CYPD6125-40LQXI [INFINEON]

EZ-PD™ CCG6 One-Port USB-C & PD Controller;
CYPD6125-40LQXI
型号: CYPD6125-40LQXI
厂家: Infineon    Infineon
描述:

EZ-PD™ CCG6 One-Port USB-C & PD Controller

光电二极管
文件: 总39页 (文件大小:784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
EZ-PD™ CCG6  
USB Type-C Port Controller  
General Description  
EZ-PD™ CCG6 is a one-port USB Type-C controller that complies with the latest USB Type-C and PD specifications. CCG6 provides  
a complete USB Type-C and USB-Power Delivery port control solution for PCs and notebooks. CCG6 includes a VBUS provider path  
load switch controller, True Random Number Generator for authentication, a 32-bit, 48-MHz Arm® Cortex®-M0 processor with 128-KB  
flash integrates a complete Type-C Transceiver including the Type-C termination resistors Rp, Rd, and dead battery Rd termination.  
CCG6 is available in a 40-pin QFN package.  
Gate Driver, tolerant to 24 V, to drive external VBUS PFET on  
the consumer path  
Applications  
PCs and Notebooks  
Configurable hardware-controlled VBUS overvoltage,  
undervoltage, overcurrent, short circuit, and reverse current  
protection  
Thunderbolt hosts, non-Thunderbolt hosts and devices/docks  
Features  
VBUS high-side current sense amplifier capable of measuring  
current across 5-mseries resistance  
USB-PD  
In response to Fast Role Swap request, turns off consumer  
PFET and turns on provider PFET  
Supports latest USB PD 3.0 specification  
Fast Role Swap (FRS)  
Extended Data Messaging  
LDO  
Integrated high-voltage LDO operational up to 21.5 V for dead  
battery mode operation  
Type-C  
Integrated current sources for DFP[1] role (Rp).  
Default current at 500 / 900 mA  
1.5 A  
3 A  
Integrated Rd resistor for UFP[2] role  
Integrated VCONN FETs to power EMCA cables  
Integrated dead battery termination  
32-bit MCU Subsystem  
48-MHz Arm Cortex-M0 CPU  
128-KB Flash  
12-KB SRAM  
Integrated Digital Blocks  
Two integrated timers and counters to meet response times  
required by the USB-PD protocol  
Four run-time serial communication blocks (SCBs) with  
Integrated high-voltage protection on CC and SBU pins to  
protectagainstaccidentalshortstotheVBUSpinontheType-C  
connector  
reconfigurable I2C, SPI, or UART functionality  
Authentication  
Legacy Charging (source and sink)  
True Random Number Generator  
BCv1.2  
Apple  
Clocks and Oscillators  
Integrated oscillator eliminating the need for an external clock  
Operating Range  
VSYS (2.75 V–5.5 V)  
VBUS (4 V–21.5 V)  
Mux  
Integrated USB2.0Analog Mux for USB 2.0 HS data and UART  
data  
Integrated SBU analog Mux for alternate modes (Display port  
and Thunderbolt)  
Hot-Swappable I/Os  
I2C pins from SCB1 are hot-swappable  
Integrated VBUS Load Switch Controller  
Packages  
Supports up to 20 V on VBUS Provider path  
6.0 mm 6.0 mm, 0.6 mm, 40-pin QFN  
Supports industrial temperature range (–40 °C to +85 °C)  
Slew rate controlled Gate Driver, tolerant to 24 V, to drive  
external VBUS PFET on the provider path  
Notes  
1. DFP refers to power source.  
2. UFP refers to power sink.  
Cypress Semiconductor Corporation  
Document Number: 002-23191 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 26, 2021  
EZ-PD™ CCG6  
Logic Block Diagram  
CCG6: Single--Chip Type- C Controller  
MCU Subsystem  
I/O Subsystem  
CC  
Integrated Digital Blocks  
2x TCPWM  
ARM  
CORTEX-M0  
48 MHz  
4x SCB  
(I2 C, SPI, UART)  
VCONN  
17 GPIO  
Pins  
Authentication  
Flash  
(128KB)  
True Random Number  
Generator (TRNG)  
SRAM  
(12KB)  
USB PD Subsystem  
Baseband MAC  
2x VCONN FETs  
VCONN OCP  
Protection  
System  
Resources  
Baseband PHY  
HV Protection  
on CC & SBU  
Hi-Voltage LDO  
(21.5V)  
SBU Analog  
Mux Switch  
Gate Driver  
Consumer PFET  
8-bit SAR ADC  
USB Analog  
HS Mux Switch  
Load Switch Controller for Provider path  
(UVP/OVP/SCP/RCP/OCP)  
USB Charger  
Detect Source and  
Sink  
Document Number: 002-23191 Rev. *G  
Page 2 of 38  
EZ-PD™ CCG6  
CCG6 Functional Diagram  
PFET Load Switch  
CONSUMER PATH  
TO  
BATTERY  
PFET Load Switch  
5 mΩ  
VBUS  
FROM  
BATTERY  
PROVIDER PATH  
VSYS  
(2.75V-5.5V)  
CSN  
VBUS_C_CTRL  
VBUS (4V-21.5V)  
Discharge  
CSP  
VBUS_P_CTRL  
VDDIO  
(1.8V – 5.5V)  
Load Switch Controller includes  
1. OC, RC, SC, OV and UV Protection  
2. Slew-Rate controlled gate driver  
3. Fast Role Swap  
LDO  
Dynamic  
Gate  
Driver  
VDDD  
(2.75V-5.5V)  
VCCD (1.8V)  
VCONN  
SWITCH  
LDO  
V5V (5V)  
CC1  
CC2  
LSRX/GPIO14  
LSTX/GPIO15  
AUX_P  
BMC  
PHY  
Reset  
XRES  
SCB (4x),  
AMUX &  
GPIO  
ADC  
GPIO1-13  
SBU1  
SBU2  
AUX_N  
MCU Subsystem  
Cortex-M0  
UART_RX/GPIO16  
Flash (128KB)  
SRAM (12 KB)  
2x TCPWM  
UART_TX/GPIO17  
DP_SYS  
DP1  
DP2  
DM1  
DM_SYS  
DM2  
Charger Detect  
VSS  
Document Number: 002-23191 Rev. *G  
Page 3 of 38  
EZ-PD™ CCG6  
Contents  
Functional Overview ........................................................5  
USB-PD Subsystem (SS) ............................................5  
True Random Number Generator ...............................8  
CPU and Memory Subsystem .....................................8  
Power System Overview ..................................................9  
Peripherals ................................................................10  
Timer/Counter/PWM Block (TCPWM) .......................10  
GPIO .........................................................................10  
Pinouts ............................................................................11  
Application Diagrams .....................................................15  
Electrical Specifications ................................................16  
Absolute Maximum Ratings .......................................16  
Device-Level Specifications ......................................17  
Digital Peripherals .....................................................20  
System Resources ....................................................22  
Ordering Information ......................................................32  
Ordering Code Definitions .........................................32  
Packaging ........................................................................33  
Acronyms ........................................................................34  
Document Conventions .................................................35  
Units of Measure .......................................................35  
References and Links to Applications Collateral .......36  
Document History Page .................................................37  
Sales, Solutions, and Legal Information ......................38  
Worldwide Sales and Design Support .......................38  
Products ....................................................................38  
PSoC® Solutions ......................................................38  
Cypress Developer Community .................................38  
Technical Support .....................................................38  
Document Number: 002-23191 Rev. *G  
Page 4 of 38  
EZ-PD™ CCG6  
The Rd resistor is used to identify CCG6 as a Sink in a DRP  
application. The dead battery Rd resistor on CC pins is required  
when the part is not powered for dead battery termination  
detection and charging.  
Functional Overview  
USB-PD Subsystem (SS)  
USB-PD Physical Layer  
To support the latest USB-PD 3.0 specification, CCG6 includes  
Fast Role Swap (FRS). The FRS feature enables externally  
powered docks and hubs to rapidly switch to bus power when  
their external power supply is removed. CCG6 also supports  
FRS detection in DeepSleep mode.  
The CCG6 USB-PD subsystem, as shown in Figure 1, consists  
of the USB-PD physical layer (PHY) block and supporting  
circuits. The PHY consists of a transmitter and receiver that  
communicates using BMC and 4b/5b encoded/decoded data  
over the CC channel based on the PD 3.0 specification. All  
communication is half-duplex. The PHY practices collision  
avoidance to minimize communication errors on the channel.  
For more details about FRS, refer to Section 6.3.17 in the  
USB-PD 3.0 specification.  
CCG6 is designed to be fully interoperable with revision 3.0 of  
the USB Power Delivery specification as well as revision 2.0 of  
the USB Power Delivery specification.  
In addition, the CCG6 USB-PD block includes all termination  
resistors (Rp and Rd) and their switches as required by the USB  
Type-C specification. Rp and Rd resistors are required for  
connection detection, plug orientation detection, and for  
establishing the USB source/sink roles.  
CCG6 supports Extended Messages containing data of up to  
260 bytes. The Extended Messages will be larger than expected  
by the USB-PD 2.0 hardware. To accommodate Revision 2.0  
based systems, a Chunking mechanism is implemented such  
that messages are limited to Revision 2.0 sizes unless it is  
discovered that both systems support longer message lengths.  
The integrated Rp resistor enables CCG6 to be configured as a  
Source. The Rp resistor is implemented as a current source and  
can be programmed to support the complete range of current  
capacity on the VBUS defined in the USB Type-C Spec.  
Figure 1. USB-PD Subsystem  
To/From System Resources  
vref  
iref  
To/ from AHB  
From AMUX  
8-bit ADC  
VCONN FET Enable  
TxRx Enable  
V5V  
VCONN  
FETs  
Digital Baseband PHY  
Tx_data  
Enable Logic  
from AHB  
Tx  
SRAM  
4b5b  
Encoder  
BMC  
Encoder  
SOP  
Insert  
Rp  
TX  
CC1  
RD1  
CC2  
CRC  
Rx_data  
to AHB  
RX  
Rx  
4b5b  
SOP  
BMC  
SRAM  
Decoder  
Detect  
Decoder  
Ref  
DB  
Rd  
Comp  
RD2  
Active  
Rd  
CC control  
CC detect  
Analog Baseband PHY  
Deep Sleep Reference Enable  
Functional, Wakeup Interrupts  
Deep Sleep Vref &  
Iref Gen  
RD1 is shorted to CC1 and RD2 is shorted to CC2 for DRP applications using  
bondwire. For source applications, RD1 and RD2 are not shorted to CC1 and  
CC2. Dead Battery (DB) RD termination is removed after MCU boots up  
vref, iref  
Document Number: 002-23191 Rev. *G  
Page 5 of 38  
EZ-PD™ CCG6  
VCONN FET  
input of the comparator is from a 4-input multiplexer. The four  
inputs of the multiplexer are a pair of global analog multiplex  
busses, an internal bandgap voltage, and an internal voltage  
proportional to the absolute temperature. All GPIOs on the chip  
have access to the ADC through the chip-wide analog mux bus.  
The CC1 and CC2 pins are not available to connect to the mux  
bus.  
CCG6 has a power supply input, V5V, for providing power to  
EMCA cables through integrated VCONN FETs. There are two  
VCONN FETs to power either CC1 or CC2 pins. These FETs can  
provide 1.5-W power over VCONN on the CC1 and CC2 pins for  
the active EMCA cables. CCG6 also includes overcurrent  
protection (OCP) on VCONN.  
SBU Mux  
ADC  
CCG6 integrates SBU 4x2 Mux that enables selection between  
the Display Port or Thunderbolt alternate mode and Type-C  
orientation as shown in Figure 2. Type-C facing SBU pins are  
protected from accidental short to high-voltage VBUS.  
The USB-PD subsystem contains one 8-bit successive  
approximation register analog-to-digital converter (SAR ADC).  
The ADC includes an 8-bit DAC and a comparator. The DAC  
output forms the positive input of the comparator. The negative  
Figure 2. CCG6 SBU Crossbar Switch Block Diagram  
Flip  
orientation  
DP or TBT  
LSTx  
LSRx  
SBU_1  
SBU_2  
24V  
Protection  
DP_AUX_P  
DP_AUX_N  
SBU Cross Bar Switch Internal Block Diagram  
USB 2.0 Mux  
To meet the HS eye diagram requirements with sufficient margin,  
follow these guidelines:  
The HS mux contains a 2 2 cross bar switch to route the system  
DPLUS and DMINUS lines to the Type-C top or bottom port  
based on the CC (Type-C plug) orientation. The unused DPLUS  
and DMINUS top or bottom lines can be connected to a UART  
(Debug) port. The maximum operating frequency of UART must  
be 1 Mbps.  
It is recommended to keep the total USB HS signal trace  
lengths (USB 2.0 host to CCG6 + CCG6 to Type-C connector  
pins) to 4 inches.  
Total USB HS signal trace lengths can be increased up to 8  
inches by adjusting the drive strength on the USB 2.0 host.  
The USB 2.0 mux also contains charger detection/emulation for  
detecting USB BC1.2 and Apple terminations. The charger  
detection block is connected to the DPLUS and DMINUS from  
the system as shown in Figure 3.  
The differential impedance across the DPLUS/DMINUS signal  
traces shall be 90 Ω.  
Trace width shall be 6 mils.  
Air Gap (distance between lines) shall be 8 mils.  
Figure 3. CCG6 DPLUS/DMINUS Switch Block Diagram  
Charger  
Detect  
2
2
2
2
2
DPLUS_SYS / DMINUS_SYS  
DPLUS_TOP / DMINUS_TOP  
DPLUS_BOT / DMINUS_BOT  
2
UART_TX / UART_RX  
VBUS Discharge  
VBUS Regulator  
CCG6 also has integrated VBUS discharge circuit. It is used to  
discharge VBUS to meet the USB-PD specification timing on a  
detach condition and negative voltage transition.  
CCG6 can operate from two power supplies – VSYS and VBUS.  
CCG6 integrates the regulator (that supports up to 21.5 V) to  
derive operating supply voltage. The VSYS always takes priority  
over VBUS. In the absence of VSYS, the regulator powers CCG6  
from VBUS.  
Document Number: 002-23191 Rev. *G  
Page 6 of 38  
EZ-PD™ CCG6  
Gate Driver for VBUS PFET on Consumer Path  
VBUS Load Switch Controller for Provider Path  
CCG6 has an integrated PFET gate driver to drive external  
PFETs on the VBUS consumer path. The gate driver can drive  
only low or high-Z, thus requiring an external pull-up. This pin is  
VBUS voltage-tolerant.  
The load switch controller supports up to 20 V on the VBUS  
Provider Path.  
RCP  
CCG6 integrates the Reverse Current Protection (RCP) circuitry  
that has the capability of sensing reverse current that lasts for  
more than 10 µs and protects the system by shutting down the  
Gate automatically upon detection of such events.  
Charger Detect  
CCG6 integrates battery charger emulation and detection for  
USB BC.1.2 and Apple charge.  
CCG6 provides RCP circuitry that can detect reverse current  
flow from connector VBUS_C to provider VBUS_P.  
High-Voltage Tolerant SBU and CC Lines  
The chip supports high-voltage tolerant SBU and CC lines. In the  
case of SBU/CC short to VBUS through connectors, these lines  
will be protected internally.  
The RCP event is recognized whenever VBUS_C > VBUS_P  
while provider FET is ON, causing current to flow from connector  
VBUS to provider VBUS. After recognizing the RCP event, the  
provider FET is shut down thus isolating the provider and  
connector VBUS.  
CCG6 has three distinct mechanisms to detect the reverse  
current as shown in Figure 4.  
Figure 4. RCP Mechanism  
V
comp_rcp  
V
csa_rcp  
VBUS_P  
VBUS to Type -C  
Connector  
Provider side  
Regulator  
VBUS_C  
VBUS_P_CTRL  
CSP  
CSN  
VBUS  
RCP2  
RCP1  
RCP detect  
comparator  
(DC.RCP.45)  
RCP detect  
(DC.RCP.44)  
RCP3  
Vref  
Vbux _max_det  
(DC.RCP.46)  
CCG6  
Mechanism 1: A comparator senses the voltage drop across  
external Rsense through pins CSP and CSN. This comparator  
signals an RCP event whenever CSN > CSP by the Vcsa_rcp  
voltage given in Table 36. The output of this comparator RCP1  
is shown in Figure 4.  
When any one of the three comparator outputs show an RCP  
event, then the provider FET is turned OFF. The firmware has an  
option to enable or disable the individual mechanism depending  
on the application.  
CSA  
Mechanism 2: A comparator senses the voltage drop across  
provider FET through CSN and VBUS pin of CCG6. This  
comparator signals an RCP event whenever VBUS > CSN by  
the Vcomp_rcp voltage given in Table 36. The output of this  
comparator RCP2 is shown in Figure 4.  
The CCG6 chip has an integrated high-side current sense  
amplifier that is capable of detecting current in the order of  
100 mA across a 5-mΩ external resistor in the provider path.  
This is used to monitor the current load and detect system faults  
such as OCP and SCP while sourcing VBUS to the Sink on the  
Type C port so that the PD controller can shut down the Provider  
FET to protect devices.  
Mechanism 3: A comparator senses the 20% voltage of the  
CSN pin and compares it against Vref = 1.15 V for 5-V provider  
VBUS application. This comparator signals an RCP event  
whenever CSN voltage goes above Vbus_max_det voltage  
given in Table 36 for a 5-V application. The output of this  
comparator RCP3 is shown in Figure 4. Note that Vref Is  
programmable and the voltage divider has an option to use  
10% or 20% value. For a higher voltage of the provider, the  
VBUS device automatically adjusts this threshold.  
Slew-Rate Controllable Gate Driver  
CCG6 has a programmable slew-rate controllable Gate Driver,  
which can help in limiting the in-rush currents during connect  
events.  
Document Number: 002-23191 Rev. *G  
Page 7 of 38  
EZ-PD™ CCG6  
Overvoltage and Undervoltage Protection on VBUS  
CPU and Memory Subsystem  
CCG6 implements an undervoltage/overvoltage (UVOV)  
detection circuit for the VBUS supply. The threshold for OV and  
UV detection can be set independently. Both UV and OV  
detectors have programmable thresholds and are controlled by  
the firmware. The inputs to the OV comparator are a division (8%  
or 10%) of VBUS supply voltage and a reference voltage. The  
reference voltage is configurable in the range (200 mV to  
2190 mV) in steps of 10 mV.  
CPU  
The Cortex-M0 CPU in EZ-PD CCG6 is part of the 32-bit MCU  
subsystem, which is optimized for low-power operation with  
extensive clock gating.  
The CPU also includes a serial wire debug (SWD) interface,  
which is a 2-wire form of JTAG. The debug configuration used for  
EZ-PD CCG6 has four break-point (address) comparators and  
two watchpoint (data) comparators.  
The inputs to the UV comparator are a division (10% or 20%) of  
VBUS supply voltage and a reference voltage. The reference  
voltage is configurable in the range (200 mV to 2190 mV) in  
steps of 10 mV.  
Flash  
The EZ-PD CCG6 device has a 128-KB flash module with a flash  
accelerator, tightly coupled to the CPU to improve average  
access times from the flash block. The flash block is designed to  
deliver two wait-states (WS) access time at 48 MHz. The flash  
accelerator delivers 85% of single-cycle SRAM access  
performance on average. Part of the flash module can be used  
to emulate EEPROM operation if required.  
Overcurrent Protection on VBUS  
CCG6 integrates a high-side current sense amplifier to detect  
overcurrent on the VBUS. Overcurrent protection is sensed  
using an external 5-msense resistor connected between the  
“CSP” and “CSN” pins. The OCP detector threshold is program-  
mable and controlled by the firmware.  
SROM  
Asupervisory ROM that contains boot and configuration routines  
is provided.  
True Random Number Generator  
In notebook designs, CCG6’s TRNG block is used to authen-  
ticate connected devices such as Power Adapter or Dock that  
include support for USB Type-C Authentication Specification  
(USBTCAS). CCG6, within the notebook application, will  
implement the initiator-role as defined in USBTCAS while the  
connected device implements the responder-role. USBTCAS  
provides a means for authenticating Type-C devices with regard  
to identification and configuration.  
SRAM  
CCG6 supports 12-KB SRAM.  
Document Number: 002-23191 Rev. *G  
Page 8 of 38  
EZ-PD™ CCG6  
Power System Overview  
Table 1. CCG6 Power Modes  
Mode  
Figure 5 provides an overview of the EZ-PD CCG6 power  
system. CCG6 can operate from two possible external supply  
sources: VBUS (4 V to 21.5 V) or VSYS (2.75 V to 5.5 V). The  
VBUS supply is regulated inside the chip with a LDO. The  
switched supply, VDDD, is used directly inside some analog  
blocks and further regulated down to VCCD, which powers  
majority of the core. CCG6 has two different power modes:  
Active and Deep Sleep. Transitions between these power modes  
are managed by the power system. A separate power domain,  
VDDIO, is provided for the GPIOs. The VDDD and VCCD pins,  
both outputs of regulators, are brought out for connecting a 1-µF  
and 0.1-µF capacitor respectively for the regulator stability only.  
The VCCD pin is not supported as a power supply. VDDD can  
source 2 mA (max) for external load. In CCG6, VDDD shall be  
shorted to VDDIO on PCB.  
Description  
RESET  
Power is valid and XRES is not asserted. An  
internal reset source is asserted or Sleep  
Controller is sequencing the system out of reset.  
ACTIVE  
Power is valid and CPU is executing instructions.  
DEEP SLEEP Main regulator and most blocks are shut off.  
DeepSleep regulator powers logic, but only the  
low-frequency clock is available.  
Figure 5. EZ-PD CCG6 Power System  
LDO  
VDDD  
VBUS  
VSYS  
CC1  
CC2  
V5V  
Core Regulator  
(SRSS-Lite)  
VDDIO  
VCCD  
VSS  
CC  
Tx/Rx  
GPIOs  
Core  
Document Number: 002-23191 Rev. *G  
Page 9 of 38  
EZ-PD™ CCG6  
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP  
(essentially adds a start pulse used to synchronize SPI Codecs),  
and National Microwire (half-duplex form of SPI). The SPI block  
can use the FIFO.  
Peripherals  
CCG6 has four SCBs, which can each implement an I2C, UART,  
or SPI interface.  
I2C Mode: The hardware I2C block implements  
a full  
Timer/Counter/PWM Block (TCPWM)  
multi-master and slave interface (it is capable of multimaster  
arbitration). This block is capable of operating at speeds of up to  
1 Mbps (Fast Mode Plus) and has flexible buffering options to  
reduce interrupt overhead and latency for the CPU. The FIFO  
mode is available in all channels and is very useful in the  
absence of DMA.  
The I2C peripheral is compatible with the I2C Standard-mode,  
Fast-mode, and Fast-Mode Plus devices as defined in the NXP  
I2C bus specification and user manual (UM10204). The I2C bus  
I/O is implemented with GPIO in open-drain modes. The I2C bus  
uses open-drain drivers for clock and data with pull-up resistors  
on the bus for clock and data connected to all nodes. The  
required Rise and Fall times for different I2C speeds are  
guaranteed by using appropriate pull-up resistor values  
depending on VDDD, Bus Capacitance, and resistor tolerance.  
CCG6 has two TCPWM blocks. Each TCPWM block consists of  
four 16-bit counters with user-programmable period length.  
There is a Capture register to record the count value at the time  
of an event (which may be an I/O event), a period register which  
is used to either stop or auto-reload the counter when its count  
is equal to the period register, and compare registers to generate  
compare value signals which are used as PWM duty cycle  
outputs. The block also provides true and complementary  
outputs with programmable offset between them to allow use as  
deadband programmable complementary PWM outputs. It also  
has a Kill input to force outputs to a predetermined state; for  
example, this is used in motor drive systems when an  
overcurrent state is indicated and the PWMs driving the FETs  
need to be shut off immediately with no time for software  
intervention.  
For detailed information on how to calculate the optimum pull-up  
resistor value for your design, refer to the UM10204 I2C bus  
specification and user manual (the latest revision is available at  
www.nxp.com).  
CCG6 is not completely compliant with the I2C spec for the  
following:  
GPIO  
CCG6 has 17 GPIOs that includes the SCB and SWD pins,  
which can also be used as GPIOs. The I2C pins from only SCB  
1 are overvoltage-tolerant. The GPIO block implements the  
following:  
Only SCB1 is overvoltage-tolerant. SCB2, SCB3, and SCB4  
GPIO cells are not overvoltage-tolerant and, therefore, cannot  
be hot-swapped or powered up independently of the rest of the  
I2C system.  
Seven drive strength modes:  
Input only  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
Fast-mode Plus has an IOL specification of 20 mA at a VOL of  
0.4 V. The GPIO cells can sink a maximum of 8-mA IOL with a  
VOL maximum of 0.6 V.  
Fast-mode and Fast-mode Plus specify minimum Fall times,  
which are not met with the GPIO cell; Slow strong mode can  
help meet this spec depending on the Bus Load.  
Input threshold select (CMOS or LVTTL)  
Individual control of input and output buffer enabling/disabling  
in addition to the drive strength modes  
One of the SCB (typically SCB1) blocks is used to implement the  
Host Processor Interface (HPI) slave, which allows an external  
MCU to control the firmware operation.  
Hold mode for latching previous state (used for retaining I/O  
state in Deep Sleep mode)  
The HPI I2C Slave address is configurable using the  
I2C_CFG_EC pin as shown in the following table.  
Table 2. I2C Slave Address Configuration  
Selectable slew rates for dV/dt related noise control to improve  
EMI  
The pins are organized in logical entities called ports, which are  
8-bit in width. During power-on and reset, the blocks are forced  
to the disable state so as not to crowbar any inputs and/or cause  
excess turn-on current. A multiplexing network known as a  
high-speed I/O matrix is used to multiplex between various  
signals that may connect to an I/O pin. Pin locations for  
fixed-function peripherals are also fixed to reduce internal  
multiplexing complexity.  
I2C_CFG_EC Configuration  
Floating  
I2C Slave  
0x08  
Pulled up with 1 k  
Pulled down with 1 k  
0x42  
0x40  
UART Mode: This is a full-feature UART operating at up to  
1 Mbps. It supports automotive single-wire interface (LIN),  
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all  
of which are minor variants of the basic UART protocol. In  
addition, it supports the 9-bit multiprocessor mode that allows  
addressing of peripherals connected over common RX and TX  
lines. Common UART functions such as parity error, break  
detect, and frame error are supported. An 8-deep FIFO allows  
much greater CPU service latencies to be tolerated.  
Data output and pin state registers store, respectively, the values  
to be driven on the pins and the states of the pins themselves.  
Every I/O pin can generate an interrupt if so enabled and each  
I/O port has an interrupt request (IRQ) and interrupt service  
routine (ISR) vector associated with it (6 for CCG6 since it has  
6 ports).  
Document Number: 002-23191 Rev. *G  
Page 10 of 38  
EZ-PD™ CCG6  
Pinouts  
Table 3. Pinout for CYPD6125-40LQXIT and CYPD6137-40LQXIT  
Group Name  
Pin Name  
Port  
Pin  
Description  
USB Type-C  
CC1  
Analog  
9
Connect to Type-C CC1 pin. Filter noise with 390-pF cap  
to GND.  
CC2  
Analog  
7
Connect to Type-C CC2 pin. Filter noise with 390-pF cap  
to GND.  
Mux  
DPLUS_SYS  
DMINUS_SYS  
UART_TX/GPIO  
Analog  
Analog  
P4.0  
23  
24  
29  
Connect to USB 2.0 DP from Host side.  
Connect to USB 2.0 DM from Host side.  
Connect to Debug port UART_TX (optional) from host  
side or can be used as GPIO. If unused, leave floating.  
UART_RX/GPIO  
DPLUS_BOT  
DMINUS_BOT  
DMINUS_TOP  
DPLUS_TOP  
P4.1  
30  
26  
25  
27  
28  
Connect to Debug port UART_RX (optional) from host  
side or can be used as GPIO. If unused, leave floating.  
Analog  
Analog  
Analog  
Analog  
Connect to Type-C DP1 pin. Keep trace length less than  
2".  
Connect to Type-C DM1 pin. Keep trace length less than  
2".  
Connect to Type-C DM2 pin. Keep trace length less than  
2".  
Connect to Type-C DP2 pin. Keep trace length less than  
2".  
SBU2  
SBU1  
Analog  
Analog  
Analog  
34  
35  
36  
Connect to Type-C SBU2 pin.  
Connect to Type-C SBU1 pin.  
AUX_P  
Connect to Auxiliary signal P from Display Port  
Controller. If not used, leave floating.  
AUX_N  
Analog  
P0.0  
37  
38  
Connect to Auxiliary signal N from Display Port  
Controller. If not used, leave floating.  
LSTX/GPIO  
Connect to UART_TX (LSTX) signal from Thunderbolt  
Port Controller or can be used as GPIO. If not used,  
leave floating  
LSRX/GPIO  
P0.1  
39  
11  
Connect to UART_RX (LSRX) signal from Thunderbolt  
Port Controller or can be used as GPIO. If not used,  
leave floating  
VBUS Control  
VBUS OCP  
VBUS_P_CTRL  
Analog  
Slew Rate controlled I/O for enabling/disabling Provider  
side PFET  
0: Path ON  
High Z: Path OFF  
VBUS_C_CTRL  
Analog  
12  
Pin for enabling/disabling Consumer side PFET  
0: Path ON  
High Z: Path OFF  
CSP  
CSN  
Analog  
Analog  
1
Current Sense Positive Input  
Current Sense Negative Input  
40  
Document Number: 002-23191 Rev. *G  
Page 11 of 38  
EZ-PD™ CCG6  
Table 3. Pinout for CYPD6125-40LQXIT and CYPD6137-40LQXIT (continued)  
Group Name  
Pin Name  
Port  
P1.4  
P1.0  
Pin  
6
Description  
GPIOs and  
Serial  
Interfaces  
SWD_IO/TBT_RST/GPIO  
SWD_CLK/I2C_CFG_EC/ GPIO  
SWD I/O/GPIO  
2
SWD Clock/ I2C config line.  
I2C config line is used to select the I2C address of HPI  
interface. The state of line decides the 7 bit I2C address  
for HPI.  
I2C Config Line Floating: 0x08  
Pulled up with 1 K: 0x42  
Pulled down with 1 K: 0x40  
I2C_SDA_SCB2_TBT/GPIO  
I2C_SCL_SCB2_TBT/GPIO  
I2C_INT_TBT/GPIO  
P1.1  
P1.2  
P1.3  
P2.1  
3
4
SCB2 I2C Data/GPIO  
SCB2 I2C Clock/GPIO  
5
TBT interrupt for port 1/GPIO  
VBUS overvoltage output indicator/SCB4 I2C Data  
VBUS undervoltage or OCP Output Indicator/SCB4 I2C  
Clock/GPIO  
OVP_TRIP/I2C_SDA_SCB4/GPIO  
14  
13  
UV_OCP_TRIP/I2C_SCL_SCB4/GPIO P2.0  
I2C_SDA_SCB1_EC/GPIO  
I2C_SCL_SCB1_EC/GPIO  
I2C_INT_EC/GPIO  
P5.0  
P5.1  
P2.2  
P3.0  
P3.1  
16  
17  
15  
18  
20  
SCB1 I2C Data/GPIO  
SCB1 I2C Clock/GPIO  
Embedded Controller interrupt/GPIO  
HPD/GPIO  
Hot Plug Detect I/O/GPIO  
SCB3 I2C Data or GPIO or voltage selection control for  
VBUS  
I2C_SDA_SCB3 / GPIO / VSEL_2  
I2C_SCL_SCB3 / GPIO /VSEL_1  
P3.2  
21  
SCB3 I2C Clock or GPIO or voltage selection control for  
VBUS  
Reset  
Power  
XRES  
VBUS  
Analog  
Power  
10  
22  
Reset input (Active LOW)  
Supply input (4 V–21.5 V) for VBUS to 3.3-V Regulator.  
This pin also discharges VBUS using internal pull-down  
and also has monitors for overvoltage and undervoltage  
conditions.  
VSYS  
VDDD  
Power  
Power  
19  
31  
Supply input (2.75 V–5.5 V) for PD subsystem and  
System resources.  
Output of VBUS to 3.3-V regulator or connected to  
VSYS using switch. Bypass with cap to gnd. This pin can  
drive 2-mA external load.  
VDDIO  
VCCD  
V5V  
Power  
Power  
Power  
32  
33  
8
This pin can be shorted to VDDD or an independent  
supply can be given.  
1.8-V regulator output for filter capacitor. This pin cannot  
drive external load.  
4.85-V to 5.5-V supply input to power EMCA cables.  
Connected to CC1 or CC2 using low impedance  
switches.  
Ground  
VSS  
Ground EPAD Ground  
Document Number: 002-23191 Rev. *G  
Page 12 of 38  
EZ-PD™ CCG6  
Figure 6. 40-Pin QFN Pin Map (Top View) for CYPD6125-40LQXIT and CYPD6137-40LQXIT  
1
2
3
CSP  
I2C_CFG_EC  
UART_RX  
30  
29  
28  
27  
SWD_CLK/  
_
UART TX  
_
I2C_SDA_SCB2 TBT  
_
DPLUS TOP  
_
_
4
_
I2C SCL SCB2 TBT  
_
DMINUS TOP  
_
_
I2C INT  
TBT  
5
6
_
DPLUS BOT  
26  
SWD_IO/TBT_RST  
EPAD  
_
DMINUS BOT  
25  
24  
23  
7
8
9
CC2  
V5V  
_
DMINUS SYS  
_
DPLUS SYS  
CC1  
XRES  
VBUS  
22  
10  
_
21 I2C_SCL_SCB3  
1
/VSEL  
Document Number: 002-23191 Rev. *G  
Page 13 of 38  
EZ-PD™ CCG6  
Table 4 through Table 7 provide the various configuration options for the serial interfaces.  
Table 4. Serial Communication Block (SCB1) Configuration  
QFN Pin  
UART  
SPI  
I2C  
GPIO Functionality  
16  
17  
18  
15  
UART_RTS_SCB1  
UART_TX_SCB1  
UART_RX_SCB1  
UART_CTS_SCB1  
SPI_MOSI_SCB1  
SPI_MISO_SCB1  
SPI_CLK_SCB1  
SPI_SEL_SCB1  
I2C_SDA_SCB1  
GPIO  
I2C_SCL_SCB1  
GPIO  
HPD/GPIO  
I2C_INT_EC/GPIO  
Table 5. Serial Communication Block (SCB2) Configuration  
QFN Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
2
3
4
5
UART_RX_SCB2  
UART_TX_SCB2  
UART_CTS_SCB2  
UART_RTS_SCB2  
SPI_SEL_SCB2  
SPI_MOSI_SCB2  
SPI_MISO_SCB2  
SPI_CLK_SCB2  
SWD_CLK/I2C_CFG_EC/GPIO  
I2C_SDA_SCB2_TBT/GPIO  
I2C_SCL_SCB2_TBT/GPIO  
I2C_INT_TBT/GPIO  
I2C_SDA_SCB2  
I2C_SCL_SCB2  
Table 6. Serial Communication Block (SCB3) Configuration  
QFN Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
20  
21  
29  
30  
UART_CTS_SCB3  
UART_RTS_SCB3  
UART_TX_SCB3  
UART_RX_SCB3  
SPI_SEL_SCB3  
SPI_MOSI_SCB3  
SPI_MISO_SCB3  
SPI_CLK_SCB3  
I2C_SDA_SCB3 VSEL_2/GPIO  
I2C_SCL_SCB3 VSEL_1/GPIO  
UART_TX/GPIO  
UART_RX/GPIO  
Table 7. Serial Communication Block (SCB4) Configuration  
QFN Pin  
UART  
SPI Master  
I2C Slave  
GPIO Functionality  
13  
14  
38  
39  
UART_CTS_SCB4  
UART_RTS_SCB4  
UART_TX_SCB4  
UART_RX_SCB4  
SPI_SEL_SCB4  
SPI_MOSI_SCB4  
SPI_MISO_SCB4  
SPI_CLK_SCB4  
I2C_SCL_SCB4 GPIO  
I2C_SDA_SCB4 GPIO  
LSTX/GPIO  
LSRX/GPIO  
Document Number: 002-23191 Rev. *G  
Page 14 of 38  
EZ-PD™ CCG6  
Application Diagrams  
Figure 7 illustrates a Type-C port Thunderbolt Notebook DRP application diagram using CCG6. The Type-C port can be used as a  
power provider or a power consumer.  
The CCG6 device communicates with the embedded controller (EC), which manages the Battery Charger Controller (BCC) to control  
the charging and discharging of the internal battery. It also updates the Thunderbolt Controller via I2C to route the HighSpeed signals  
coming from the Type-C port to the USB host (during normal mode) or the Graphics processor unit (during Display port Alternate  
mode) or the Thunderbolt Host (during Thunderbolt Alternate mode) based on the alternate mode negotiation.  
The CCG6 device controls the transfer of USB 2.0 DPLUS and DMINUS lines from the top and bottom of the Type-C receptacle to  
the DPLUS and DMINUS lines of the USB Host controller. CCG6 also handles the routing of SBU1 and SBU2 lines from the Type-C  
receptacle to the Thunderbolt controller for the Link management. CCG6 offers VBUS Short protection on SBU and CC lines.  
The CCG6 device has integrated VCONN FETs for applications that need to provide power for accessories and cables using the  
VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS.  
The 5-mresistor between the 5-V supply and provider FETs is used for overcurrent detection on the VBUS. The VBUS_P_CTRL  
pin of CCG6 has an in-built VBUS monitoring circuit that can detect OVP and UVP on VBUS.  
Figure 7 illustrates a Single Port Thunderbolt Notebook DRP application diagram using CYPD6125-40LQXIT.  
Figure 7. CCG6 in a Single Port Notebook Application using CYPD6125-40LQXIT  
VBUS_OUT  
5 V  
8
7
8
7
6
5
0.005  
Provider Path  
CxNote [3]  
3
2
1
3
2
1
6
5
10 µF  
50 V  
Power  
Subsystem  
49.9K   
1%  
4
4
Consumer Path  
8
7
8
7
3
2
1
3
2
1
Note:  
6
5
6
5
40  
CSN  
1
1µF  
35V  
CCG6 device s I2C address is determined by SWD_CLK pin.  
1K resistors not populated = I2C address 0x08 (default)  
1K resistor connected to GND = I2C address 0x40  
1K resistor connected to VDDD = I2C address 0x42  
VDDD  
1 K  
11  
CSP  
VBUS_P_CTRL  
VBUS_C_CTRL  
49.9K  
1%  
4
4
2
SWD_CLK/I2C_CFG_EC/P1.0  
1 K  
12  
VDDD  
31  
VDDD  
VBUS  
1µF  
10 µF  
50 V  
0.1 µF  
32  
19  
VDDIO  
3.3 V  
VSYS  
VCCD  
1 µF  
29  
30  
0.1 µF  
UART_TX/P4.0  
UART_RX/P4.1  
X
X
33  
0.1 µF  
34  
35  
28  
B8  
A8  
5 V (from System)  
VBUS_OUT  
SBU2  
SBU1  
D+  
SBU2  
SBU1  
8
VCONN_V5V  
VBUS  
A6  
A7  
B6  
B7  
VDDD  
4.7 K  
0.1µF  
DPLUS_TOP  
22  
10  
27  
DMINUS_TOP  
DPLUS_BOT  
3.3 V  
D-  
CCG6  
(CYPD6125-40LQXIT)  
40-QFN  
26  
25  
XRES  
D+  
DMINUS_BOT  
D-  
2.2 K  
B5  
A5  
7
9
CC2  
CC1  
CC2  
CC1  
2.2 K  
2.2 K  
15  
I2C_INT_EC/P2.2  
3.3 V  
EMBEDDED  
CONTROLLER  
17  
16  
390 pF  
390 pF  
I2C_SCL_SCB1_EC/P5.1  
I2C_SDA_SCB1_EC/P5.0  
TYPE-C  
RECEPTACLE  
10 K  
DNP  
18  
HPD/P3.0  
20  
100 K  
X
I2C_SDA_SCB3/VSEL_2/P3.1  
I2C_SCL_SCB3/VSEL_1/P3.2  
3.3 V  
21  
14  
X
3.3V  
I2C_SDA_SCB4/OVP_TRIP/P2.1  
X
13  
2.2 K  
I2C_SCL_SCB4/UV_OCP_TRIP/P2.0  
X
DPSRC_HPD  
100 K  
10 K  
2.2 K  
2.2 K   
8
6
SWD_IO/TBT_RST/P1.4  
AUX_N  
4
3
RESET_N  
I2C_SCL_SCB2_TBT/P1.2  
I2C_SDA_SCB2_TBT/P1.1  
37  
DPSRC_AUX_N  
Data Lines  
0.1 µF  
0.1 µF  
36  
38  
39  
GND  
AUX_P  
DPSRC_AUX_P  
LSTX  
5
I2C_INT_TBT/P1.3  
EPAD  
LSTX / P0.0  
41  
Thunderbolt Controller  
LSRX / P0.1  
LSRX  
DPLUS_SYS  
23  
DMINUS_SYS  
24  
100 K  
Note:  
Route D+ and D - Host lines to system  
USB Host Controller  
X
X
Note:  
Follow recommendations from manufacturer for  
Thunderbolt Controller connections  
Note  
3. Refer to AN210403 for the capacitor guidelines.  
Document Number: 002-23191 Rev. *G  
Page 15 of 38  
EZ-PD™ CCG6  
Electrical Specifications  
Absolute Maximum Ratings  
Table 8. Absolute Maximum Ratings[4]  
Parameter  
VSYS_MAX  
Description  
Min  
Typ  
Max  
Unit  
V
Details/Conditions  
Supply relative to VSS  
6
V5V_MAX  
Max supply voltage relative to VSS  
Max VBUS voltage relative to Vss  
Max supply voltage relative to VSS  
6
24  
V
VBUS_MAX  
VDDIO_MAX  
VGPIO_ABS  
V
VDDD  
V
Inputs to GPIO, DP/DM mux (UART,  
SYS,DP/DM_top/botpins),SBUmux  
(SBU1/2 pins)  
–0.5  
VDDIO + 0.5  
V
IGPIO_ABS  
Maximum current per GPIO  
–25  
25  
mA  
mA  
IGPIO_INJECTION  
GPIO injection current, Max for VIH  
VDDD, and Min for VIL < VSS  
>
–0.5  
0.5  
Absolute max, current  
injected per pin  
ESD_HBM  
Electrostatic discharge human body  
model  
2200  
1100  
500  
V
V
V
ESD_HBM_SBU  
ESD_CDM  
Electrostatic discharge human body  
model for SBU1, SBU2 pins  
Only applicable to SBU1,  
SBU2 pins  
Electrostatic discharge charged  
device model  
LU  
Pin current for latch-up  
–200  
200  
24  
24  
6
mA  
V
VCC_PIN_ABS  
VSBU_PIN_ABS  
Max voltage on CC1 and CC2 pins  
Max voltage on SBU1 and SBU2 pins  
V
VGPIO_OVT_ABS OVT pins (16, 17) voltage  
–0.5  
V
Note  
4. Usage above the absolute maximum conditions listed in Table 8 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-23191 Rev. *G  
Page 16 of 38  
EZ-PD™ CCG6  
Device-Level Specifications  
All specifications are valid for –40 °C TA 85 °C and TJ 100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V  
except where noted.  
DC Specifications  
Table 9. DC Specifications (Operating Conditions)  
Spec ID  
Parameter  
Description  
Min  
2.75  
3
Typ Max  
Unit  
V
Details/Conditions  
UFP applications  
SID.PWR#23  
VSYS  
5.5  
5.5  
SID.PWR#23_A VSYS  
V
DFP/DRP applications  
SID.PWR#22  
SID.PWR#1  
VBUS  
VDDD  
4
21.5  
VSYS  
V
Regulated output voltage when  
VSYS  
V
VSYS powered  
0.05  
SID.PWR#1_A  
VDDD  
Regulated output voltage when  
VBUS powered  
3
3.65  
V
SID.PWR#26  
SID.PWR#13  
V5V  
4.85  
5.5  
V
V
VDDIO  
VDDD  
VDDD  
At system-level short the VDDIO  
to VDDD  
SID.PWR#24  
SID.PWR#15  
SID.PWR#16  
VCCD  
CEFC  
CEXC  
Regulatedoutputvoltage(forCore  
Logic)  
1.8  
100  
1
V
Regulator bypass capacitor for  
VCCD  
nF X5R ceramic  
µF  
Regulator bypass capacitor for  
VDDD  
Active Mode, VSYS = 2.75 V to 5.5 V. Typical values measured at VSYS = 3.3 V  
SID.PWR#4  
IDD12  
Supply current  
10  
mA TA = 25 °C, CC I/O IN Transmit or  
Receive, no I/O sourcing current,  
CPU at 24 MHz, PD port active  
Deep Sleep Mode, VSYS = 2.75 V to 3.6 V  
SID34  
IDD29  
VSYS = 2.75 to 3.6 V, I2C, wakeup  
and WDT on.  
150  
100  
µA VSYS = 3.3 V, TA = 25 °C,  
SID_DS1  
IDD_DS1  
VSYS = 3.3 V, CC wakeup on,  
Type-C not connected.  
µA Power source = VSYS, Type-C  
not attached, CC enabled for  
wakeup, RpandRd connectedat  
70-ms intervals by CPU.  
SID_DS3  
IDD_DS2  
VSYS = 3.3 V, CC wakeup on,  
DP/DM, SBU ON with  
ADC/CSA/UVOV On  
500  
50  
µA IDD_DS1 + DP/DM, SBU, CC  
ON, ADC/CSA/UVOV ON  
XRES Current  
SID307  
IDD_XR  
Supply current while XRES  
asserted  
µA Power Source = VSYS = 3.3 V,  
Type-C Not Attached, TA = 25 °C  
Document Number: 002-23191 Rev. *G  
Page 17 of 38  
EZ-PD™ CCG6  
CPU  
Table 10. CPU Specifications (Guaranteed by Characterization)  
Spec ID  
Parameter  
FCPU  
Description  
Min  
Typ  
Max Unit  
Details/Conditions  
SID.CLK#4  
CPU input frequency  
48  
MHz All VDDD  
µs Guaranteed by  
SID.PWR#21 TDEEPSLEEP Wakeup from Deep Sleep mode  
35  
characterization  
SYS.XRES#5 TXRES  
External reset pulse width  
5
µs  
SYS.FES#1  
T_PWR_RDY  
Power-up to “Ready to accept  
I2C/CC command”  
5
25  
ms  
GPIO  
Table 11. GPIO DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Unit  
Details/Conditions  
SID.GIO#37  
VIH_CMOS  
Input voltage HIGH threshold  
0.7 ×  
VDDIO  
V
V
V
V
CMOS input  
SID.GIO#38  
SID.GIO#39  
SID.GIO#40  
VIL_CMOS  
Input voltage LOW threshold  
0.3 ×  
VDDIO  
CMOS input  
VIH_VDDIO2.7- LVTTL input, VDDIO < 2.7 V  
VIL_VDDIO2.7- LVTTL input, VDDIO < 2.7 V  
0.7 ×  
VDDIO  
0.3 ×  
VDDIO  
SID.GIO#41  
SID.GIO#42  
SID.GIO#33  
VIH_VDDIO2.7+ LVTTL input, VDDIO 2.7 V  
VIL_VDDIO2.7+ LVTTL input, VDDIO 2.7 V  
2.0  
0.8  
V
V
V
VOH  
VOH  
VOL  
Output voltage HIGH level  
VDDIO  
0.6  
IOH = –4 mA at 3-V VDDIO  
SID.GIO#34  
SID.GIO#35  
Output voltage HIGH level  
VDDIO  
0.5  
V
IOH = –1mA at 1.8-V VDDIO  
Output voltage LOW level  
Output low voltage  
Output low voltage  
Output low voltage  
0.6  
0.4  
0.6[5]  
V
V
V
V
IOL = 4 mA at 1.8-V VDDIO  
IOL = 3 mA, VDDIO > 2 V  
IOL = 6 mA, VDDIO > 1.71 V  
SID.GIO#35A VOL_I2C_2  
SID.GIO#35B VOL_I2C_3  
SID.GIO#35C VOL1_20mA  
0.4  
IOL = 20 mA, VDDIO > 3.0 V,  
Applicable for  
overvoltage-tolerant pins only  
SID.GIO#36  
VOL  
Output voltage LOW level  
0.6  
V
IOL = 10 mA (IOL_LED) at 3-V  
VDDIO  
SID.GIO#5  
SID.GIO#6  
SID.GIO#16  
Rpu  
Rpd  
IIL  
Pull-up resistor when enabled  
Pull-down resistor when enabled  
3.5  
3.5  
5.6  
5.6  
8.5  
8.5  
2
k+25 °C TA, All VDDIO  
k+25 °C TA, All VDDIO  
nA +25 °C TA, 3-V VDDIO  
Input leakage current  
(absolute value)  
SID.GIO#17  
SID.GIO#43  
CPIN  
Max pin capacitance  
3
7
pF  
VHYSTTL  
Input hysteresis, LVTTL  
15  
40  
mV VDDIO > 2.7 V. Guaranteed by  
characterization.  
SID.GIO#44  
VHYSCMOS  
Input hysteresis CMOS  
0.05 ×  
VDDIO  
mV VDDIO < 4.5 V  
Note  
5. To drive full bus load at 400 kHz, 6-mA I is required at 0.6-V V . Parts not meeting this specification can still function, but not at 400 kHz and 400 pF.  
OL  
OL  
Document Number: 002-23191 Rev. *G  
Page 18 of 38  
EZ-PD™ CCG6  
Table 11. GPIO DC Specifications (continued)  
Spec ID Parameter Description  
SID.GIO#44A VHYSCMOS55 Input hysteresis CMOS  
Min  
Typ  
Max Unit  
Details/Conditions  
200  
mV VDDIO > 4.5 V  
Table 12. GPIO AC Specifications (Guaranteed by Characterization)  
Spec ID  
SID70  
SID71  
Parameter  
TRISEF  
TFALLF  
Description  
Min  
2
Typ  
Max  
12  
Unit  
Details/Conditions  
Rise time in Fast Strong mode  
Fall time in Fast Strong mode  
Rise time in Slow Strong mode  
Fall time in Slow Strong mode  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
ns 3.3-V VDDIO, Cload = 25 pF  
MHz 90/10%, 25-pF load  
2
12  
SID.GIO#46 TRISES  
SID.GIO#47 TFALLS  
SID.GIO#48 FGPIO_OUT1  
10  
10  
60  
60  
GPIO FOUT; 3.3 VVDDIO5.5 V.  
Fast Strong mode.  
16  
SID.GIO#49 FGPIO_OUT2  
SID.GIO#50 FGPIO_OUT3  
SID.GIO#51 FGPIO_OUT4  
SID.GIO#52 FGPIO_IN  
GPIO FOUT; 1.7 VVDDIO3.3 V.  
16  
7
MHz 90/10%, 25-pF load  
MHz 90/10%, 25-pF load  
MHz 90/10%, 25-pF load  
MHz 90/10% VIO  
Fast Strong mode.  
GPIO FOUT; 3.3 VVDDIO5.5 V.  
Slow Strong mode.  
GPIO FOUT; 1.7 VVDDIO3.3 V.  
Slow Strong mode.  
3.5  
16  
GPIO input operating frequency;  
1.7 VVDDIO5.5 V.  
XRES  
Table 13. XRES DC Specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
CMOS input  
SID.XRES#1 VIH  
Input voltage HIGH threshold  
0.7 ×  
VDDIO  
V
SID.XRES#2 VIL  
Input voltage LOW threshold  
0.3 ×  
VDDIO  
V
CMOS input  
SID.XRES#3 CIN  
Input capacitance  
7
pF  
SID.XRES#4 VHYSXRES  
Input voltage hysteresis  
0.05 ×  
VDDIO  
mV Guaranteed by characterization  
Document Number: 002-23191 Rev. *G  
Page 19 of 38  
EZ-PD™ CCG6  
Digital Peripherals  
The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.  
Pulse Width Modulation (PWM) for GPIO Pins  
Table 14. PWM AC Specifications (Guaranteed by Characterization)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.TCPWM.3 TCPWMFREQ Operating frequency  
Fc  
MHz Fc max = CLK_SYS.   
Maximum = 48 MHz.  
SID.TCPWM.4 TPWMENEXT Input trigger pulse width  
2/Fc  
2/Fc  
ns  
ns  
For all trigger events  
SID.TCPWM.5 TPWMEXT  
Output trigger pulse width  
Minimum possible width of  
Overflow, Underflow, and CC  
(Counter equals Compare value)  
outputs  
SID.TCPWM.5A TCRES  
SID.TCPWM.5B PWMRES  
SID.TCPWM.5C QRES  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
1/Fc  
ns  
ns  
ns  
Minimum time between successive  
counts  
Minimum pulse width of PWM  
output  
Quadrature inputs resolution  
Minimum pulse width between  
quadrature-phase inputs  
I2C  
Table 15. Fixed I2C AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID153  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
FI2C1  
Bit rate  
1
Mbps –  
UART  
Table 16. Fixed UART AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID162  
Parameter  
Description  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Details/Conditions  
FUART  
Bit rate  
1
Mbps –  
SPI  
Table 17. Fixed SPI AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID166  
Parameter  
FSPI  
Min  
Typ  
Max  
Unit  
SPI operating frequency (Master; 6X  
oversampling)  
8
MHz  
Table 18. Fixed SPI Master Mode AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID167  
Parameter  
TDMO  
Description  
Min  
Typ  
Max  
15  
Unit  
Details/Conditions  
MOSI valid after SClock driving edge  
ns  
SID168  
TDSI  
MISO valid before SClock capturing  
edge  
20  
ns Full clock, late MISO  
sampling  
SID169  
THMO  
Previous MOSI data hold time  
0
ns Referred to slave capturing  
edge  
Document Number: 002-23191 Rev. *G  
Page 20 of 38  
EZ-PD™ CCG6  
Table 19. Fixed SPI Slave Mode AC Specifications  
(Guaranteed by Characterization)  
Spec ID  
SID170  
Parameter  
TDMI  
Description  
Min Typ  
Max  
Unit  
Details/Conditions  
MOSI valid before Sclock capturing  
edge  
40  
ns  
T
SID171  
TDSO  
MISO valid after Sclock driving edge  
48 + (3  
× TSCB  
ns  
ns  
SCB = TCPU  
)
SID171A  
TDSO_EXT  
MISO valid after Sclock driving edge  
in Ext Clk mode  
48  
SID172  
THSO  
Previous MISO data hold time  
0
ns  
ns  
SID172A  
TSSELSCK  
SSEL valid to first SCK Valid edge  
100  
Memory  
Table 20. Flash AC Specifications  
Spec ID Parameter  
Description  
Min Typ Max  
Unit  
Details/Conditions  
SID.MEM#4 TROW_WRITE  
Row (Block) write time (erase and  
program)  
20  
ms  
SID.MEM#3 TROW_ERASE  
Row erase time  
13  
7
ms  
ms  
SID.MEM#8 TROWPROGRAM Row program time after erase  
25 °C to 55 °C, All VDDD  
SID178  
SID180  
TBULKERASE  
TDEVPROG  
Bulk erase time (128 KB)  
Total device program time  
Flash endurance  
35  
25  
ms  
Guaranteed by design  
s
Guaranteed by design  
SID.MEM#6 FEND  
100k  
20  
cycles  
years  
SID182  
FRET1  
FRET2  
FRET3  
Flash retention, TA ≤ 55 °C,   
100K P/E cycles  
SID182A  
SID182B  
Flash retention, TA ≤ 85 °C,   
10K P/E cycles  
10  
3
years  
years  
Flash retention, TA ≤ 105 °C,   
10K P/E cycles  
Document Number: 002-23191 Rev. *G  
Page 21 of 38  
EZ-PD™ CCG6  
System Resources  
Power-on-Reset (POR) with Brown Out  
Table 21. Imprecise Power On Reset (IPOR)  
Spec ID  
SID185  
SID186  
Parameter  
VRISEIPOR  
VFALLIPOR  
Description  
Rising trip voltage  
Falling trip voltage  
Min  
0.80  
0.70  
Typ  
Max  
1.50  
1.4  
Unit  
V
Details/Conditions  
Guaranteed by  
characterization  
V
Table 22. Precise Power On Reset (POR)  
Spec ID Parameter  
SID190 VFALLPPOR  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Brown-out Detect (BOD) trip voltage 1.48  
in active/sleep modes  
1.62  
V
Guaranteed by  
characterization  
SID192  
VFALLDPSLP  
BOD trip voltage in Deep Sleep mode 1.1  
1.5  
V
SWD Interface  
Table 23. SWD Interface Specifications  
Spec ID  
Parameter  
Description  
3.3 V VDDIO 5.5 V  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.SWD#1  
F_SWDCLK1  
14  
MHz SWDCLK 1/3 CPU  
clock frequency  
SID.SWD#2  
F_SWDCLK2  
1.8 V VDDIO 3.3 V  
7
MHz SWDCLK 1/3 CPU  
clock frequency  
SID.SWD#3  
SID.SWD#4  
SID.SWD#5  
SID.SWD#6  
T_SWDI_SETUP T = 1/f SWDCLK  
T_SWDI_HOLD T = 1/f SWDCLK  
T_SWDO_VALID T = 1/f SWDCLK  
T_SWDO_HOLD T = 1/f SWDCLK  
0.25 × T  
ns Guaranteed by  
characterization  
0.25 × T  
ns  
1
0.50 × T ns  
ns  
Internal Main Oscillator  
Table 24. IMO AC Specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.CLK#13 FIMOTOL  
Frequency variation at 48 MHz  
(trimmed)  
±2  
%
2.7 V ≤ VDDD < 5.5 V. –  
25 °C ≤ TA ≤ 85 °C  
SID226  
TSTARTIMO  
FIMO  
IMO start-up time  
IMO frequency  
7
µs  
SID.CLK#1  
48  
MHz  
Internal Low-speed Oscillator  
Table 25. ILO AC Specifications  
Spec ID  
SID234  
Parameter  
TSTARTILO1  
TILODUTY  
FILO  
Description  
ILO start-up time  
ILO duty cycle  
Min  
Typ  
Max  
2
Unit  
Details/Conditions  
ms Guaranteed by  
characterization  
SID238  
40  
20  
50  
40  
60  
80  
%
SID.CLK#5  
ILO frequency  
kHz  
Document Number: 002-23191 Rev. *G  
Page 22 of 38  
EZ-PD™ CCG6  
PD  
Table 26. PD DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
1.2  
Unit  
V
Details/Conditions  
SID.DC.cc_shvt.1 vSwing  
SID.DC.cc_shvt.2 vSwing_low  
SID.DC.cc_shvt.3 zDriver  
SID.DC.cc_shvt.4 zBmcRx  
SID.DC.cc_shvt.5 Idac_std  
Transmitter Output High Voltage  
Transmitter Output Low Voltage  
Transmitter output impedance  
Receiver Input Impedance  
1.05  
0.075  
75  
V
33  
10  
64  
MΩ Guaranteed by design  
Source current for USB standard  
advertisement  
96  
µA  
µA  
µA  
kΩ  
SID.DC.cc_shvt.6 Idac_1p5a  
SID.DC.cc_shvt.7 Idac_3a  
SID.DC.cc_shvt.8 Rd  
Source current for 1.5A at 5 V  
advertisement  
165.6  
303.6  
4.59  
194.4  
356.4  
5.61  
Source current for 3A at 5 V  
advertisement  
Pull down termination resistance  
when acting as UFP (upstream  
facing port)  
SID.DC.cc_shvt.9 Rd_db  
SID.DC.cc_shvt.10 zOPEN  
Pull down termination resistance  
when acting as UFP, with dead  
battery  
4.08  
108  
6.12  
kΩ  
CC impedance to ground when  
disabled  
kΩ  
V
SID.DC.cc_shvt.11 DFP_default_0p2 CCvoltagesonDFPside-Standard 0.15  
USB  
0.25  
SID.DC.cc_shvt.12 DFP_1.5A_0p4  
SID.DC.cc_shvt.13 DFP_3A_0p8  
SID.DC.cc_shvt.14 DFP_3A_2p6  
CC voltages on DFP side-1.5A  
CC voltages on DFP side-3A  
CC voltages on DFP side-3A  
0.35  
0.75  
2.45  
0.45  
0.85  
2.75  
0.7  
V
V
V
V
SID.DC.cc_shvt.15 UFP_default_0p66 CCvoltagesonUFPside-Standard 0.61  
USB  
SID.DC.cc_shvt.16 UFP_1.5A_1p23  
SID.DC.cc_shvt.17 Vattach_ds  
SID.DC.cc_shvt.18 Rattach_ds  
SID.DC.cc_shvt.30 FS_0p53  
CC voltages on UFP side-1.5A  
Deep sleep attach threshold  
Deep sleep pull-up resistor  
1.16  
0.3  
1.31  
0.6  
V
%
kΩ  
V
10  
50  
Voltage threshold for Fast Swap  
Detect  
0.49  
0.58  
Analog-to-Digital Converter  
Table 27. ADC DC Specifications  
Spec ID  
SID.ADC.1  
Parameter  
Resolution  
Description  
ADC resolution  
Min  
Typ  
8
Max  
Unit Details/Conditions  
Bits  
SID.ADC.2  
SID.ADC.3  
SID.ADC.4  
SID.ADC.5  
INL  
Integral non-linearity  
Differential non-linearity  
Gain error  
–1.5  
–2.5  
–1.5  
VDDDmin  
1.5  
LSB –  
LSB –  
LSB –  
DNL  
2.5  
Gain Error  
VREF_ADC1  
1.5  
Reference voltage of ADC  
VDDDmax  
V
Reference voltage  
generated from VDDD  
SID.ADC.6  
VREF_ADC2  
Reference voltage of ADC  
1.96  
2.0  
2.04  
V
Reference voltage  
generated from deep  
sleep reference  
Document Number: 002-23191 Rev. *G  
Page 23 of 38  
EZ-PD™ CCG6  
Charger Detect  
Table 28. Charger Detect DC Specifications  
Spec ID  
Parameter  
VDAT_REF  
Description  
Min Typ Max Unit Details/Conditions  
DC.CHGDET.1  
Data detect voltage in charger detect 250  
mode  
400  
700  
700  
175  
175  
13  
mV  
mV  
mV  
µA  
DC.CHGDET.2  
DC.CHGDET.3  
DC.CHGDET.4  
DC.CHGDET.5  
VDM_SRC  
VDP_SRC  
IDM_SINK  
IDP_SINK  
Dn voltage source in charger detect 500  
mode  
Dp voltage source in charger detect 500  
mode  
Dn sink current in charger detect  
mode  
25  
Dp sink current in charger detect  
mode  
25  
µA  
DC.CHGDET.6  
DC.CHGDET.32  
DC.CHGDET.31  
DC.CHGDET.29  
DC.CHGDET.34  
DC.ccg6.dpdm.14  
IDP_SRC  
RDM_UP  
RDM_DWN  
RDAT_LKG  
VSETH  
Data contact detect current source  
Dp/Dn pull-up resistance  
Dp/Dn pull-down resistance  
Data line leakage on Dp/Dn  
Logic Threshold  
7
0.9  
µA  
1.575 kΩ  
14.25  
300  
1.26  
24.8  
500  
1.54  
40  
kΩ  
kΩ  
V
RDCP_DAT  
Dedicated charging port resistance  
across DP and DN  
VSYS Switch  
Table 29. VSYS Switch Specifications  
Spec ID Parameter  
Description  
Min Typ Max Unit  
1.5  
Details/Conditions  
SID.DC.VDDDSW.1 Res_sw  
Resistance from supply input to  
output supply VDDD  
Measured with a load  
current of 5 mA to 10 mA  
on VDDD  
.
CSA  
Table 30. CSA DC Specifications  
Spec ID  
DC.csa_scp.42  
DC.csa_scp.43  
OP.csa_scp.11  
Parameter  
SCP_6A  
Description  
Min Typ Max Unit  
Details/Conditions  
Short circuit current detect @ 6A  
Short circuit current detect @10A  
External sense register  
±10  
±10  
5
%
%
SCP_10A  
Rsense  
m1% accuracy  
1APD contracts OCPset  
%
OCP Trip threshold for 1A with  
Rsense = 5 mΩ  
130  
Iocp_1A  
Iocp_1A  
at130%ofcontractvalue  
or user programmable  
±20%  
DC.csa_scp.44  
1APD contracts OCPset  
at130%ofcontractvalue  
or user programmable  
OCP Trip threshold for 1A with  
Rsense = 10 mΩ  
130  
±10%  
%
2A, 3A, 4A, and 5A PD  
contracts OCP set at  
130% of contract value  
OR user programmable  
OCP Trip threshold for 2A, 3A, 4A  
and 5A contracts with Rsense =  
5/10 mΩ  
130  
±10%  
DC.csa_scp.45  
Iocp_5A  
%
DC.rcp_scp.7a  
DC.rcp_scp.6a  
I_csainn_lk  
I_csainp_lk  
CSP pin input leakage when RCP  
and CSA blocks are OFF  
10  
80  
µA For provider VBUS = 5 V  
CSN pin input leakage when RCP  
and CSA blocks are OFF  
µA For provider VBUS = 5 V  
Document Number: 002-23191 Rev. *G  
Page 24 of 38  
EZ-PD™ CCG6  
Table 30. CSA DC Specifications (continued)  
Spec ID Parameter  
DC.sys.1 I_CSP_RCP_ON CSP pin current when RCP block is  
Description  
Min Typ Max Unit  
Details/Conditions  
20  
100  
30  
µA For provider VBUS = 5 V  
µA For provider VBUS = 5 V  
µA For provider VBUS = 5 V  
µA For provider VBUS = 5 V  
_CSA_OFF  
ON and SCP is OFF  
DC.sys.2  
DC.sys.3  
DC.sys.4  
DC.sys.5  
DC.sys.6  
I_CSN_RCP_ON CSN pin current when RCP block is  
_CSA_OFF ON and SCP is OFF  
I_CSP_CSA_ON CSP pin current when RCP block is  
OFF and SCP is ON  
I_CSN_CSA_ON CSN pin current when RCP block is  
OFF and SCP is ON  
100  
50  
I_CSP_RCP_ON CSP pin current when RCP block is  
µA For provider VBUS = 5 V.  
Guaranteed by design.  
_CSA_ON  
ON and SCP is ON  
I_CSP_RCP_ON CSN pin current when RCP block is  
120  
µA For provider VBUS = 5 V.  
Guaranteed by design.  
_CAS_ON  
ON and SCP is ON  
VBUS UV/OV  
Table 31. VBUS UV/OV Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
SID.UVOV.1  
VTHUVOV1  
Voltage threshold accuracy in active  
mode using bandgap reference  
±3  
±5  
%
SID.UVOV.2  
VTHUVOV2  
Voltage threshold accuracy in deep  
sleep mode using deep sleep reference  
%
SID.COMP_ACC  
COMP_ACC Comparator input offset at 4s  
–15  
15  
mV  
Consumer Side PFET Gate Driver  
Table 32. Consumer Side PFET Gate Driver DC Specifications  
Spec ID  
Parameter  
Rpd  
Description  
Min Typ Max Unit  
Details/Conditions  
SID.DC.PGDO.1  
Resistance when “pull_dn” enabled  
2
5
kΩ  
µA  
DC.pgdo_pd_isnk.12 iout_0  
DC.pgdo_pd_isnk.13 iout_1  
DC.pgdo_pd_isnk.14 iout_2  
DC.pgdo_pd_isnk.15 iout_3  
DC.pgdo_pd_isnk.16 iout_4  
DC.pgdo_pd_isnk.17 iout_5  
DC.pgdo_pd_isnk.18 iout_6  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
1  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
2  
4
8
µA  
µA  
µA  
µA  
µA  
µA  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
4  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
8  
16  
32  
63  
126  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
16  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
32  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
64  
Document Number: 002-23191 Rev. *G  
Page 25 of 38  
EZ-PD™ CCG6  
Table 32. Consumer Side PFET Gate Driver DC Specifications (continued)  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
DC.pgdo_pd_isnk.19 iout_7  
DC.pgdo_pd_isnk.20 iout_8  
DC.pgdo_pd_isnk.21 iout_9  
DC.pgdo_pd_isnk.22 iout_10  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
128  
252  
µA  
µA  
µA  
µA  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
256  
504  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
512  
1008  
2016  
Sink current through iref_out at iref_c-  
trl_lv < 11 LOW and iref_ctrl_lv < 10:0  
1024  
Table 33. Consumer Side PFET Gate Driver AC Specifications  
Spec ID  
SID.ac.pgdo.2  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
Tr_discharge Discharge Rate of output node  
5
5
V/µs Guaranteed by design  
ms  
SID.ac.pgdo.sys_1  
Tsoft_on  
Consumer FET turn-ON delay for soft  
start  
Provider Side PFET Gate Driver  
Table 34. Provider Side PFET Gate Driver DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit  
Details/Conditions  
DC.pgdo_pu_1  
Rpd  
Pull-downresistancewhenenabledusing  
strongest pull-down strength, using the  
“STRONG_EN =1” field in the USBPD_P-  
GDO_PD_ISNK_CFG register  
2
kΩ  
DC.pgdo_pu.2  
Rpu  
Pull-up resistance  
1
2
kΩ  
DC.pgdo_pd_isnk.1 Rpd_0  
DC.pgdo_pd_isnk.2 Rpd_1  
DC.pgdo_pd_isnk.3 Rpd_2  
DC.pgdo_pd_isnk.4 Rpd_3  
DC.pgdo_pd_isnk.5 Rpd_4  
DC.pgdo_pd_isnk.6 Rpd_5  
DC.pgdo_pd_isnk.7 Rpd_6  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 1  
6830  
Ω
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 2  
3760  
1900  
1000  
660  
Ω
Ω
Ω
Ω
Ω
Ω
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 4  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 8  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 16  
Resistance of iref_out to ground,  
en_lv=HIGH, iref_ctrl_lv<11HIGHand  
iref_ctrl_lv < 10:0 32  
1700  
900  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 64  
Document Number: 002-23191 Rev. *G  
Page 26 of 38  
EZ-PD™ CCG6  
Table 34. Provider Side PFET Gate Driver DC Specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit  
Details/Conditions  
DC.pgdo_pd_isnk.8 Rpd_7  
DC.pgdo_pd_isnk.9 Rpd_8  
DC.pgdo_pd_isnk.10 Rpd_9  
DC.pgdo_pd_isnk.11 Rpd_10  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 128  
630  
560  
530  
520  
Ω
Ω
Ω
Ω
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 256  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 512  
Resistance of iref_out to ground, en_lv =  
HIGH, iref_ctrl_lv < 11 HIGH and iref_c-  
trl_lv < 10:0 1024  
Table 35. Provider Side PFET Gate Driver AC Specifications  
Spec ID  
Parameter  
Tpu  
Description  
Pull-up delay  
Min Typ Max  
Unit  
Details/Conditions  
AC.pgdo_pu.1  
10  
35  
µs For pull-up load of 4-nF  
capacitor and 50-kΩ resistor  
AC.pgdo_pu.2  
AC.pgdo_pu.3  
Tpd  
Pull-down delay  
2
8
µs  
SRpu  
Output slew rate measured from 20%  
to 80% of output rising waveform.  
V/µs Cload = 4 nF, Vout = 0 V to 24  
V, external pull-up of 50 kΩ  
AC.pgdo_pu.4  
SRpd  
Output slew rate measured from 80%  
to 20% of output falling waveform.  
5
8
V/µs Cload = 4 nF, Vout = 24 V to 0  
V, external pull-up of 50 kΩ  
AC.pgdo.sys_1 Tsoft_on  
Provider FET turn-ON delay for soft  
start  
ms  
Provider Side PFET RCP  
Table 36. Provider Side PFET RCP DC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
DC.RCP.44  
Vcsa_rcp  
Voltage across external Rsense  
between CSP/CSN for which RCP  
condition detected (CSN higher than  
CSP by Vcsa_rcp)  
2
6
mV  
DC.RCP.45  
DC.RCP.46  
Vcomp_rcp  
Voltage across VBUS and CSN pins for  
which RCP condition is detected  
20  
130  
mV  
V
Vbus_max_det Voltage on CSN pin during provider  
FET ON (source) for which RCP  
condition is detected (this threshold is  
user programmable  
5.55 5.75 5.95  
This spec is for 5-V provider  
BUS voltage. For higher  
V
voltages, firmware changes  
this threshold based on VBUS  
contract voltage.  
Document Number: 002-23191 Rev. *G  
Page 27 of 38  
EZ-PD™ CCG6  
Table 37. Provider Side PFET RCP, SCP AC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
AC.RCP_SYS.1 Toff_scp  
AC.RCP_SYS.1 Toff_rcp  
AC.RCP_SYS.2 Ton  
Provider PFET switching off after  
short circuit current detect through  
provider PFET  
10  
10  
55  
µs Provider FET turns off with gate  
pull-up of 50 kΩ and total gate  
cap of 4 nF.  
Provider PFET switching off after  
reverse current detect through  
provider PFET  
µs Provider FET turns off with gate  
pull-up of 50 kΩ and total gate  
cap of 4 nF.  
Recovery time to turn-ON PFET RCP  
condition is removed  
80  
µs  
Table 38. VBUS Provider Transition Specifications  
Spec ID  
AC.tr.1  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
Ton  
VBUS Low to High (10% to 90%) for  
provider FET  
5
150  
ms 0 to 5-V transition, system-level  
with external PFET with gate  
pull-up of 50 kand total gate  
cap of 4 nF  
AC.tr.2  
AC.tr.3  
FR_Ton  
Toff  
VBUS Low to High (10% to 90%) during  
FR swap  
50  
11  
µs 0 to 5-V transition, system-level  
with external PFET with gate  
pull-up of 50 kand total gate  
cap of 4 nF  
VBUS_P_CTRL High to Low (90% to  
10%) using internal active pull-up  
µs 5 to 0-V transition, system-level  
with external PFET with gate  
pull-up of 50 kand total gate  
cap of 4 nF  
SBU Switch  
Table 39. SBU Switch DC Specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC.ccg6.20sbu.1 Ron1  
DC.ccg6.20sbu.2 Ron2  
DC.ccg6.20sbu.3 Isb  
DC.ccg6.20sbu.15 icc  
On resistance of AUXP/N to  
SBU1/2 switch @ 3.3-V input  
4
3
7
On resistance of AUXP/N to  
SBU1/2 switch @ 1-V input  
5
Block leakage current (VPUMP  
+
15  
µA  
VDDD + VCCD  
)
Block ICC when switch fully ON  
15  
125  
µA  
DC.ccg6.20sbu.16 OVP_threshold Overvoltage protection detection  
threshold above VDDIO  
200  
1200  
mV  
DC.ccg6.20sbu.17 lsx_ron_3p3  
On resistance of LSTX/LSRX to  
SBU1/2 switch @ 3.3-V input  
8.5  
5.5  
17  
11  
DC.ccg6.20sbu.18 lsx_ron_1  
On resistance of LSTX/LSRX to  
SBU1/2 switch @ 1-V input  
DC.ccg6.20sbu.19 aux_ron_flat_fs Switch On flat resistance of  
AUX_P/N to SBU1/2 switch (from  
2.5  
0 to 3.3 V)  
DC.ccg6.20sbu.20 aux_ron_flat_hs Switch On flat resistance of  
0.5  
AUX_P/N to SBU1/2 switch (from  
0 to 1 V)  
Document Number: 002-23191 Rev. *G  
Page 28 of 38  
EZ-PD™ CCG6  
Table 39. SBU Switch DC Specifications (continued)  
Spec ID Parameter Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC.ccg6.20sbu.21 lsx_ron_flat_fs Switch On flat resistance of  
LSTX/LSRX to SBU1/2 switch  
5
(from 0 to 3.3 V)  
DC.ccg6.20sbu.22 lsx_ron_flat_hs Switch On flat resistance of  
LSTX/LSRX to SBU1/2 switch  
0.5  
(from 0 to 1 V)  
Table 40. SBU Switch AC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
120  
80  
Unit  
pF  
Details/Conditions  
AC.ccg6.20sbu.1 Con  
AC.ccg6.20sbu.2 Coff  
Switch On capacitance  
Switch Off capacitance- Connector  
side  
pF  
Guaranteed by design  
AC.ccg6.20sbu.3 Off_isolation  
AC.ccg6.20sbu.4 TON  
Switch isolation at F = 1 MHz  
SBU switch turn-on time  
SBU switch turn-off time  
–50  
dB  
µs  
µs  
dB  
Guaranteed by design  
200  
400  
AC.ccg6.20sbu.5 TOFF  
AC.ccg6.20sbu.3_ Off_isola-  
Switch isolation at F = 1 MHz, from  
AUX to SBU pins  
–50  
Guaranteed by design  
aux  
tion_AC_aux  
AC.ccg6.20sbu.6 Off_isola-  
tion_tran_dB  
Coupling on sbu1,  
–40  
–30  
–50  
–50  
–30  
dB  
dB  
dB  
dB  
dB  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
2 terminated to 50 , switch-OFF,  
1-MHz rail-to-rail toggling on  
LSTX/LSRX  
AC.ccg6.20sbu.6_ Off_isola-  
Coupling on sbu1,  
aux  
tion_tran_dB_aux 2 terminated to 50 , switch-OFF,  
1-MHz rail-to-rail toggling on  
AUX_P/AUX_N  
AC.ccg6.20sbu.7 X_talk_AC  
Cross talk of Switch at  
F = 1 MHz  
SBU1/2 to SBU2/1 when is data  
transferred from LSTX/RX  
AC.ccg6.20sbu.7_ X_talk_AC_aux  
aux  
Cross talk of Switch at  
F = 1 MHz  
SBU1/2 to SBU2/1 when is data  
transferred from AUXP/AUXN  
AC.ccg6.20sbu.8 X_talk_tran_dB  
Coupling on SBU2  
(1) When Data is transferred from  
LSX to SBU1  
(2) Rail-to-rail data on SBU1(2),  
static signal on SBU2(1)  
AC.ccg6.20sbu.8_ X_talk_tran_d-  
Coupling on SBU2  
–30  
dB  
Guaranteed by design  
aux  
B_aux  
(1) When Data is transferred from  
AUX to SBU1  
(2) Rail-to-rail data on SBU1(2),  
static signal on SBU2(1)  
Document Number: 002-23191 Rev. *G  
Page 29 of 38  
EZ-PD™ CCG6  
DP/DM Switch  
Table 41. DP/DM Switch DC Specifications  
(Charger Detect Block is Disconnected from DPLUS_TOP, DMINUS_TOP, DPLUS_BOT, and DMINUS_BOT through Switch)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Unit Details/Conditions  
DC.ccg6.dpdm.1 RON_HS  
DC.ccg6.dpdm.2 RON_FS  
DC.ccg6.dpdm.5 Con_FS  
DC.ccg6.dpdm.6 Con_HS  
DC.ccg6.dpdm.9 ileak_pin  
DC.ccg6.dpdm.10 RON_UART  
DP/DM On resistance (0 to 0.5 V) - HS  
mode  
8
12  
50  
10  
1
DP/DM On resistance (0 to 3.3 V) - FS  
mode  
Switch On capacitance at 6 MHz - FS  
mode  
pF Guaranteed by design  
Switch on capacitance at 240 MHz -  
HS mode  
pF  
µA  
pin leakage at DP/DM connector side  
and host side  
DP/DM On resistance for UART lines  
(0 to 3.3 V)  
17  
0.5  
4
DC.ccg6.dpdm.11 RON_FLAT_HS DP/DM On Flat resistance in HS mode  
(0 to 0.4 V)  
Guaranteed by design  
Guaranteed by design  
Guaranteed by design  
DC.ccg6.dpdm.12 RON_FLAT_FS DP/DM On flat resistance in FS mode  
(0 to 3.3 V)  
DC.ccg6.dpdm.13 RON_FLAT_UA DP/DM UART On flat resistance (0 to  
4
RT  
3.3 V)  
Table 42. DP/DM Switch AC Specifications  
(Charger Detect Block is Disconnected from DPLUS_TOP, DMINUS_TOP, DPLUS_BOT, and DMINUS_BOT through Switch)  
Spec ID  
Parameter  
Description  
3-db bandwidth  
Min  
Typ  
Max  
Unit Details/Conditions  
AC.ccg6.dpdm.1 BW_3dB_HS  
700  
MHz Guaranteed by  
design  
AC.ccg6.dpdm.2 BW_3dB_FS  
3-db bandwidth  
100  
MHz Guaranteed by  
design  
AC.ccg6.dpdm.5 TON  
AC.ccg6.dpdm.6 TOFF  
DP/DM Switch turn-on time  
DP/DM Switch turn-off time  
200  
0.4  
µs  
µs Guaranteed by  
design  
AC.ccg6.dpdm.7 TON_VPUMP  
DP/DM charge pump startup time  
200  
µs Guaranteed by  
characterization  
AC.ccg6.dpdm.8 Off_isolation_HS Switch-off isolation for HS  
AC.ccg6.dpdm.9 Off_isolation_FS Switch-off isolation for FS  
–20  
–50  
dB Guaranteed by  
design  
dB Guaranteed by  
design  
AC.ccg6.dpdm.10 X_talk  
Cross talk of Switch From FS to HS at –50  
F=12 MHz  
dB Guaranteed by  
design  
AC.ccg6.dpdm.11 uart_coupling  
peak to peak coupling of UART signal  
to DP lines. (UART signal 0 to 3.3 V)  
20  
mV Guaranteed by  
design  
Document Number: 002-23191 Rev. *G  
Page 30 of 38  
EZ-PD™ CCG6  
VCONN Switch  
Table 43. VCONN Switch DC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/Conditions  
DC.ccg6.20VCONN.1 Ron  
Switch ON resistance at V5V = 5 V  
with 215-mA load current  
0.7  
1.3  
DC.ccg6.20VCONN.9 IOCP  
Overcurrent detection range for  
CC1/CC2  
550  
200  
mA  
DC.ccg6.20VCONN.10 OVP_threshold  
CC1, CC2 overvoltage protection  
detection threshold above VDDD or  
V5V, whichever is higher  
1200 mV  
DC.ccg6.20VCONN.11 OVP_hysteresis  
DC.ccg6.20VCONN.12 OCP_hysteresis  
Overvoltage detection hysteresis  
50  
200  
mV Guaranteed by  
design  
Overcurrent detection hysteresis  
20  
60  
mA  
mV  
DC.ccg6.20VCONN.14 OVP_threshold_on Overvoltage detection threshold  
above V5V of CC1/2, with CC1 or  
200  
700  
CC2 switch enabled. Same  
threshold triggers reverse current  
protection circuit  
Table 44. VCONN Switch AC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/Conditions  
AC.ccg6.20VCONN.1 TON  
AC.ccg6.20VCONN.2 TOFF  
VCONN switch turn-on time  
VCONN switch turn-off time  
200  
3
µs  
µs Guaranteed by design  
VBUS  
Table 45. VBUS Discharge Specifications  
Spec ID  
Parameter  
Ron1  
Description  
Min  
1500  
750  
500  
375  
300  
Typ Max Unit Details/Conditions  
SID.VBUS.DISC.1  
SID.VBUS.DISC.2  
SID.VBUS.DISC.3  
SID.VBUS.DISC.4  
SID.VBUS.DISC.5  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
20-V NMOS ON resistance  
3000  
1500  
1000  
750  
Ron2  
Ron3  
Ron4  
Ron5  
600  
Document Number: 002-23191 Rev. *G  
Page 31 of 38  
EZ-PD™ CCG6  
Ordering Information  
Table 46 lists the EZ-PD CCG6 part numbers and features.  
Table 46. EZ-PD CCG6 Ordering Information  
DeadBattery  
Termination  
Part Number  
Application  
Type-C Ports  
Termination Resistor  
Role  
Package  
CYPD6125-40LQXIT Notebooks, Desktops  
CYPD6137-40LQXIT Dock  
1
1
Yes  
No  
Rp[6], Rd[7]  
Rp[6], Rd[7]  
DRP  
DRP  
40-pin QFN  
40-pin QFN  
Ordering Code Definitions  
X
X
XX XX  
-
X
CY PD  
6
1
T
I
T = Tape and Reel  
Temperature Grade: I = Industrial  
Pb-free  
Package Type: LQ  
LQ = QFN  
Number of pins in the package: XX = 40  
Application specific, X = 5/7  
Indicates if dead battery termination is supported or not  
X = 2/3  
Number of Type-C Ports: 1 = 1 Port  
Product Type: 6 = Sixth-generation CCG6 product family  
Marketing Code: PD = Power Delivery product family  
Company ID: CY = Cypress  
Notes  
6. Termination resistor denoting a Source.  
7. Termination resistor denoting an accessory or Sink.  
Document Number: 002-23191 Rev. *G  
Page 32 of 38  
EZ-PD™ CCG6  
Packaging  
Table 47. Package Characteristics  
Parameter  
TA  
Description  
Conditions  
Min  
–40  
–40  
Typ  
25  
25  
Max  
85  
Unit  
°C  
Operating ambient temperature  
Operating junction temperature  
Package JA (40-pin QFN)  
Package JC (40-pin QFN)  
Industrial  
TJ  
Industrial  
100  
19.3  
13.6  
°C  
TJA  
TJC  
°C/W  
°C/W  
Table 48. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Maximum Time within 5 °C of Peak Temperature  
40-pin QFN  
260 °C  
30 seconds  
Table 49. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
40-pin QFN  
MSL 3  
Figure 8. 40-Pin QFN (6 × 6 × 0.6 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659  
001-80659 *A  
Document Number: 002-23191 Rev. *G  
Page 33 of 38  
EZ-PD™ CCG6  
Table 50. Acronyms Used in this Document (continued)  
Acronyms  
Acronym  
opamp  
OCP  
OVP  
PCB  
Description  
operational amplifier  
Table 50. Acronyms Used in this Document  
Acronym  
ADC  
Description  
analog-to-digital converter  
overcurrent protection  
overvoltage protection  
printed circuit board  
power delivery  
API  
Arm®  
application programming interface  
advanced RISC machine, a CPU architecture  
configuration channel  
PD  
CC  
PGA  
PHY  
programmable gain amplifier  
physical layer  
BOD  
CPU  
Brown out Detect  
central processing unit  
POR  
PRES  
PSoC®  
PWM  
RAM  
RCP  
RISC  
RMS  
RTC  
power-on reset  
CRC  
cyclic redundancy check, an error-checking  
protocol  
precise power-on reset  
Programmable System-on-Chip™  
pulse-width modulator  
random-access memory  
reverse current protection  
reduced-instruction-set computing  
root-mean-square  
CS  
current sense  
CSA  
DFP  
DP  
current sense amplifier  
downstream facing port  
DisplayPort, digital display interface developed by  
Video Electronics Standards Association  
DIO  
digital input/output, GPIO with only digital   
capabilities, no analog. See GPIO.  
real-time clock  
DRP  
dual role power  
RX  
receive  
EEPROM  
electrically erasable programmable read-only  
memory  
SAR  
successive approximation register  
I2C serial clock  
I2C serial data  
EMCA  
a USB cable that includes an IC that reports cable  
characteristics (e.g., current rating) to the Type-C  
ports  
SCL  
SDA  
S/H  
sample and hold  
EMI  
ESD  
FPB  
FS  
electromagnetic interference  
electrostatic discharge  
flash patch and breakpoint  
full-speed  
SPI  
Serial Peripheral Interface, a communications  
protocol  
SRAM  
SWD  
TBT  
static random access memory  
serial wire debug, a test protocol  
GPIO  
IC  
general-purpose input/output  
integrated circuit  
Thunderbolt, hardware interface standard for  
peripherals developed by Intel  
IDE  
integrated development environment  
TX  
transmit  
I2C, or IIC Inter-Integrated Circuit, a communications  
protocol  
Type-C  
a new standard with a slimmer USB connector and  
a reversible cable, capable of sourcing up to  
100 W of power  
ILO  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
input/output, see also GPIO  
low-voltage detect  
UART  
Universal Asynchronous Transmitter Receiver, a  
communications protocol  
IMO  
I/O  
UFP  
upstream facing port  
Universal Serial Bus  
LVD  
LVTTL  
MCU  
NC  
USB  
low-voltage transistor-transistor logic  
microcontroller unit  
USBIO  
USB input/output, CCG6 pins used to connect to  
a USB port  
no connect  
XRES  
external reset I/O pin  
NMI  
NVIC  
nonmaskable interrupt  
nested vectored interrupt controller  
Document Number: 002-23191 Rev. *G  
Page 34 of 38  
EZ-PD™ CCG6  
Document Conventions  
Units of Measure  
Table 51. Units of Measure  
Symbol  
°C  
Unit of Measure  
degrees Celsius  
hertz  
Hz  
KB  
kHz  
k  
Mbps  
MHz  
M  
Msps  
µA  
1024 bytes  
kilohertz  
kilo ohm  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
microsecond  
microvolt  
µF  
µs  
µV  
µW  
mA  
m  
ms  
mV  
nA  
microwatt  
milliampere  
milliohm  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
V
samples per second  
volt  
Document Number: 002-23191 Rev. *G  
Page 35 of 38  
EZ-PD™ CCG6  
AN95599 - Hardware Design Guidelines for EZ-PD™ CCG2  
References and Links to Applications Collateral  
AN210403 - Hardware Design Guidelines for Dual Role Port  
Applications Using EZ-PD™ USB Type-C Controllers  
Knowledge Base Articles  
Key Differences Among EZ-PD™ CCG1, CCG2, CCG3 and  
CCG5 - KBA210740  
AN210771 - Getting Started with EZ-PD™ CCG4  
Programming EZ-PD™ CCG2, EZ-PD™ CCG3 and EZ-PD™  
CCG5 Using PSoC® Programmer and MiniProg3 - KBA96477  
Reference Designs  
EZ-PD™ CCG2 Electronically Marked Cable Assembly  
CCGX Frequently Asked Questions (FAQs) - KBA97244  
Handling Precautions for CY4501 CCG1 DVK - KBA210560  
Cypress EZ-PD™ CCGx Hardware - KBA204102  
Difference between USB Type-C and USB-PD - KBA204033  
CCGx Programming Methods - KBA97271  
(EMCA) Paddle Card Reference Design  
EZ-PD™ CCG2 USB Type-C to DisplayPort Cable Solution  
CCG1 USB Type-C to DisplayPort Cable Solution  
CCG1 USB Type-C to HDMI/DVI/VGA Adapter Solution  
EZ-PD™ CCG2 USB Type-C to HDMI Adapter Solution  
Getting started with Cypress USB Type-C Products -  
KBA04071  
CCG1 Electronically Marked Cable Assembly (EMCA) Paddle  
Card Reference Design  
Type-C to DisplayPort Cable Electrical Requirements  
CCG1 USB Type-C to Legacy USB Device Cable Paddle Card  
Reference Schematics  
Dead Battery Charging Implementation in USB Type-C  
Solutions - KBA97273  
EZ-USB GX3 USB Type-C to Gigabit Ethernet Dongle  
EZ-PD™ CCG2 USB Type-C Monitor/Dock Solution  
CCG2 20W Power Adapter Reference Design  
CCG2 18W Power Adapter Reference Design  
Termination Resistors Required for the USB Type-C Connector  
– KBA97180  
VBUS Bypass Capacitor Recommendation for Type-C Cable  
and Type-C to Legacy Cable/AdapterAssemblies – KBA97270  
Need for Regulator and Auxiliary Switch in Type-C to  
DisplayPort (DP) Cable Solution - KBA97274  
EZ-USB GX3 USB Type-A to Gigabit Ethernet Reference  
Design Kit  
Need for a USB Billboard Device in Type-C Solutions –  
KBA97146  
Kits  
CCG1 Devices in Type-C to Legacy Cable/AdapterAssemblies  
– KBA97145  
CY4501 CCG1 Development Kit  
CY4502 EZ-PD™ CCG2 Development Kit  
CY4531 EZ-PD CCG3 Evaluation Kit  
CY4541 EZ-PD™ CCG4 Evaluation Kit  
Cypress USB Type-C Controller Supported Solutions –  
KBA97179  
Termination Resistors for Type-C to Legacy Ports – KBA97272  
Handling Instructions for CY4502 CCG2 Development Kit –  
KBA97916  
Datasheets  
CCG1 Datasheet: USB Type-C Port Controller with Power  
Delivery  
Thunderbolt™ Cable Application Using CCG3 Devices -  
KBA210976  
CYPD1120 Datasheet: USB Power Delivery Alternate Mode  
Controller on Type-C  
Power AdapterApplication Using CCG3 Devices - KBA210975  
Methods to Upgrade Firmware on CCG3 Devices - KBA210974  
Device Flash Memory Size and Advantages - KBA210973  
Applications of EZ-PD™ CCG5 - KBA210739  
Application Notes  
CCG2: USB Type-C Port Controller Datasheet  
CCG3: USB Type-C Controller Datasheet  
CCG5C: USB Type-C Controller Datasheet  
AN96527 - Designing USB Type-C Products Using Cypress’s  
CCG1 Controllers  
AN95615 - Designing USB 3.1 Type-C Cables Using EZ-PD™  
CCG2  
Document Number: 002-23191 Rev. *G  
Page 36 of 38  
EZ-PD™ CCG6  
Document History Page  
Document Title: EZ-PD™ CCG6, USB Type-C Port Controller  
Document Number: 002-23191  
Submission  
Revision  
ECN  
Description of Change  
Date  
*B  
*C  
6270794  
6391831  
08/01/2018 Post to external web.  
11/22/2018 Updated Features.  
Updated CCG6 DPLUS/DMINUS Switch Block Diagram.  
Updated Peripherals.  
Updated RCP section.  
Updated Pinouts and Application Diagrams.  
Updated Ordering Information.  
*D  
*E  
6403615  
6342385  
12/11/2018 Removed Preliminary status.  
Updated Applications and Logic Block Diagram.  
Updated Overvoltage and Undervoltage Protection on VBUS.  
Updated VBUS Load Switch Controller for Provider Path.  
Added a footnote for SID.GIO#35B.  
Updated Provider Side PFET RCP, SCP AC Specifications.  
02/19/2019 Updated Copyright information.  
Updated Type-C in Features.  
Updated USB 2.0 Mux.  
Updated Figure 7.  
Updated Table 33.  
*F  
6524858  
7199318  
04/04/2019 Updated Table 2: Updated I2C Slave values for Floating and Pulled up with  
1 k.  
Updated Table 36: DC.RCP.45 Max value changed from 100 mV to 130 mV.  
*G  
26/07/2021 Updated package diagram title for Figure 8.  
Updated Sales, Solutions, and Legal Information and Copyright information.  
Document Number: 002-23191 Rev. *G  
Page 37 of 38  
EZ-PD™ CCG6  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |   
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB  
Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify  
the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely  
responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any  
modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you  
had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT  
NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.  
© Cypress Semiconductor Corporation, 2018-2021. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This  
document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other  
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks,  
or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally  
to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the  
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,  
or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the  
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"  
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other  
medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns  
harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use  
of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited  
extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written  
authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of  
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-23191 Rev. *G  
Revised July 26, 2021  
Page 38 of 38  

相关型号:

CYPD6125-40LQXIT

EZ-PD™ CCG6 One-Port USB-C & PD Controller
INFINEON

CYPD6137-40LQXIT

USB Bus Controller, CMOS, QFN-40
CYPRESS

CYPD7191-40LDXS

EZ-PD™ CCG7S CYPD7191-40LDXS is the tray packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7191-40LDXST

EZ-PD™ CCG7S CYPD7191-40LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7271-68LQXQ

EZ-PD™ CCG7DC CYPD7271-68LQXQ is the tray packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.
INFINEON

CYPD7271-68LQXQT

EZ-PD™ CCG7DC CYPD7271-68LQXQT is the tape and reel packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.
INFINEON

CYPD7291-68LDXS

EZ-PD™ CCG7D CYPD7291-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7291-68LDXST

EZ-PD™ CCG7D CYPD7291-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7299-68LDXS

EZ-PD™ CCG7D CYPD7299-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPD7299-68LDXST

EZ-PD™ CCG7D CYPD7299-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPM1115-48LQXI

EZ-PD™ PMG1-B1 CYPM1115-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1115-48LQXIT

EZ-PD™ PMG1-B1 CYPM1115-48LQXIT因其Rp 和Rd 终端电阻和卷带包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON