mA  
Contact Discharge for  
CC1_P1/P2, CC2_P1/P2,  
VBUS_P1/P2, SBU1_P1/P2,  
SBU2_P1/P2,  
Electrostatic discharge  
ESD_IEC_CON  
ESD_IEC_AIR  
8000  
V
V
IEC61000-4-2, contact discharge  
DPLUS_TOP/BOT_P1/P2,  
DMINUX_TOP/BOT_P1/P2  
Air Discharge for  
CC1_P1/P2, CC2_P1/P2,  
VBUS_P1/P2, SBU1_P1/P2,  
SBU2_P1/P2,  
Electrostatic discharge  
IEC61000-4-2, air discharge  
15000  
DPLUS_TOP/BOT_P1/P2,  
DMINUX_TOP/BOT_P1/P2  
VCC_PIN_ABS  
VSBU_PIN_ABS  
Max voltage on CC1 and CC2 pins  
Max voltage on SBU1 and SBU2 pins  
24  
24  
V
V
Absolute max  
Absolute maximum for OVT  
pins K6 and L6 of BGA, pins  
16 and 17 of QFN  
VGPIO_OVT_ABS OVT GPIO voltage  
–0.5  
6
V
Notes  
8. Usage above the absolute maximum conditions listed in Table 8 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
9. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
Document Number: 002-17682 Rev. *M  
Page 21 of 43  
EZ-PD™ CCG5  
Device-Level Specifications  
All specifications are valid for –40 °C TA 85 °C and TJ 100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V  
except where noted.  
Table 9. DC Specifications  
Spec ID  
Parameter  
Description  
Min  
2.75  
3.15  
4
Typ Max Unit  
Details/Conditions  
SID.PWR#23  
VSYS  
Power supply input voltage  
Power supply input voltage  
VBUS_P1 and VBUS_P2 valid range  
5.5  
5.5  
V
V
V
UFP applications  
SID.PWR#23_A VSYS  
DFP/DRP applications  
SID.PWR#22  
VBUS  
21.5  
RegulatedoutputvoltagewhenVSYS is  
powered  
SID.PWR#1  
VDDD  
VSYS – 0.05  
3.15  
VSYS  
3.65  
5.5  
V
V
V
LDO regulated output voltage when  
VBUS powered  
SID.PWR#1_A  
SID.PWR#26  
VDDD  
V5V_P1 and  
V5V_P2  
Power supply Input voltage  
4.85  
At system-level short the  
SID.PWR#13  
SID.PWR#24  
SID.PWR#15  
VDDIO  
VCCD  
CEFC  
GPIO power supply  
VDDD  
VDDD  
V
V
VDDIO to VDDD  
Output voltage (for Core Logic)  
1.8  
External regulator voltage bypass on  
VCCD  
80  
100 120  
nF  
Power supply decoupling capacitor on  
VDDD  
SID.PWR#16  
SID.PWR#27  
SID.PWR#5  
CEXC  
1
0.1  
1
2
µF X5R ceramic or better  
µF  
Power supply decoupling capacitor on  
V5V_P1 and V5V_P2  
CEXV  
External load current on VDDD either in  
Active or Deep Sleep mode  
IVDDD_EXT  
mA  
Max LDO current for  
powering VDDD and  
VDDIO. For powering  
SID.PWR#5A  
ILDO_MAX  
LDO max output current  
30  
mA external circuitry  
connected to the chip,  
max current is defined by  
IVDDD_EXT  
.
Active Mode, VSYS = 2.75 to 5.5 V. Typical values measured at VSYS = 3.3 V  
TA = 25 °C, CC I/O IN  
Transmit or Receive, no  
mA I/Osourcingcurrent,CPU  
at 24 MHz, two PD ports  
active  
SID.PWR#4  
IDD12  
Supply current  
10  
Deep Sleep Mode, VSYS = 2.75 to 3.6 V  
SID34  
IDD29  
150  
160  
µA VSYS = 3.3 V, TA = 25 °C,  
VSYS = 2.75 to 3.6 V, I2C, wakeup and  
WDT on.  
VSYS = 3.3 V, TA = 25 °C  
SID34A  
IDD29A  
µA  
for two PD ports  
Power source = VSYS  
,
Type-C not attached, CC  
enabled for wakeup, Rp  
and Rd connected at  
70-ms intervals by CPU.  
Rp,Rdconnectionshould  
be enabled for both PD  
ports.  
VSYS = 3.3 V, CC wakeup on, Type-C  
not connected.  
SID_DS1  
IDD_DS1  
150  
µA  
Document Number: 002-17682 Rev. *M  
Page 22 of 43  
EZ-PD™ CCG5  
Table 9. DC Specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit  
Details/Conditions  
IDD_DS1 + DP/DM,  
µA SBU, CC ON,  
VSYS = 3.3 V, CC wakeup on, DP/DM,  
SBU ON with ADC/CSA/UVOV On  
SID_DS3  
IDD_DS2  
500  
ADC/CSA/UVOV ON  
XRES Current  
Power Source = VSYS  
µA 3.3 V, Type-C not  
attached, TA = 25 °C  
=
SID307  
IDD_XR  
Supply current while XRES asserted  
130  
Table 10. AC Specifications (Guaranteed by Characterization)  
Spec ID  
SID.CLK#4  
SID.PWR#21  
Parameter  
FCPU  
TDEEPSLEEP Wakeup from Deep Sleep mode  
Description  
Min  
Typ  
Max Unit  
Details/Conditions  
MHz All VDDD  
µs  
CPU input frequency  
5
48  
35  
SYS.XRES#5 TXRES  
External reset pulse width  
µs Guaranteed by   
characterization.  
ms  
Power-up to “Ready to accept I2C/CC  
command”  
SYS.FES#1  
T_PWR_RDY  
5
25  
I/O  
Table 11. I/O DC Specifications  
Spec ID  
Parameter  
VIH_CMOS  
Description  
Min  
0.7 × VDDIO  
Typ  
Max  
Unit  
Details/Conditions  
Input voltage HIGH  
threshold  
SID.GIO#37  
V
CMOS input  
SID.GIO#38  
SID.GIO#39  
SID.GIO#40  
SID.GIO#41  
SID.GIO#42  
SID.GIO#33  
SID.GIO#34  
SID.GIO#35  
VIL_CMOS  
Input voltage LOW threshold  
0.3 × VDDIO  
V
V
V
V
V
V
V
V
V
V
CMOS input  
VIH_VDDIO2.7- LVTTL input, VDDIO < 2.7 V 0.7 × VDDIO  
VIL_VDDIO2.7-  
LVTTL input, VDDIO < 2.7 V  
2.0  
0.3 × VDDIO  
VIH_VDDIO2.7+ LVTTL input, VDDIO 2.7 V  
VIL_VDDIO2.7+ LVTTL input, VDDIO 2.7 V  
0.8  
VOH  
VOH  
VOL  
Output voltage HIGH level VDDIO – 0.6  
Output voltage HIGH level VDDIO – 0.5  
IOH = –4 mA at 3 V VDDIO  
IOH = –1mA at 1.8 V VDDIO  
IOL = 4 mA at 1.8 V VDDIO  
IOL = 3 mA, VDDIO > 2 V  
IOL = 6 mA, VDDIO > 1.71 V  
Output voltage LOW level  
Output low voltage  
0.6  
0.4  
0.6 [10]  
SID.GIO#35A VOL_I2C_2  
SID.GIO#35B VOL_I2C_3  
Output low voltage  
I
OL = 20 mA, VDDIO > 3 V, appli-  
SID.GIO#35C VOL1_20mA  
Output low voltage  
0.4  
0.6  
V
V
cable for overvoltage-tolerant  
pins only.  
IOL = 10 mA (IOL_LED) at 3 V  
VDDIO  
SID.GIO#36  
VOL  
Output voltage LOW level  
SID.GIO#5  
SID.GIO#6  
RPU  
RPD  
Pull-up resistor value  
3.5  
3.5  
5.6  
5.6  
8.5  
8.5  
k+25 °C TA, All VDDIO  
k+25 °C TA, All VDDIO  
Pull-down resistor value  
Input leakage current  
(absolute value)  
SID.GIO#16  
IIL  
3
2
7
nA +25 °C TA, 3-V VDDIO  
SID.GIO#17  
CPIN  
Max pin capacitance  
pF –  
Note  
10. In order to drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL. Parts not meeting this specification can still function, but not at 400 kHz and 400 pF.  
Document Number: 002-17682 Rev. *M  
Page 23 of 43  
EZ-PD™ CCG5  
Table 11. I/O DC Specifications (continued)  
Spec ID  
Parameter  
VHYSTTL  
VHYSCMOS  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
VDDIO > 2.7 V. Guaranteed by  
characterization.  
SID.GIO#43  
Input hysteresis, LVTTL  
15  
40  
mV  
0.05 ×  
VDDIO  
SID.GIO#44  
Input hysteresis CMOS  
Input hysteresis CMOS  
mV VDDIO < 4.5 V  
mV VDDIO > 4.5 V  
SID.GIO#44A VHYSCMOS55  
200  
Note  
10. In order to drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL. Parts not meeting this specification can still function, but not at 400 kHz and 400 pF.  
Table 12. I/O AC Specifications (Guaranteed by Characterization)  
Spec ID  
SID70  
SID71  
Parameter  
TRISEF  
TFALLF  
Description  
Min  
2
Typ  
Max  
12  
Unit  
Details/Conditions  
Rise time in Fast Strong mode  
Fall time in Fast Strong mode  
Rise time in Slow Strong mode  
Fall time in Slow Strong mode  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
2
12  
SID.GIO#46 TRISES  
SID.GIO#47 TFALLS  
10  
10  
60  
60  
GPIO FOUT; 3.3 V VDDIO 5.5 V.  
90/10%, 25-pF load  
MHz  
SID.GIO#48 FGPIO_OUT1  
SID.GIO#49 FGPIO_OUT2  
SID.GIO#50 FGPIO_OUT3  
SID.GIO#51 FGPIO_OUT4  
SID.GIO#52 FGPIO_IN  
16  
16  
7
Fast Strong mode.  
GPIO FOUT; 1.7 V VDDIO 3.3 V.  
Fast Strong mode.  
90/10%, 25-pF load  
MHz  
GPIO FOUT; 3.3 V VDDIO 5.5 V.  
Slow Strong mode.  
90/10%, 25-pF load  
MHz  
GPIO FOUT; 1.7 V VDDIO 3.3 V.  
Slow Strong mode.  
90/10%, 25-pF load  
MHz  
3.5  
16  
GPIO input operating frequency;  
1.7 V VDDIO 5.5 V.  
90/10% VIO  
MHz  
XRES  
Table 13. XRES DC Specifications  
Spec ID Parameter Description  
Input voltage HIGH threshold 0.7 × VDDIO  
Min  
Typ  
Max  
Unit  
V
Details/Conditions  
CMOS input  
SID.XRES#1 VIH  
SID.XRES#2 VIL  
SID.XRES#3 CIN  
Input voltage LOW threshold  
Input capacitance  
0.3 × VDDIO  
7
V
CMOS input  
pF  
Guaranteed by   
characterization  
SID.XRES#4 VHYSXRES Input voltage hysteresis  
0.05 × VDDIO  
mV  
Document Number: 002-17682 Rev. *M  
Page 24 of 43  
EZ-PD™ CCG5  
Digital Peripherals  
The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.  
PWM for GPIO Pins  
Table 14. PWM AC Specifications (Guaranteed by Characterization)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Fc  
Unit  
MHz  
ns  
Details/Conditions  
Fc max = CLK_SYS.  
Maximum = 48 MHz.  
SID.TCPWM.3 TCPWMFREQ Operating frequency  
SID.TCPWM.4 TPWMENEXT Input trigger pulse width  
2/Fc  
For all trigger events  
Minimum possible width of Overflow,  
Underflow, and CC (Counter equals  
Compare value) outputs  
SID.TCPWM.5 TPWMEXT  
Output trigger pulse width  
2/Fc  
ns  
Minimum time between successive  
counts  
SID.TCPWM.5A TCRES  
SID.TCPWM.5B PWMRES  
SID.TCPWM.5C QRES  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
1/Fc  
ns  
ns  
ns  
Minimum pulse width of PWM output  
Minimum pulse width between  
quadrature-phase inputs  
Quadrature inputs resolution  
I2C  
Table 15. Fixed I2C AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID153  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Mbps  
Details/Conditions  
FI2C1  
Bit rate  
1
UART  
Table 16. Fixed UART AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID162  
Parameter  
Description  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
FUART  
Bit rate  
1
Mbps  
SPI  
Table 17. Fixed SPI AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID166  
Parameter  
FSPI  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SPI operating frequency (Master; 6X  
oversampling)  
8
MHz  
Table 18. Fixed SPI Master Mode AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID167  
Parameter  
TDMO  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
MOSI valid after SClock driving edge  
15  
ns  
MISO valid before SClock capturing  
edge  
Full clock, late MISO  
sampling  
SID168  
SID169  
TDSI  
20  
0
ns  
ns  
Referred to slave capturing  
edge  
THMO  
Previous MOSI data hold time  
Document Number: 002-17682 Rev. *M  
Page 25 of 43  
EZ-PD™ CCG5  
Table 19. Fixed SPI Slave Mode AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID170  
Parameter  
TDMI  
Description  
Min Typ  
Max  
Unit  
Details/Conditions  
MOSI Valid before Sclock capturing  
edge  
40  
ns  
SID171  
TDSO  
MISO Valid after Sclock driving edge  
48 + 3 × TSCB ns TSCB = TCPU  
MISO Valid after Sclock driving edge  
in Ext Clk mode  
SID171A  
TDSO_EXT  
48  
ns  
SID172  
THSO  
Previous MISO data hold time  
0
ns  
ns  
SID172A  
TSSELSCK  
SSEL Valid to first SCK Valid edge  
100  
Memory  
Table 20. Flash AC Specifications  
Spec ID Parameter  
Description  
Min Typ Max  
Unit  
Details/Conditions  
Row (Block) write time (erase and  
program)  
SID.MEM#4 TROW_WRITE  
SID.MEM#3 TROW_ERASE  
20  
ms  
Row erase time  
13  
7
ms  
ms  
SID.MEM#8 TROWPROGRAM Row program time after erase  
25 °C to 55 °C, All VDDD  
Guaranteed by design  
Guaranteed by design  
SID178  
SID180  
TBULKERASE  
TDEVPROG  
Bulk erase time (128 KB)  
Total device program time  
Flash endurance  
35  
25  
ms  
s
SID.MEM#6 FEND  
100k  
cycles  
Flash retention, TA ≤ 55 °C,   
SID182  
FRET1  
FRET2  
20  
10  
years  
years  
100K P/E cycles  
Flash retention, TA ≤ 85 °C,   
10K P/E cycles  
SID182A  
System Resources  
Power-on-Reset (POR) with Brownout  
Table 21. Imprecise Power On Reset (PRES)  
Spec ID  
SID185  
SID186  
Parameter  
VRISEIPOR  
VFALLIPOR  
Description  
Rising trip voltage  
Falling trip voltage  
Min  
0.80  
0.70  
Typ  
Max  
1.50  
1.4  
Unit  
V
Details/Conditions  
Guaranteed by   
characterization  
V
Table 22. Precise Power On Reset (POR) (Guaranteed by Characterization)  
Spec ID  
SID190  
SID192  
Parameter  
VFALLPPOR  
VFALLDPSLP  
Description  
Min  
Typ  
Max  
1.62  
1.5  
Unit  
V
Details/Conditions  
BrownoutDetect(BOD)tripvoltagein  
active/sleep modes  
1.48  
Guaranteed by   
characterization  
BOD trip voltage in Deep Sleep mode 1.1  
V
Document Number: 002-17682 Rev. *M  
Page 26 of 43  
EZ-PD™ CCG5  
SWD Interface  
Table 23. SWD Interface Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SWDCLK 1/3 CPU clock  
SID.SWD#1 F_SWDCLK1  
SID.SWD#2 F_SWDCLK2  
3.3 V VDDIO 5.5 V  
14  
MHz  
frequency  
SWDCLK 1/3 CPU clock  
frequency  
2.7 V VDDIO 3.3 V  
7
MHz  
SID.SWD#3 T_SWDI_SETUP T = 1/f SWDCLK  
SID.SWD#4 T_SWDI_HOLD T = 1/f SWDCLK  
SID.SWD#5 T_SWDO_VALID T = 1/f SWDCLK  
SID.SWD#6 T_SWDO_HOLD T = 1/f SWDCLK  
0.25 × T  
ns  
ns  
0.25 × T  
Guaranteed by   
characterization  
1
0.50 × T ns  
ns  
Internal Main Oscillator  
Table 24. IMO AC Specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Frequency variation at 48 MHz  
(trimmed)  
2.7 V ≤ VDDD < 5.5 V.  
–25 °C ≤ TA ≤ 85 °C  
SID.CLK#13 FIMOTOL  
±2  
%
%
Frequency variation at 48 MHz  
(trimmed)  
SID.CLK#13A FIMOTOLVCCD  
±4  
All conditions  
SID226  
TSTARTIMO  
FIMO  
IMO start-up time  
IMO frequency  
7
µs  
SID.CLK#1  
48  
MHz  
Internal Low-speed Oscillator  
Table 25. ILO AC Specifications  
Spec ID  
SID234  
Parameter  
TSTARTILO1  
TILODUTY  
FILO  
Description  
ILO start-up time  
ILO duty cycle  
Min  
Typ  
Max  
2
Unit  
ms  
Details/Conditions  
Guaranteed by   
characterization  
SID238  
40  
20  
50  
40  
60  
80  
%
SID.CLK#5  
ILO frequency  
kHz  
Table 26. PD DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.DC.cc_shvt.1 vSwing  
SID.DC.cc_shvt.2 vSwing_low  
SID.DC.cc_shvt.3 zDriver  
SID.DC.cc_shvt.4 zBmcRx  
Transmitter Output High Voltage  
Transmitter Output Low Voltage  
Transmitter output impedance  
Receiver Input Impedance  
1.05  
1.2  
0.075  
75  
V
V
33  
10  
MΩ Guaranteed by design  
Source current for USB standard  
advertisement  
SID.DC.cc_shvt.5 Idac_std  
SID.DC.cc_shvt.6 Idac_1p5a  
SID.DC.cc_shvt.7 Idac_3a  
64  
96  
µA  
µA  
µA  
Source current for 1.5A at 5 V  
advertisement  
165.6  
303.6  
194.4  
356.4  
Source current for 3A at 5 V   
advertisement  
Pull down termination resistance  
when acting as UFP (upstream  
facing port)  
SID.DC.cc_shvt.8 Rd  
4.59  
5.61  
kΩ  
Document Number: 002-17682 Rev. *M  
Page 27 of 43  
EZ-PD™ CCG5  
Table 26. PD DC Specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Pull down termination resistance  
when acting as UFP, with dead  
battery (upstream facing port)  
SID.DC.cc_shvt.9 Rd_db  
4.08  
6.12  
kΩ  
CC impedance to ground when  
disabled  
SID.DC.cc_shvt.10 zOPEN  
108  
kΩ  
V
CCvoltagesonDFPside-Standard  
USB  
SID.DC.cc_shvt.11 DFP_default_0p2  
0.15  
0.25  
SID.DC.cc_shvt.12 DFP_1.5A_0p4  
SID.DC.cc_shvt.13 DFP_3A_0p8  
SID.DC.cc_shvt.14 DFP_3A_2p6  
CC voltages on DFP side-1.5A  
CC voltages on DFP side-3A  
CC voltages on DFP side-3A  
0.35  
0.75  
2.45  
0.45  
0.85  
2.75  
V
V
V
CCvoltagesonUFPside-Standard  
USB  
SID.DC.cc_shvt.15 UFP_default_0p66  
0.61  
0.7  
V
SID.DC.cc_shvt.16 UFP_1.5A_1p23  
SID.DC.cc_shvt.17 Vattach_ds  
SID.DC.cc_shvt.18 Rattach_ds  
CC voltages on UFP side-1.5A  
Deep sleep attach threshold  
Deep sleep pull-up resistor  
1.16  
0.3  
10  
1.31  
0.6  
50  
V
%
kΩ  
Voltage threshold for Fast Swap  
Detect  
SID.DC.cc_shvt.30 FS_0p53  
0.49  
0.58  
V
Analog to Digital Converter  
Table 27. ADC DC Specifications  
Spec ID  
SID.ADC.1  
Parameter  
Resolution  
Description  
ADC resolution  
Min  
Typ  
8
Max  
Unit Details/Conditions  
Bits  
SID.ADC.2  
SID.ADC.3  
SID.ADC.4  
INL  
Integral non-linearity  
Differential non-linearity  
Gain error  
–1.5  
–2.5  
–1.5  
1.5  
2.5  
1.5  
LSB –  
LSB –  
LSB –  
DNL  
Gain Error  
Reference voltage  
generated from  
VDDD  
SID.ADC.5  
SID.ADC.6  
VREF_ADC1  
VREF_ADC2  
Reference voltage of ADC  
Reference voltage of ADC  
VDDDmin  
VDDDmax  
V
V
Reference voltage  
generate from  
bandgap  
1.96  
2.0  
2.04  
Document Number: 002-17682 Rev. *M  
Page 28 of 43  
EZ-PD™ CCG5  
Charger Detect  
Table 28. Charger Detect Specifications  
Spec ID  
Parameter  
VDAT_REF  
Description  
Min Typ  
Max  
Unit Details/Conditions  
Data detect voltage in charger detect  
mode  
DC.CHGDET.1  
250  
500  
500  
25  
400  
mV  
mV  
mV  
µA  
Dn voltage source in charger detect  
mode  
DC.CHGDET.2  
DC.CHGDET.3  
DC.CHGDET.4  
VDM_SRC  
VDP_SRC  
IDM_SINK  
700  
700  
175  
Dp voltage source in charger detect  
mode  
Dn sink current in charger detect  
mode  
Dp sing current in charger detect  
mode  
DC.CHGDET.5  
DC.CHGDET.6  
IDP_SINK  
IDP_SRC  
25  
7
175  
13  
µA  
µA  
kΩ  
kΩ  
kΩ  
Data contact detect current source  
Qualcomm pull-up termination on  
Dp/Dn  
DC.CHGDET.27 RDP_UP  
DC.CHGDET.32 RDM_UP  
DC.CHGDET.28 RDP_DWN  
0.9  
0.9  
14.25  
1.575  
1.575  
24.8  
Dp/Dn pull-up resistance  
Qualcomm pull-down termination on  
Dp/Dn  
DC.CHGDET.31 RDM_DWN  
DC.CHGDET.29 RDAT_LKG  
DC.CHGDET.34 VSETH  
Dp/Dn pull-down resistance  
Data line leakage on Dp/Dn  
Logic Threshold  
14.25  
300  
24.8  
500  
kΩ  
kΩ  
V
1.26  
1.54  
Table 29. VBUS Regulator AC Specifications  
Spec ID Parameter  
Description  
Min Typ Max  
Unit  
Details/Conditions  
Apply VBUS and  
µs measure start time on  
VDDD pin.  
Total start up time for the regulator  
supply outputs  
SID.AC.20VREG.1 TSTART  
120  
Time from assertion of  
an internal disable  
µs signal to for load current  
Regulator power down time from  
vreg_en = 0 to regulator disable  
SID.AC.20VREG.2 TSTOP  
1
on VDDD to decrease  
from 30 mA to 10 μA.  
Table 30. VSYS Switch Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max  
1.5  
Unit  
Details/Conditions  
Measured with a load  
current of 5 mAto 10 mA  
Resistance from supply input to  
output supply VDDD  
SID.DC.VDDDSW.1 Res_sw  
on VDDD  
.
Document Number: 002-17682 Rev. *M  
Page 29 of 43  
EZ-PD™ CCG5  
Table 31. CSA DC Specifications  
Spec ID Parameter  
Description  
Min  
Typ Max Unit Details/Conditions  
Cumulative output Error for Av = 15,  
SID.DC.CSA.21 Out_E_Trim_15_DS after trim, using Deep sleep  
(beta-multiplier) reference  
–7  
7
%
%
%
Cumulative output Error for Av = 15,  
SID.DC.CSA.22 Out_E_Trim_15_BG  
–4.5  
4.5  
after trim, using bandgap reference  
Cumulative output Error for Av = 100,  
SID.DC.CSA.23 Out_E_Trim_100_DS after trim, using Deep sleep (beta-multi- –24.5  
plier) reference  
24.5  
Table 32. UV/OV Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
Voltage threshold accuracy in active  
mode using bandgap reference  
SID.UVOV.1  
VTHUVOV1  
±3  
%
Voltage threshold accuracy in Deep  
Sleep mode using Deep Sleep  
reference  
SID.UVOV.2  
VTHUVOV2  
±5  
%
SID.COMP_ACC  
COMP_ACC Comparator input offset at 4s  
–15  
15  
mV  
Table 33. PFET Gate Driver DC Specifications  
Spec ID  
Parameter  
Rpd  
Description  
Min Typ Max Unit  
kΩ  
Details/Conditions  
Details/Conditions  
SID.DC.PGDO.1  
Resistance when “pull_dn” enabled  
5
Table 34. PFET Gate Driver AC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
SID.AC.PGDO.2  
Tr_discharge  
Discharge Rate of output note  
5
V/µs Guaranteed by design  
SBU  
Table 35. SBU Switch DC Specifications  
Spec ID Parameter  
Description  
Min Typ Max Unit Details/Conditions  
SID.DC.20sbu.1 Ron1  
SID.DC.20sbu.2 Ron2  
SID.DC.20sbu.4 Ileak1  
On resistances for Aux switch at 3.3 V input  
On resistances for Aux switch at 1 V input  
Pin leakage current for SBU1, SBU2  
4
3
7
5
–4.5  
4.5 µA  
Pin leakage current for LSTX, LSRX, AUX_P,  
AUX_N  
SID.DC.20sbu.5 Ileak2  
–1  
1
µA  
SID.DC.20sbu.6 Rpu_aux_1  
SID.DC.20sbu.7 Rpu_aux_2  
SID.DC.20sbu.8 Rpd_aux_1  
SID.DC.20sbu.9 Rpd_aux_2  
SID.DC.20sbu.10 Rpd_aux_3  
SID.DC.20sbu.11 Rpd_aux_4  
Pull-up resistance on AUX_P/N  
Pull-up resistance on AUX_P/N  
Pull-down resistance on AUX_P/N  
Pull-down resistance on AUX_P/N  
Pull-down resistance on AUX_P/N  
Pull-down resistance on AUX_P/N  
80  
0.8  
80  
320 KΩ –  
1.4 MΩ –  
120 KΩ –  
1.2 MΩ –  
611 KΩ –  
6.11 MΩ –  
0.3  
250  
0.3  
Over-voltage protection detection threshold  
above VDDIO  
120  
mV –  
0
SID.DC.20sbu.16 OVP_threshold  
200  
Document Number: 002-17682 Rev. *M  
Page 30 of 43  
EZ-PD™ CCG5  
Table 35. SBU Switch DC Specifications (continued)  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/Conditions  
On resistances of LSTX/LSRX to SBU1/2  
switch at 3.3 V input  
SID.DC.20sbu.17 lsx_ron_3p3  
SID.DC.20sbu.18 lsx_ron_1  
8.5 17  
5.5 11  
On resistances of LSTX/LSRX to SBU1/2  
switch at 1 V input  
Switch On flat resistances of AUX_P/N to  
SBU1/2 switch (from 0 to 3.3 V)  
Guaranteed by design  
Guaranteed by design  
SID.DC.20sbu.19 aux_ron_flat_fs  
SID.DC.20sbu.20 aux_ron_flat_hs  
SID.DC.20sbu.21 lsx_ron_flat_fs  
SID.DC.20sbu.22 lsx_ron_flat_hs  
2.5  
0.5  
5
Switch On flat resistances of AUX_P/N to  
SBU1/2 switch (from 0 to 1 V)  
Switch On flat resistances of LSTX/LSRX to  
SBU1/2 switch (from 0 to 3.3 V)  
Guaranteed by design  
Guaranteed by design  
Switch On flat resistances of LSTX/LSRX to  
SBU1/2 switch (from 0 to 1 V)  
0.5  
Table 36. SBU Switch AC Specifications  
Spec ID Parameter  
Description  
Min  
Typ Max Unit  
Details/Conditions  
SID.AC.20sbu.1 Con  
Switch ON capacitance  
120  
pF  
Switch OFF capacitance - Connector  
side  
SID.AC.20sbu.2 Coff  
80  
pF  
SID.AC.20sbu.3 Off_isolation  
SID.AC.20sbu.4 TON  
Switch isolation at F = 1 MHz  
SBU Switch turn-on time  
SBU Switch turn-off time  
–50  
dB  
µs  
200  
400  
60  
SID.AC.20sbu.5 TOFF  
µs Guaranteed by design  
mV Guaranteed by design  
SID.AC.20sbu.6 Off_isolation_tran Coupling on sbu1,2 terminated to  
50 ohm, switch-OFF, Rail-to-rail  
–60  
toggling on LSTX/LSRX  
SID.AC.20sbu.7 X_talk_AC  
SID.AC.20sbu.8 X_talk_tran  
Cross talk of Switch at F=1 MHz  
SBU1/2 to SBU2/1  
–50  
–70  
dB Guaranteed by design  
mV Guaranteed by design  
Check voltage coupling on SBU2(1)  
when Data is transferred from LSTX  
(RX) to SBU1 (2)  
70  
Table 37. DP/DM Switch DC Specifications  
Spec ID  
Parameter  
Ron_HS  
Description  
Min  
Typ  
Max Unit Details/Conditions  
DPDM On resistance for SYS lines (0  
to 0.5 V) - HS mode  
SID.DC.dpdm.1  
8
DPDM On resistance for SYS lines (0  
to 3.3 V) - FS mode  
SID.DC.dpdm.2  
SID.DC.dpdm.5  
SID.DC.dpdm.6  
Ron_FS  
Con_FS  
Con_HS  
12  
50  
10  
Switch On capacitance at FS at 6 MHz  
pF Guaranteed by design  
Switch on capacitance at HS at  
240 MHz  
pF  
µA  
pin leakage at DP/DM connector side  
and host side  
SID.DC.dpdm.9  
Ileak_pin  
1
DPDM On resistance for UART lines  
(0 to 3.3 V)  
SID.DC.dpdm.10 RON_UART  
17  
0.5  
DPDM On Flat resistance in HS mode  
(0 to 0.4 V)  
SID.DC.dpdm.11 RON_FLAT_HS  
Guaranteed by design  
Document Number: 002-17682 Rev. *M  
Page 31 of 43  
EZ-PD™ CCG5  
Table 37. DP/DM Switch DC Specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Unit Details/Conditions  
DPDM On flat resistance in FS mode  
(0 to 3.3 V)  
SID.DC.dpdm.12 RON_FLAT_FS  
4
4
Guaranteed by design  
Guaranteed by design  
RON_FLAT_UA DPDM UART On flat resistance (0 to  
RT 3.3 V)  
SID.DC.dpdm.13  
Table 38. DP/DM Switch AC Specifications  
Spec ID  
Parameter  
Description  
DP/DM Switch turn-on time  
DP/DM Switch turn-off time  
Min  
Typ  
Max  
200  
0.4  
Unit  
Details/Conditions  
SID.AC.dpdm.5 TON  
SID.AC.dpdm.6 TOFF  
µs  
µs Guaranteed by design  
Guaranteed by  
µs  
SID.AC.dpdm.7 TON_VPUMP  
DP/DM charge pump startup time  
200  
characterization  
SID.AC.dpdm.8 Off_isolation_HS Switch-off isolation for HS  
SID.AC.dpdm.9 Off_isolation_FS Switch-off isolation for FS  
–20  
–50  
db Guaranteed by design  
db Guaranteed by design  
SID.AC.dpdm.10 X_talk  
Cross talk of Switch From FS to HS at –50  
F = 12 MHz  
db  
Guaranteed by design  
SID.AC.dpdm.11 uart_coupling  
peak to peak coupling of UART signal  
to DP lines. (UART swinging from 0 to  
3.3 V)  
20  
mV  
Guaranteed by design  
Table 39. VCONN Switch DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit Details/Conditions  
SwitchONresistanceatV5V = 5 V  
with 215-mA load current  
SID.DC.20VCONN.1 Ron  
1.4  
2
Overcurrent detection range for  
CC1/CC2  
SID.DC.20VCONN.9 IOCP  
440  
600  
mA  
Overvoltage protection detection  
threshold above VDDD or V5V  
whichever is higher  
SID.DC.20VCONN.10 OVP_threshold  
200  
1200 mV  
Overvoltage protection detection  
hysteresis  
Guaranteed by  
design  
SID.DC.20VCONN.11 OVP_hysteresis  
SID.DC.20VCONN.12 OCP_hysteresis  
50  
20  
200  
60  
mV  
mA  
Overcurrent detection hysteresis  
Overvoltage protection detection  
threshold above V5V of CC1/2,  
SID.DC.20vconn.14 OVP_threshold_on with CC1 or CC2 switch enabled.  
Same threshold triggers reverse  
200  
700  
mV  
current protection circuit  
Document Number: 002-17682 Rev. *M  
Page 32 of 43  
EZ-PD™ CCG5  
Table 40. VCONN Switch AC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max  
Unit  
µs  
Details/Conditions  
SID.AC.20VCONN.1 TON  
VCONN switch turn-on time  
VCONN switch turn-off time  
200  
3
SID.AC.20VCONN.2 TOFF  
µs  
Guaranteed by design  
Table 41. VBUS Discharge Specifications  
Spec ID  
Parameter  
Ron1  
Description  
Min  
1500  
750  
500  
375  
300  
Typ  
Max  
3000  
1500  
1000  
750  
Unit  
Details/Conditions  
SID.VBUS.DISC.1  
SID.VBUS.DISC.2  
SID.VBUS.DISC.3  
SID.VBUS.DISC.4  
SID.VBUS.DISC.5  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
Ron2  
Ron3  
Ron4  
Ron5  
600  
Document Number: 002-17682 Rev. *M  
Page 33 of 43  
EZ-PD™ CCG5  
Ordering Information  
Table 42 lists the EZ-PD CCG5 part numbers and features.  
Table 42. EZ-PD CCG5 Ordering Information  
Dead Battery  
Termination  
Termination  
Resistor  
Part Number  
Application  
Type-C Ports  
Role  
DRP  
DRP  
Package  
40-pin QFN  
96-ball BGA  
CYPD5125-40LQXIT[14] Notebooks, Desktops  
1
2
Yes  
Yes  
RP[11], RD[12], RD-DB  
[13]  
CYPD5225-96BZXI  
Notebooks, Desktops  
CYPD5225-96BZXIT  
RP[11], RD[12], RD-DB  
[13]  
CYPD5235-96BZXI  
Dock, Upstream port  
CYPD5235-96BZXIT  
[12]  
2
2
No  
No  
RP[11], RD  
DRP  
DRP  
96-ball BGA  
96-ball BGA  
CYPD5236-96BZXI  
Dock, Downstream port  
CYPD5236-96BZXIT  
RP[11], RD  
[12]  
Ordering Code Definitions  
CY PD XX  
XX XX - XX XX  
X
I
T
T = Tape and reel  
Temperature Grade : I = Industrial  
X = Pb-free  
Package Type: XX = FN, LQ, BZ; LQ = QFN; BZ = BGA  
Number of pins in the package : XX = 40 or 96  
Device Role: Unique combination of role and termination  
2X = Dead battery termination , 3X = No Dead battery termination  
X5 = Notebooks, desktops, dock applications ,  
X6 = Docks for downstream port  
Number of Type -C Ports: 1 = 1 Port, 2 = 2 Ports  
Product Type: 5 = Fifth-generation product family , CCG5  
Marketing Code : PD = Power Delivery product family  
Company ID: CY = Cypress  
Notes  
11. Termination resistor denoting a downstream facing port.  
12. Termination resistor denoting an accessory or upstream facing port.  
13. Termination resistor denoting dead-battery termination.  
14. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part.  
Document Number: 002-17682 Rev. *M  
Page 34 of 43  
EZ-PD™ CCG5  
Packaging  
Table 43. Package Characteristics  
Parameter  
TA  
Description  
Conditions  
Min  
–40  
–40  
Typ  
25  
25  
Max  
85  
Unit  
°C  
Operating ambient temperature  
Operating junction temperature  
Package JA (96-ball BGA)  
Package JC (96-ball BGA)  
Package JA (40-pin QFN)  
Package JC (40-pin QFN)  
Industrial  
TJ  
Industrial  
100  
56  
°C  
TJA  
TJC  
TJA  
TJC  
°C/W  
°C/W  
°C/W  
°C/W  
18.5  
19.3  
13.6  
Table 44. Solder Reflow Peak Temperature  
Package  
Maximum Time within 5 °C of Peak  
Temperature  
Maximum Peak Temperature  
96-ball BGA  
40-pin QFN  
260 °C  
260 °C  
30 seconds  
30 seconds  
Table 45. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
96-ball BGA  
MSL  
MSL 3  
MSL 3  
40-pin QFN  
Figure 12. 40-Pin QFN (6 × 6 × 0.6 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659  
001-80659 *A  
Document Number: 002-17682 Rev. *M  
Page 35 of 43  
EZ-PD™ CCG5  
Figure 13. 96-Ball BGA (6 × 6 × 1.0 mm), Package Outline, 002-10631  
E1  
2X  
0.10 C  
(datum B)  
A1 CORNER  
E
B
A
D
1110 9 8 7  
6 5 4 3 2 1  
A
7
B
C
D
E
A1 CORNER  
6
SD  
D1  
F
G
H
(datum A)  
J
K
L
eD  
6
2X  
0.10 C  
eE  
SE  
TOP VIEW  
BOTTOM VIEW  
DETAIL A  
0.10 C  
A
A1  
0.08 C  
C
96XØb  
5
SIDE VIEW  
Ø0.15 M C A B  
Ø0.05 M C  
DETAIL A  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
DIMENSIONS  
NOM.  
SYMBOL  
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.  
MIN.  
MAX.  
1.00  
-
A
A1  
D
-
-
-
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX  
SIZE MD X ME.  
0.16  
6.00 BSC  
E
6.00 BSC  
5.00 BSC  
5.00 BSC  
11  
D1  
E1  
MD  
ME  
N
5.  
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A  
PLANE PARALLEL TO DATUM C.  
6.  
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND  
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW  
11  
96  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW  
"SD" OR "SE" = 0.  
0.30  
b
0.25  
0.35  
eD  
eE  
SD  
SE  
0.50 BSC  
0.50 BSC  
0.00  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW  
"SD" = eD/2 AND "SE" = eE/2.  
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK  
METALIZED MARK, INDENTATION OR OTHER MEANS.  
7.  
0.00  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER  
BALLS.  
9. JEDEC SPECIFICATION NO. REF. : MO-225.  
002-10631 *A  
Document Number: 002-17682 Rev. *M  
Page 36 of 43  
EZ-PD™ CCG5  
Table 46. Acronyms Used in this Document (continued)  
Acronyms  
Acronym  
opamp  
OCP  
OVP  
PCB  
Description  
operational amplifier  
Table 46. Acronyms Used in this Document  
Acronym  
ADC  
Description  
analog-to-digital converter  
overcurrent protection  
overvoltage protection  
printed circuit board  
power delivery  
API  
Arm®  
application programming interface  
advanced RISC machine, a CPU architecture  
configuration channel  
PD  
CC  
PGA  
PHY  
programmable gain amplifier  
physical layer  
BOD  
CPU  
Brown out Detect  
central processing unit  
POR  
PRES  
PSoC®  
PWM  
RAM  
RISC  
RMS  
RTC  
power-on reset  
cyclic redundancy check, an error-checking  
protocol  
CRC  
precise power-on reset  
Programmable System-on-Chip™  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
CS  
current sense  
DFP  
downstream facing port  
digital input/output, GPIO with only digital   
capabilities, no analog. See GPIO.  
DIO  
DRP  
dual role port  
electrically erasable programmable read-only  
memory  
EEPROM  
real-time clock  
RX  
receive  
a USB cable that includes an IC that reports cable  
characteristics (e.g., current rating) to the Type-C  
ports  
EMCA  
SAR  
successive approximation register  
I2C serial clock  
SCL  
EMI  
ESD  
FPB  
FS  
electromagnetic interference  
electrostatic discharge  
flash patch and breakpoint  
full-speed  
SDA  
I2C serial data  
S/H  
sample and hold  
Serial Peripheral Interface, a communications  
protocol  
SPI  
GPIO  
IC  
general-purpose input/output  
integrated circuit  
SRAM  
SWD  
TX  
static random access memory  
serial wire debug, a test protocol  
transmit  
IDE  
integrated development environment  
I2C, or IIC Inter-Integrated Circuit, a communications protocol  
a new standard with a slimmer USB connector and  
a reversible cable, capable of sourcing up to 100 W  
of power  
Type-C  
ILO  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
input/output, see also GPIO  
low-voltage detect  
IMO  
I/O  
Universal Asynchronous Transmitter Receiver, a  
communications protocol  
UART  
USB  
LVD  
LVTTL  
MCU  
NC  
Universal Serial Bus  
low-voltage transistor-transistor logic  
microcontroller unit  
USB input/output, CCG5 pins used to connect to a  
USB port  
USBIO  
XRES  
external reset I/O pin  
no connect  
NMI  
NVIC  
nonmaskable interrupt  
nested vectored interrupt controller  
Document Number: 002-17682 Rev. *M  
Page 37 of 43  
EZ-PD™ CCG5  
Document Conventions  
Table 47. Units of Measure (continued)  
Symbol Unit of Measure  
µW  
Units of Measure  
Table 47. Units of Measure  
microwatt  
milliampere  
millisecond  
millivolt  
Symbol  
°C  
Unit of Measure  
mA  
ms  
mV  
nA  
ns  
degrees Celsius  
hertz  
Hz  
KB  
1024 bytes  
nanoampere  
nanosecond  
ohm  
kHz  
k  
kilohertz  
kilo ohm  
Mbps  
MHz  
M  
Msps  
µA  
megabits per second  
megahertz  
pF  
ppm  
ps  
picofarad  
parts per million  
picosecond  
second  
mega-ohm  
megasamples per second  
microampere  
microfarad  
s
sps  
V
samples per second  
volt  
µF  
µs  
microsecond  
microvolt  
µV  
Document Number: 002-17682 Rev. *M  
Page 38 of 43  
EZ-PD™ CCG5  
References and Links To Applications Collaterals  
Knowledge Base Articles  
Key Differences Among EZ-PD™ CCG1, CCG2, CCG3 and  
AN95599 - Hardware Design Guidelines for EZ-PD™ CCG2  
CCG5 - KBA210740  
AN210403 - Hardware Design Guidelines for Dual Role Port  
Programming EZ-PD™ CCG2, EZ-PD™ CCG3 and EZ-PD™  
Applications Using EZ-PD™ USB Type-C Controllers  
CCG5 Using PSoC® Programmer and MiniProg3 - KBA96477  
AN210771 - Getting Started with EZ-PD™ CCG4  
CCGX Frequently Asked Questions (FAQs) - KBA97244  
Handling Precautions for CY4501 CCG1 DVK - KBA210560  
Cypress EZ-PD™ CCGx Hardware - KBA204102  
Difference between USB Type-C and USB-PD - KBA204033  
CCGx Programming Methods - KBA97271  
Reference Designs  
EZ-PD™ CCG2 Electronically Marked Cable Assembly  
(EMCA) Paddle Card Reference Design  
EZ-PD™ CCG2 USB Type-C to DisplayPort Cable Solution  
CCG1 USB Type-C to DisplayPort Cable Solution  
Getting started with Cypress USB Type-C Products -  
KBA04071  
CCG1 USB Type-C to HDMI/DVI/VGA Adapter Solution  
EZ-PD™ CCG2 USB Type-C to HDMI Adapter Solution  
Type-C to DisplayPort Cable Electrical Requirements  
CCG1 Electronically Marked Cable Assembly (EMCA) Paddle  
Card Reference Design  
Dead Battery Charging Implementation in USB Type-C  
Solutions - KBA97273  
TerminationResistorsRequiredfortheUSBType-CConnector  
– KBA97180  
CCG1 USB Type-C to Legacy USB Device Cable Paddle Card  
Reference Schematics  
VBUS Bypass Capacitor Recommendation for Type-C Cable  
and Type-C to Legacy Cable/Adapter Assemblies – KBA97270  
EZ-USB GX3 USB Type-C to Gigabit Ethernet Dongle  
EZ-PD™ CCG2 USB Type-C Monitor/Dock Solution  
CCG2 20W Power Adapter Reference Design  
CCG2 18W Power Adapter Reference Design  
Need for Regulator and Auxiliary Switch in Type-C to  
DisplayPort (DP) Cable Solution - KBA97274  
Need for a USB Billboard Device in Type-C Solutions –  
KBA97146  
EZ-USB GX3 USB Type-A to Gigabit Ethernet Reference  
CCG1DevicesinType-CtoLegacyCable/AdapterAssemblies  
Design Kit  
– KBA97145  
Kits  
Cypress USB Type-C Controller Supported Solutions –  
CY4501 CCG1 Development Kit  
CY4502 EZ-PD™ CCG2 Development Kit  
CY4531 EZ-PD CCG3 Evaluation Kit  
CY4541 EZ-PD™ CCG4 Evaluation Kit  
KBA97179  
Termination Resistors for Type-C to Legacy Ports – KBA97272  
Handling Instructions for CY4502 CCG2 Development Kit –  
KBA97916  
Thunderbolt™ Cable Application Using CCG3 Devices -  
KBA210976  
Datasheets  
Power Adapter Application Using CCG3 Devices - KBA210975  
Methods to Upgrade Firmware on CCG3 Devices - KBA210974  
Device Flash Memory Size and Advantages - KBA210973  
Applications of EZ-PD™ CCG4 - KBA210739  
Application Notes  
CCG1 Datasheet: USB Type-C Port Controller with Power  
Delivery  
CYPD1120 Datasheet: USB Power Delivery Alternate Mode  
Controller on Type-C  
CCG2: USB Type-C Port Controller Datasheet  
CCG3: USB Type-C Controller Datasheet  
AN96527 - Designing USB Type-C Products Using Cypress’s  
CCG1 Controllers  
AN95615 - Designing USB 3.1 Type-C Cables Using EZ-PD™  
CCG2  
Document Number: 002-17682 Rev. *M  
Page 39 of 43  
EZ-PD™ CCG5  
Document History Page  
Document Title: EZ-PD™ CCG5, USB Type-C Port Controller  
Document Number: 002-17682  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
5528106  
SOBI  
12/07/2016 New datasheet  
Updated EZ-PD™ CCG5, USB Type-C Port Controller and Features.  
Updated Logic Block Diagram.  
Updated USB-PD Subsystem (SS) and reordered the Functional Overview  
section.  
*A  
5606273  
SOBI  
01/27/2017  
Updated GPIO.  
Updated 40-Pin QFN Pin Map (Top View) for CYPD5125-40LQXIT[5].  
Changed datasheet status to Preliminary.  
Added Errata.  
Added Table 4 through Table 7.  
Added Table 9 through Table 41 in Device-Level Specifications.  
Updated Logic Block Diagram, GPIO, and VBUS Discharge.  
Updated Table 2, Table 3, Table 8, and Table 46.  
Updated Figure 5 through Figure 9.  
*B  
5694572  
SOBI  
06/03/2017  
Updated Figure 13 (spec 002-10631 Rev. ** to *A) in Packaging.  
Updated compliance with USB spec in Sales, Solutions, and Legal Information.  
Updated template.  
Updated USB HS Mux and SBU Mux in Functional Overview.  
Updated Flash in CPU and Memory Subsystem.  
Updated Power System Overview.  
Updated description of BGA pin P2.4 to support SCB4 I2C data.  
Changed SID.PWR#1_A; VDDD from 3 V to 3.15 V for DFP application.  
Changed SID.AC.dpdm.3; Trise_HS from 630 ps max to 300 ps min.  
Changed SID.AC.dpdm.4, Tfall_HS from 630 ps max to 300 ps min.  
Updated SID.PWR#23 - changed VSYS to VSYS_UFP and changed range to 2.7 to  
5.5 V.  
Added SID.PWR#23_A for DFP/DRP application.  
Changed max value for SID.20VREG.8, VBUSLOADREG, from 0.2 to 0.3.  
Updated SID.ADC.2, SID.ADC.4 to ±1.5.  
*C  
5885413  
VGT  
09/27/2017 Updated SID.PWR#18 description to extend to SBU, DPDM mux pins.  
Updated SID.PWR#2 - changed VDDD_MAX to VSYS_MAX  
Removed min value from SID.PWR#14, VDDIO_MAX.  
Added min spec of -25mA for SID.PWR#19, Igpio_abs.  
Removed ADC.AC spec.  
.
Updated SID.DC.20vconn.11, OVP_hysteresis max.  
Added SID.DC.20vconn.14, OVP_threshold_on.  
Added SID.AC.dpdm.10, SID.AC.dpdm.11.  
Changed min value of SID.AC.dpdm.1, BW_3dB_HS from 1000 to 700.  
Changed max value of SID.DC.dpdm.12, SID.DC.dpdm.13 from 4 to 3.  
Changed max value of SID.DC.dpdm.2, RON_FS to 12.  
Corrected values for SID.AC.dpdm.8, SID.AC.dpdm.9.  
Added SID.AC.20sbu.6, SID.AC.20sbu.8, and SID.AC.20sbu.8.  
Document Number: 002-17682 Rev. *M  
Page 40 of 43  
EZ-PD™ CCG5  
Document Title: EZ-PD™ CCG5, USB Type-C Port Controller  
Document Number: 002-17682  
Updated SID.DC.20sbu.12, SID.DC.20sbu.15, SID.DC.20sbu.6,  
SID.DC.20sbu.7, SID.DC.20sbu.7A, SID.DC.20sbu.8, SID.DC.20sbu.9,  
SID.DC.20sbu.10, SID.DC.20sbu.11, SID.DC.20sbu.3, and SID.DC.20sbu.3.  
Changed SBU pins ESD voltage to 750 V.  
Added new Table 28, new Table 29, Table 43 through Table 45.  
Updated Figure 5, Figure 8, Figure 9.  
*C  
(contd.)  
5885413  
VGT  
09/27/2017  
Added Figure 7.  
Removed ADC AC specifications and CSA AC specifications (Table 28 and Table  
32 from previous revision).  
Removed Errata.  
Added "Thunderbolt hosts and devices" in Applications.  
Updated Figure 1 to correctly depict "2 x ADC" for entire CCG5.  
Updated description of VDDD pin in Table 2 and Table 3.  
Updated the description for pin P2.4 in Table 3.  
Added "CYPD5235-96BZXI" and "CYPD5236-96BZXI" part numbers to the  
description of Table 3 and Figure 6.  
Updated VBUS_P1_MAX and VBUS_P2_MAX values to 24 in Table 8.  
Updated min value of ESD_HBM_SBU spec from 750 to 1100 V in Table 8.  
Added "Applicable for all pins except SBU pins" in description of "ESD_HBM"  
parameter in Table 8.  
Updated description of VGPIO_OVT_ABS in Table 8.  
Updated description of ESD_IEC_CON and ESD_IEC_AIR parameters in  
Table 8.  
Changed SID.PWR#13 min value from 1.7 to VDDD in Table 9.  
Updated min value of SID.PWR#23 to 2.75 in Table 9.  
Updated pin description, values, and details/conditions of parameters  
SID.PWR#1 and SID.PWR#1_A to better define VDDD supply in Table 9.  
Replace VDDD with VSYS in supply name and conditions for IDD parameters listed  
in Table 9.  
*D  
5943992  
VGT  
10/24/2017  
Updated Conditions for SID.CLK#4 to “All VDDD” in Table 10.  
Removed SID.PWR#20 in Table 10.  
Added Guaranteed by Design for SID178 and SID180 in Table 20.  
Added description for SID.MEM#8 in Table 20.  
Added description for SID.CLK#13 and SID.CLK#13A in Table 24.  
Added Guaranteed by Design for SID.DC.cc_shvt.4 in Table 26.  
Deleted details and conditions for SID.DC.cc_shvt.14 in Table 26.  
Removed SID.DC.cc_SHVT.19 in Table 26.  
Updated spec values in Table 32.  
Added Guaranteed by Design for SID.AC.PGDO.2 in Table 34.  
Added Guaranteed by Design for SID.DC.20sbu.19 through SID.DC.20sbu.22  
and removed SID.AC.20sbu.3 in Table 35.  
Added Guaranteed by Design for SID.AC.20SBU.5 in Table 36.  
Updated max value for SID.AC.20SBU.8 in Table 36.  
Removed SID.DC.dpdm.3 and SID.DC.dpdm.4 and added Guaranteed by Design  
for SID.DC.dpdm.5 and SID.DC.dpdm.11 through SID.DC.dpdm.13 in Table 37.  
Updated SID.DC.dpdm.12 and SID.DC.dpdm.13 max value in Table 37.  
Removed SID.AC.dpdm.1, SID.AC.dpdm.2, SID.AC.dpdm.3, and  
SID.AC.dpdm.4 in Table 38.  
Document Number: 002-17682 Rev. *M  
Page 41 of 43  
EZ-PD™ CCG5  
Document Title: EZ-PD™ CCG5, USB Type-C Port Controller  
Document Number: 002-17682  
Added Guaranteed by Design for SID.AC.dpdm.6, SID.AC.dpdm.7,  
SID.AC.dpdm.8, SID.AC.dpdm.9, SID.AC.dpdm.10, and SID.AC.dpdm.13 in  
Table 38.  
*D (cont.) 5943992  
VGT  
10/24/2017 Added Guaranteed by Design for SID.DC.20VCONN.11 in Table 39.  
Removed SID.DC.20VCONN.13 in Table 39.  
Added Guaranteed by Design for SID.AC.20VCONN.2 in Table 40.  
Updated min value of VSYS to 2.75 throughout the document.  
Updated Figure 8.  
11/16/2017  
*E  
*F  
5968629  
6040630  
VGT  
HPV  
Added Figure 10 and Figure 11 and associated content.  
02/16/2018 Removed VBUS Regulator DC Specifications.  
Updated pin name and description of P2.4 pin in Table 3.  
Updated Power System Overview.  
Updated pin name of pin K5 in Figure 6.  
Updated application diagrams in Figure 8, Figure 10, and Figure 11.  
Added SID.PWR#5.  
*G  
6111610 VGT/AKK 03/27/2018  
Added MPN CYPD5135-40LQXIT in Table 42.  
Added MPNs CYPD5225-96BZXIT, CYPD5235-96BZXIT and  
CYPD5236-96BZXIT in Table 42.  
*H  
*I  
6206852  
6212870  
VGT  
HPV  
06/13/2018  
06/26/2018 Updated in Typ. value for IDD_DS1 in Table 9.  
Updated Figure 8, Figure 9, Figure 10, and Figure 11.  
Updated Table 9.  
Updated min value for SID.DC.20VCONN.9 in Table 39.  
*J  
6270910  
VGT  
09/06/2018  
Updated Ordering Code Definitions.  
Updated Electrical Specifications:  
Updated Device-Level Specifications:  
Updated I/O:  
Updated Table 11 (Added VOL_I2C_2, VOL_I2C_3, VOL1_20mA parameters and their  
*K  
6375937  
SUDH  
11/27/2018  
details).  
Added Note 10 and referred the same note in max value of VOL_I2C_3 parameter.  
Updated Ordering Information:  
Updated Table 42 (Updated part numbers).  
Updated Table 2 and Table 3: Updated VDDD Description (“VBUS powered - 3.15  
V to 3.6 V” as “VBUS powered - 3.15 V to 3.65 V”).  
02/19/2019 Updated Table 9: Updated VDDD Spec Limit to 3.65V.  
Updated USB HS Mux.  
*L  
6460196  
6503433  
SUDH  
SUDH  
Updated Copyright information.  
Updated CYPD5125-40LQXI as Not Recommended for New Designs (NRND).  
03/28/2019  
*M  
Updated References and Links To Applications Collaterals.  
Document Number: 002-17682 Rev. *M  
Page 42 of 43  
EZ-PD™ CCG5  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB  
Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify  
the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely  
responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any  
modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you  
had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT  
NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.  
© Cypress Semiconductor Corporation, 2016-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or  
firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress  
reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property  
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants  
you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce  
the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or  
indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by  
Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the  
Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the  
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"  
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other  
medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from  
and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress  
product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i)  
Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to  
use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-17682 Rev. *M  
Revised March 28, 2019  
Page 43 of 43  

相关型号:

CYPD5125-40LQXIT

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5225-96BZXI

Microprocessor Circuit, CMOS, PBGA96, BGA-96
CYPRESS

CYPD5225-96BZXI

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5225-96BZXIT

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5235-96BZXI

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5235-96BZXIT

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5236-96BZXI

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD5236-96BZXIT

EZ-PD™ CCG5 CCG5C Dual-Single-Port USB-C PD
INFINEON

CYPD6125-40LQXI

EZ-PD™ CCG6 One-Port USB-C & PD Controller
INFINEON

CYPD6125-40LQXIT

EZ-PD™ CCG6 One-Port USB-C & PD Controller
INFINEON

CYPD6137-40LQXIT

USB Bus Controller, CMOS, QFN-40
CYPRESS

CYPD7191-40LDXS

EZ-PD™ CCG7S CYPD7191-40LDXS is the tray packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON