CYUSB3014-BZXCT [INFINEON]

EZ-USB™ FX3 USB 5 Gbps外设控制器;
CYUSB3014-BZXCT
型号: CYUSB3014-BZXCT
厂家: Infineon    Infineon
描述:

EZ-USB™ FX3 USB 5 Gbps外设控制器

控制器
文件: 总82页 (文件大小:719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYUSB301X, CYUSB201X  
EZ-USB FX3  
SuperSpeed USB Controller  
Features  
• Universal serial bus (USB) integration  
- USB 3.2, Gen 1 and USB 2.0 peripherals compliant with USB 3.2 Specification Revision 1.0 (TID # 340800007)  
- 5-Gbps SuperSpeed PHY compliant with USB 3.2 Gen 1  
- High-speed On-The-Go (HS-OTG) host and peripheral compliant with OTG Supplement Version 2.0  
- Thirty-two physical endpoints  
• General programmable interface (GPIF™ II)  
- Programmable 100-MHz GPIF II enables connectivity to a wide range of external devices  
- 8-, 16-, 24-, and 32-bit data bus  
- Up to 16 configurable control signals  
• Fully accessible 32-bit CPU  
- ARM926EJ core with 200-MHz operation  
- 512-KB or 256-KB embedded SRAM  
• Additional connectivity to the following peripherals  
- SPI master at up to 33 MHz  
- UART support of up to 4 Mbps  
- I2C master controller at 1 MHz  
- I2S master (transmitter only) at sampling frequencies of 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz and  
192 kHz  
• Selectable clock input frequencies  
- 19.2, 26, 38.4, and 52 MHz  
- 19.2-MHz crystal input support  
• Ultra low-power in core power-down mode  
- Less than 60 µA with VBATT on and 20 µA with VBATT off  
• Independent power domains for core and I/O  
- Core operation at 1.2 V  
- I2S, UART, and SPI operation at 1.8 to 3.3 V  
- I2C operation at 1.2 V to 3.3 V  
• Package options  
- 121-ball, 10- × 10-mm, 0.8-mm pitch Pb-free ball grid array (BGA)  
- See Table 24 for details on the seven FX3 variants  
• EZ-USB® software development kit (SDK) for code development of firmware and PC Applications  
- Includes RTOS Framework (using ThreadX Version 5)  
- Firmware examples covering all I/O modules  
- Visual Studio host examples using C++ and C#  
• SuperSpeed explorer board available for rapid prototyping  
- Several accessory boards also available:  
• Adapter boards for Xilinx/Altera FPGA development  
• Adapter board for video development  
• CPLD board for concept testing and initial development  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Applications  
Applications  
Digital video camcorders  
Digital still cameras  
Printers  
Scanners  
Video capture cards  
Test and measurement equipment  
Surveillance cameras  
Personal navigation devices  
Medical imaging devices  
Video IP phones  
Portable media players  
Industrial cameras  
Data loggers  
Data acquisition  
High-performance human interface devices (gesture recognition)  
Functional description  
For a complete list of related documentation, click here.  
Errata: For information on silicon errata, see “Errata” on page 70. Details include trigger conditions, devices affected, and proposed workaround.  
Datasheet  
2
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Logic block diagram  
Logic block diagram  
Datasheet  
3
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
More information  
1
More information  
Infineon provides a wealth of data at www.infineon.com to help you to select the right USB SuperSpeed device  
for your design, and to help you to quickly and effectively integrate the device into your design.  
• Overview: USB Portfolio, USB Roadmap  
• USB 3.0 Product Selectors: FX3, FX3S, CX3, HX3, SX3  
• Application notes: Infineon offers a large number of USB application notes covering a broad range of topics,  
from basic to advanced level. Recommended application notes for getting started with FX3 are:  
- AN75705 - Getting Started with EZ-USB FX3  
- AN76405 - EZ-USB FX3 Boot Options  
- AN70707 - EZ-USB FX3/FX3S/SX3 Hardware Design Guidelines and Schematic Checklist  
- AN65974 - Designing with the EZ-USB FX3 Slave FIFO Interface  
- AN75779 - How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC)  
Framework  
- AN86947 - Optimizing USB 3.0 Throughput with EZ-USB FX3  
- AN84868 - Configuring an FPGA over USB Using Cypress EZ-USB FX3  
- AN68829 - Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode  
- AN73609 - EZ-USB FX2LP/ FX3 Developing Bulk-Loop Example on Linux  
- AN77960 - Introduction to EZ-USB FX3 High-Speed USB Host Controller  
- AN76348 - Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications  
- AN89661 - USB RAID 1 Disk Design Using EZ-USB FX3S  
• Code Examples:  
- USB Hi-Speed  
- USB Full-Speed  
- USB SuperSpeed  
• Knowledge Base Articles (KBA):  
- FX3 FAQs - KBA224051  
- Trouble Shooting Guide for the FX3/FX3S/CX3 Enumeration - KBA222372  
- EZ-USB™ FX3 Explorer kit as 16-channel 100 MHz logic analyzer with sigrok PulseView - KBA233652  
- EZ-USB™ FX3-based HDMI-to-USB3 Vision solution demo kit - KBA235421  
- EZ-USB™ FX3: Open source KiCad based schematic and BOM for FX3 camera kit - KBA236085  
• Technical Reference Manual (TRM):  
- EZ-USB FX3 Technical Reference Manual  
• Development Kits:  
- CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit  
• Models: IBIS  
Datasheet  
4
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
More information  
1.1  
EZ-USB FX3 Software Development Kit  
Cypress delivers the complete software and firmware stack for FX3, in order to easily integrate SuperSpeed USB  
into any embedded application. The Software Development Kit (SDK) comes with tools, drivers and application  
examples, which help accelerate application development.  
1.2  
GPIF™ II Designer  
The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-USB  
FX3 USB 3.0 Device Controller.  
The tool allows users the ability to select from one of five Cypress supplied interfaces, or choose to create their  
own GPIF II interface from scratch. Cypress has supplied industry standard interfaces such as Asynchronous and  
Synchronous Slave FIFO, Asynchronous and Synchronous SRAM, and Asynchronous SRAM. Designers who  
already have one of these pre-defined interfaces in their system can simply select the interface of choice, choose  
from a set of standard parameters such as bus width (x8, 16, x32) endianess, clock settings, and compile the  
interface. The tool has a streamlined three step GPIF interface development process for users who need a  
customized interface. Users are able to first select their pin configuration and standard parameters. Secondly,  
they can design a virtual state machine using configurable actions. Finally, users can view output timing to verify  
that it matches the expected timing. Once the three step process is complete, the interface can be compiled and  
integrated with FX3.  
Datasheet  
5
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Table of contents  
Table of contents  
Features ...........................................................................................................................................1  
Applications......................................................................................................................................2  
Functional description.......................................................................................................................2  
Logic block diagram ..........................................................................................................................3  
1 More information............................................................................................................................4  
1.1 EZ-USB FX3 Software Development Kit .................................................................................................................5  
1.2 GPIF™ II Designer.....................................................................................................................................................5  
Table of contents...............................................................................................................................6  
2 Functional overview .......................................................................................................................8  
2.1 Application examples .............................................................................................................................................8  
3 USB interface ...............................................................................................................................10  
3.1 OTG ........................................................................................................................................................................10  
3.1.1 OTG connectivity................................................................................................................................................10  
3.2 ReNumeration.......................................................................................................................................................11  
3.3 VBUS overvoltage protection...............................................................................................................................11  
3.4 Carkit UART Mode .................................................................................................................................................11  
4 GPIF II ..........................................................................................................................................12  
4.0.1 Slave FIFO interface ...........................................................................................................................................12  
5 CPU .............................................................................................................................................13  
6 JTAG interface ..............................................................................................................................14  
7 Other interfaces............................................................................................................................15  
7.1 SPI interface ..........................................................................................................................................................15  
7.2 UART interface ......................................................................................................................................................15  
7.3 I2C interface ..........................................................................................................................................................15  
7.4 I2S interface ..........................................................................................................................................................16  
8 Boot options.................................................................................................................................17  
9 Reset ...........................................................................................................................................18  
9.1 Hard reset..............................................................................................................................................................18  
9.2 Soft reset ...............................................................................................................................................................18  
10 Clocking .....................................................................................................................................19  
10.1 32-kHz watchdog timer clock input ...................................................................................................................20  
11 Power ........................................................................................................................................21  
11.1 Power Modes.......................................................................................................................................................21  
12 Digital I/Os .................................................................................................................................24  
13 GPIOs.........................................................................................................................................25  
14 System-level ESD ........................................................................................................................26  
15 Pin configurations.......................................................................................................................27  
16 Pin description ...........................................................................................................................28  
17 Electrical specifications...............................................................................................................32  
17.1 Absolute maximum ratings ................................................................................................................................32  
17.2 Operating conditions..........................................................................................................................................32  
17.3 DC specifications.................................................................................................................................................33  
18 Thermal characteristics...............................................................................................................36  
19 AC timing parameters..................................................................................................................37  
19.1 GPIF II lines AC characteristics at 100 MHz ........................................................................................................37  
19.2 GPIF II PCLK jitter characteristics.......................................................................................................................37  
19.3 GPIF II timing.......................................................................................................................................................38  
19.4 Slave FIFO interface ............................................................................................................................................41  
19.4.1 Synchronous Slave FIFO Read sequence description....................................................................................41  
19.4.2 Synchronous Slave FIFO Write sequence description ...................................................................................43  
19.4.3 Asynchronous Slave FIFO Read sequence description ..................................................................................46  
Datasheet  
6
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Table of contents  
19.4.4 Asynchronous Slave FIFO Write sequence description..................................................................................47  
19.5 Host Processor Interface (P-Port) timing...........................................................................................................50  
19.5.1 Asynchronous SRAM timing.............................................................................................................................50  
19.5.2 ADMux timing for Asynchronous Access .........................................................................................................54  
19.5.3 Synchronous ADMux timing ............................................................................................................................56  
19.6 Serial Peripherals timing ....................................................................................................................................59  
19.6.1 I2C timing .........................................................................................................................................................59  
19.6.2 I2S timing diagram...........................................................................................................................................62  
19.6.3 SPI timing specification...................................................................................................................................63  
19.7 Reset sequence ...................................................................................................................................................65  
20 Package diagram ........................................................................................................................66  
21 Ordering information ..................................................................................................................67  
21.1 Ordering code definitions...................................................................................................................................67  
22 Acronyms ...................................................................................................................................68  
23 Document conventions................................................................................................................69  
23.1 Units of measure .................................................................................................................................................69  
24 Errata ........................................................................................................................................70  
24.1 Qualification status.............................................................................................................................................70  
24.2 Errata summary ..................................................................................................................................................70  
Revision history ..............................................................................................................................75  
Datasheet  
7
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Functional overview  
2
Functional overview  
Infineon’s EZ-USB FX3 is a SuperSpeed peripheral controller, providing integrated and flexible features.  
FX3 has a fully configurable, parallel, general programmable interface called GPIF II, which can connect to any  
processor, ASIC, or FPGA. GPIF II is an enhanced version of the GPIF in FX2LP, Infineon’s flagship USB 2.0 product.  
It provides easy and glueless connectivity to popular interfaces, such as asynchronous SRAM, asynchronous and  
synchronous address data multiplexed interfaces, and parallel ATA.  
FX3 has integrated the USB 3.2 Gen 1 and USB 2.0 physical layers (PHYs) along with a 32-bit ARM926EJ-S  
microprocessor for powerful data processing and for building custom applications. It implements an architecture  
that enables 375-MBps data transfer from GPIF II to the USB interface.  
An integrated USB 2.0 OTG controller enables applications in which FX3 may serve dual roles; for example,  
EZ-USB FX3 may function as an OTG Host to MSC as well as HID-class devices.  
FX3 contains 512 KB or 256 KB of on-chip SRAM (see “Ordering information” on page 67) for code and data.  
EZ-USB FX3 also provides interfaces to connect to serial peripherals such as UART, SPI, I2C, and I2S.  
FX3 comes with application development tools. The software development kit comes with firmware and host  
application examples for accelerating time to market.  
FX3 complies with the USB 3.2, Gen 1.0 specification and is also backward compatible with USB 2.0. It also  
complies with USB 2.0 OTG Specification v2.0.  
2.1  
Application examples  
In a typical application (see Figure 1), the FX3 functions as the main processor running the application software  
that connects external hardware to the SuperSpeed USB connection. Additionally, FX3 can function as a  
coprocessor connecting via the GPIF II interface to an application processor (see Figure 2) and operates as a  
subsystem providing SuperSpeed USB connectivity to the application processor.  
Crystal*  
Clock  
External Slave  
Device  
(e.g. Image  
Sensor)  
EZ-USB™ FX3  
GPIF II  
USB  
USB Host  
I2C  
*A clock input may be provided on the CLKIN  
pin instead of a crystal input  
EEPROM  
Figure 1  
EZ-USB FX3 as main processor  
Datasheet  
8
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Functional overview  
Crystal*  
Clock  
External Master  
(e.g. MCU/CPU/  
FPGA/ASIC)  
EZ-USB™ FX3  
GPIF II  
USB  
USB Host  
I2C  
* A clock input may be provided on the  
CLKIN pin instead of a crystal input  
EEPROM  
Figure 2  
EZ-USB FX3 as a coprocessor  
Datasheet  
9
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
USB interface  
3
USB interface  
FX3 complies with the following specifications and supports the following features:  
• Supports USB peripheral functionality compliant with USB 3.2 Specification Revision 1.0 and is also backward  
compatible with the USB 2.0 Specification.  
• FX3 Hi-Speed parts (CYUSB201X) only support USB 2.0.  
• Complies with OTG Supplement Revision 2.0. It supports high-speed, full-speed, and low-speed OTG dual-role  
device capability. As a peripheral, FX3 is capable of SuperSpeed, high-speed, and full-speed. As a host, it is  
capable of high-speed, full-speed, and low-speed.  
• Supports Carkit Pass-Through UART functionality on USB D+/D– lines based on the CEA-936A specification.  
• Supports 16 IN and 16 OUT endpoints.  
• Supports USB Attached SCSI (UAS) device-class to optimize mass-storage access performance.  
• As a USB peripheral, application examples show that the FX3 supports UAS, USB Video Class (UVC), and Mass  
Storage Class (MSC) USB peripheral classes. All other device classes can be supported by customer firmware; a  
template example is provided as a starting point.  
• As an OTG host, application examples show that FX3 supports MSC and HID device classes.  
Note When the USB port is not in use, disable the PHY and transceiver to save power.  
3.1  
OTG  
FX3 is compliant with the OTG Specification Revision 2.0. In OTG mode, FX3 supports both A and B device modes  
and supports Control, Interrupt, Bulk, and Isochronous data transfers.  
FX3 requires an external charge pump (either standalone or integrated into a PMIC) to power VBUS in the OTG  
A-device mode.  
The Target Peripheral List for OTG host implementation consists of MSC- and HID-class devices.  
FX3 does not support Attach Detection Protocol (ADP).  
3.1.1  
OTG connectivity  
In OTG mode, FX3 can be configured to be an A, B, or dual-role device. It can connect to the following:  
• ACA device  
• Targeted USB peripheral  
• SRP-capable USB peripheral  
• HNP-capable USB peripheral  
• OTG host  
• HNP-capable host  
• OTG device  
Datasheet  
10  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
USB interface  
3.2  
ReNumeration  
Because of FX3’s soft configuration, one chip can take on the identities of multiple distinct USB devices.  
When first plugged into USB, FX3 enumerates automatically with the Infineon Vendor ID (0x04B4) and downloads  
firmware and USB descriptors over the USB interface. The downloaded firmware executes an electrical  
disconnect and connect. FX3 enumerates again, this time as a device defined by the downloaded information.  
This patented two-step process, called ReNumeration, happens instantly when the device is plugged in.  
3.3  
VBUS overvoltage protection  
The maximum input voltage on FX3’s VBUS pin is 6 V. A charger can supply up to 9 V on VBUS. In this case, an  
external overvoltage protection (OVP) device is required to protect FX3 from damage on VBUS. Figure 3 shows  
the system application diagram with an OVP device connected on VBUS. Refer to Table 8 for the operating range  
of VBUS and VBATT.  
POWER SUBSYSTEM  
EZ-USB FX3  
VBUS  
1
OVP device  
OTG_ID  
2
3
4
5
6
7
8
9
SSRX-  
SSRX+  
SSTX-  
SSTX+  
D-  
D+  
GND  
Figure 3  
System diagram with OVP device for VBUS  
3.4  
Carkit UART Mode  
The USB interface supports the Carkit UART mode (UART over D+/D–) for non-USB serial data transfer. This mode  
is based on the CEA-936A specification.  
In the Carkit UART mode, the output signaling voltage is 3.3 V. When configured for the Carkit UART mode, TXD  
of UART (output) is mapped to the D– line, and RXD of UART (input) is mapped to the D+ line.  
In the Carkit UART mode, FX3 disables the USB transceiver and D+ and D– pins serve as pass-through pins to  
connect to the UART of the host processor. The Carkit UART signals may be routed to the GPIF II interface or to  
GPIO[48] and GPIO[49], as shown in Figure 4.  
In this mode, FX3 supports a rate of up to 9600 bps.  
Carkit UART Pass-through  
UART_TXD  
UART_RXD  
TXD  
RXD  
(DP)  
RXD  
(
)
Carkit UART Pass-through  
Interface on GPIF II  
DP  
USB PHY  
DM  
GPIO[48]  
TXD(DM)  
(UART_TX)  
Carkit UART Pass-through  
Interface on GPIOs  
GPIO[49]  
(UART_RX)  
Figure 4  
Carkit UART Pass-through block diagram  
Datasheet  
11  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
GPIF II  
4
GPIF II  
The high-performance GPIF II interface enables functionality similar to, but more advanced than, FX2LP’s GPIF  
and Slave FIFO interfaces.  
The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master  
or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented  
with GPIF II.  
Here is a list of GPIF II features:  
• Functions as master or slave  
• Provides 256 firmware programmable states  
• Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data bus  
• Enables interface frequencies up to 100 MHz  
• Supports 14 configurable control pins when a 32- bit data bus is used. All control pins can be either input/output  
or bidirectional.  
• Supports 16 configurable control pins when a 16/8 data bus is used. All control pins can be either input/output  
or bi-directional.  
GPIF II state transitions are based on control input signals. The control output signals are driven as a result of the  
GPIF II state transitions. The INT# output signal can be controlled by GPIF II. Refer to the GPIFII Designer tool. The  
GPIF II state machine’s behavior is defined by a GPIF II descriptor. The GPIF II descriptor is designed such that the  
required interface specifications are met. 8 KB of memory (separate from the 256/512 KB of embedded SRAM) is  
dedicated to the GPIF II waveform where the GPIF II descriptor is stored in a specific format.  
Infineon’s GPIFII Designer Tool enables fast development of GPIF II descriptors and includes examples for  
common interfaces.  
Example implementations of GPIF II are the asynchronous slave FIFO and synchronous slave FIFO interfaces.  
4.0.1  
Slave FIFO interface  
The Slave FIFO interface signals are shown in Figure 5. This interface allows an external processor to directly  
access up to four buffers internal to FX3. Further details of the Slave FIFO interface are described on page 41.  
Note Access to all 32 buffers is also supported over the slave FIFO interface. For details, contact Infineon  
applications support.  
SLCS#  
PKTEND  
FLAGB  
FLAGA  
External Master  
(For example,  
A[1:0]  
D[31:0]  
MCU/CPU/  
EZ-USB FX3  
FPGA/ASIC)  
SLWR#  
SLRD#  
SLOE#  
Note: Multiple Flags may be configured.  
Figure 5  
Slave FIFO interface  
Datasheet  
12  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
CPU  
5
CPU  
FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of instruction  
tightly coupled memory (TCM) and 8 KB of Data TCM. The ARM926EJ-S core provides a JTAG interface for  
firmware debugging.  
FX3 offers the following advantages:  
• Integrates 256/512 KB of embedded SRAM for code and data and 8 KB of instruction cache and data cache.  
• Implements efficient and flexible DMA connectivity between the various peripherals (such as, USB, GPIF II, I2S,  
SPI, UART, I2C), requiring firmware only to configure data accesses between peripherals, which are then  
managed by the DMA fabric.  
• Allows easy application development using industry-standard development tools for ARM926EJ-S.  
Examples of the FX3 firmware are available with the Infineon EZ-USB FX3 Development Kit.  
Datasheet  
13  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
JTAG interface  
6
JTAG interface  
FX3’s JTAG interface has a standard five-pin interface to connect to a JTAG debugger in order to debug firmware  
through the CPU-core’s on-chip-debug circuitry.  
Industry-standard debugging tools for the ARM926EJ-S core can be used for the FX3 application development.  
For ARM JTAG access, TCK frequency should not be more than 1/6 of the CPU clock frequency.  
Datasheet  
14  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Other interfaces  
7
Other interfaces  
FX3 supports the following serial peripherals:  
• SPI  
• UART  
• I2C  
• I2S  
The SPI, UART, and I2S interfaces are multiplexed on the serial peripheral port.  
Table 7 shows details of how these interfaces are multiplexed. Note that when GPIF II is configured for a 32-bit  
data bus width (CYUSB3012 and CYUSB3014), then the SPI interface is not available.  
7.1  
SPI interface  
FX3 supports an SPI Master interface on the Serial Peripherals port. The maximum operation frequency is 33 MHz.  
The SPI controller supports four modes of SPI communication (see “SPI timing specification” on page 63 for  
details on the modes) with the Start-Stop clock. This controller is a single-master controller with a single  
automated SSN control. It supports transaction sizes ranging from four bits to 32 bits.  
7.2  
UART interface  
The UART interface of FX3 supports full-duplex communication. It includes the signals noted in Table 1.  
Table 1  
Signal  
UART interface signals  
Description  
TX  
RX  
CTS  
RTS  
Output signal  
Input signal  
Flow control  
Flow control  
The UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware.  
If flow control is enabled, then FX3’s UART only transmits data when the CTS input is asserted. In addition to this,  
FX3’s UART asserts the RTS output signal, when it is ready to receive data.  
7.3  
I2C interface  
FX3’s I2C interface is compatible with the I2C Bus Specification Revision 3. This I2C interface is capable of  
operating only as I2C master; therefore, it may be used to communicate with other I2C slave devices. For example,  
FX3 may boot from an EEPROM connected to the I2C interface, as a selectable boot option.  
FX3’s I2C Master Controller also supports multi-master mode functionality.  
The power supply for the I2C interface is VIO5, which is a separate power domain from the other serial peripherals.  
This gives the I2C interface the flexibility to operate at a different voltage than the other serial interfaces.  
The I2C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum  
operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported  
are 400 kHz and 1 MHz. The I2C controller supports clock-stretching to enable slower devices to exercise flow  
control.  
The I2C interface’s SCL and SDA signals require external pull-up resistors. The pull-up resistors must be  
connected to VIO5.  
Datasheet  
15  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Other interfaces  
7.4  
I2S interface  
FX3 has an I2S port to support external audio codec devices. FX3 functions as I2S Master as transmitter only. The  
I2S interface consists of four signals: clock line (I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS), and  
master system clock (I2S_MCLK). FX3 can generate the system clock as an output on I2S_MCLK or accept an  
external system clock input on I2S_MCLK.  
The sampling frequencies supported by the I2S interface are 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz and  
192 kHz.  
Datasheet  
16  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Boot options  
8
Boot options  
FX3 can load boot images from various sources, selected by the configuration of the PMODE pins. Following are  
the FX3 boot options:  
• Boot from USB  
• Boot from I2C  
• Boot from SPI  
- Infineon SPI Flash parts supported are S25FS064S (64-Mbit), S25FS128S (128-Mbit) and S25LFL064L (64-Mbit).  
- W25Q32FW (32-Mbit) is also supported.  
• Boot from GPIF II Sync ADMux mode  
Table 2  
FX3 booting options  
PMODE[2:0][1]  
Boot from  
F00  
F11  
F1F  
1FF  
0F1  
Sync ADMux (16-bit)  
USB boot  
I2C, On failure, USB boot is enabled  
I2C only  
SPI, On failure, USB boot is enabled  
Datasheet  
17  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Reset  
9
Reset  
9.1  
Hard reset  
A hard reset is initiated by asserting the Reset# pin on FX3. The specific reset sequence and timing requirements  
are detailed in Figure 29 and Table 23. All I/Os are tristated during a hard reset. Note however, that the on-chip  
bootloader has control after a hard reset and it will configure I/O signals depending on the selected boot mode;  
see AN76405 - EZ-USB® FX3™ Boot Options for more details.  
9.2  
Soft reset  
In a soft reset, the processor sets the appropriate bits in the PP_INIT control register. There are two types of soft  
reset:  
• CPU reset – The CPU program counter is reset. Firmware does not need to be reloaded following a CPU reset.  
• Whole device reset – This reset is identical to hard reset.  
• The firmware must be reloaded following a whole device reset.  
Note  
1. F indicates floating.  
Datasheet  
18  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Clocking  
10  
Clocking  
FX3 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be  
connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are  
not used.  
Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and  
52 MHz.  
FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option  
is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used  
to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select  
the crystal- or clock-frequency option. The configuration options are shown in Table 3.  
Clock inputs to FX3 must meet the phase noise and jitter requirements specified in Table 4.  
The input clock frequency is independent of the clock and data rate of the FX3 core or any of the device interfaces.  
The internal PLL applies the appropriate clock multiply option depending on the input frequency.  
Table 3  
FSLC[2]  
Crystal/clock frequency selection  
FSLC[1]  
FSLC[0]  
Crystal/clock frequency  
19.2-MHz crystal  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
19.2-MHz input CLK  
26-MHz input CLK  
38.4-MHz input CLK  
52-MHz input CLK  
Table 4  
FX3 input clock specifications  
Parameter Description  
Specification  
Units  
Min  
Max  
–75  
100-Hz offset  
1-kHz offset  
10-kHz offset  
100-kHz offset  
1-MHz offset  
–104  
–120  
–128  
–130  
Phase noise  
dB  
Maximum frequency  
deviation  
150  
ppm  
Duty cycle  
Overshoot  
Undershoot  
Rise time/fall time  
30  
70  
3
–3  
3
%
ns  
Datasheet  
19  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Clocking  
10.1  
32-kHz watchdog timer clock input  
FX3 includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically  
wake up the FX3 in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock,  
which may be optionally supplied from an external source on a dedicated FX3 pin.  
The firmware can disable the watchdog timer. Requirements for the optional 32-kHz clock input are listed in  
Table 5.  
Table 5  
32-kHz clock input requirements  
Parameter  
Min  
40  
Max  
60  
±200  
200  
Units  
%
ppm  
ns  
Duty cycle  
Frequency deviation  
Rise time/fall time  
Datasheet  
20  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Power  
11  
Power  
FX3 has the following power supply domains:  
IO_VDDQ: This is a group of independent supply domains for digital I/Os. The voltage level on these supplies is  
1.8 V to 3.3 V. FX3 provides six independent supply domains for digital I/Os listed as follows (see Table 7 for  
details on each of the power domain signals):  
- VIO1: GPIF II I/O  
- VIO2: IO2  
- VIO3: IO3  
- VIO4: UART-/SPI/I2S  
- VIO5: I2C and JTAG (supports 1.2 V to 3.3 V)  
- CVDDQ: This is the supply voltage for clock and reset I/O. It should be either 1.8 V or 3.3 V based on the voltage  
level of the CLKIN signal.  
- VDD: This is the supply voltage for the logic core. The nominal supply-voltage level is 1.2 V. This supplies the  
core logic circuits. The same supply must also be used for the following:  
AVDD: This is the 1.2-V supply for the PLL, crystal oscillator, and other core analog circuits.  
U3TXVDDQ/U3RXVDDQ: These are the 1.2-V supply voltages for the USB 3.0 interface.  
VBATT/VBUS: This is the 3.2-V to 6-V battery power supply for the USB I/O and analog circuits. This supply powers  
the USB transceiver through FX3’s internal voltage regulator. VBATT is internally regulated to 3.3 V.  
Note:  
No specific power-up sequence for FX3 power domains. Minimum power on reset time of 1 ms should be met and  
the power domains must be stable for FX3 operation.  
11.1  
Power Modes  
FX3 supports the following power modes:  
• Normal mode: This is the full-functional operating mode. The internal CPU clock and the internal PLLs are  
enabled in this mode.  
- Normal operating power consumption does not exceed the sum of ICC Core max and ICC USB max (see Table 8  
for current consumption specifications).  
- The I/O power supplies VIO2, VIO3, VIO4, and VIO5 can be turned off when the corresponding interface is not  
in use. VIO1 cannot be turned off at any time if the GPIF II interface is used in the application.  
• Low-power modes (see Table 6):  
- Suspend mode with USB 3.0 PHY enabled (L1)  
- Suspend mode with USB 3.0 PHY disabled (L2)  
- Standby mode (L3)  
- Core power-down mode (L4)  
Datasheet  
21  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Power  
Table 6  
Entry and Exit methods for Low-Power Modes  
Low-Power  
Characteristics  
Methods of Entry  
Methods of Exit  
Mode  
The power consumption in this mode  
does not exceed ISB1  
Firmware executing on ARM926EJ-S core D+ transitioning to low or  
can put FX3 into suspend mode. For  
example, on USB suspend condition,  
firmware may decide to put FX3 into  
suspend mode  
high  
USB 3.0 PHY is enabled and is in U3 mode  
(one of the suspend modes defined by  
the USB 3.0 specification). Thisone block  
alone is operational with its internal  
clock while all other clocks are shut down  
D– transitioning to low or  
high  
Impedance change on  
OTG_ID pin  
External Processor, through the use of  
mailbox registers, can put FX3 into  
suspend mode  
Resume condition on  
SSRX±  
All I/Os maintain their previous state  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
Detection of VBUS  
Suspend Mode  
with USB 3.0  
PHY Enabled  
(L1)  
Level detect on  
UART_CTS  
(programmable polarity)  
The states of the configuration registers,  
buffer memory, and all internal RAM are  
maintained  
GPIF II interface assertion  
of CTL[0]  
All transactions must be completed  
before FX3 enters Suspend mode (state  
of outstanding transactions are not  
preserved)  
Assertion of RESET#  
The firmware resumes operation from  
where it was suspended (except when  
woken up by RESET# assertion) because  
the program counter does not reset  
The power consumption in this mode  
does not exceed ISB2  
Firmware executing on ARM926EJ-S core D+ transitioning to low or  
can put FX3 into suspend mode. For  
example, on USB suspend condition,  
firmware may decide to put FX3 into  
suspend mode  
high  
USB 3.0 PHY is disabled and the USB  
interface is in suspend mode  
D– transitioning to low or  
high  
The clocks are shut off. The PLLs are  
disabled  
Impedance change on  
OTG_ID pin  
External Processor, through the use of  
mailbox registers can put FX3 into  
suspend mode  
All I/Os maintain their previous state  
Detection of VBUS  
USB interface maintains the previous  
Level detect on  
state  
UART_CTS  
(programmable polarity)  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
Suspend Mode  
with USB 3.0  
PHY Disabled  
(L2)  
GPIF II interface assertion  
of CTL[0]  
Assertion of RESET#  
The states of the configuration registers,  
buffer memory and all internal RAM are  
maintained  
All transactions must be completed  
before FX3 enters Suspend mode (state  
of outstanding transactions are not  
preserved)  
The firmware resumes operation from  
where it was suspended (except when  
woken up by RESET# assertion) because  
the program counter does not reset  
Datasheet  
22  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Power  
Table 6  
Entry and Exit methods for Low-Power Modes (continued)  
Low-Power  
Characteristics  
Methods of Entry  
Methods of Exit  
Mode  
The power consumption in this mode  
does not exceed ISB3  
Firmware executing on ARM926EJ-S core Detection of VBUS  
or external processor configures the  
Level detect on  
appropriate register  
All configuration register settings and  
UART_CTS  
program/data RAM contents are  
(Programmable Polarity)  
preserved. However, data in the buffers  
or other parts of the data path, if any, is  
not guaranteed. Therefore, the external  
processor should take care that the data  
needed is read before putting FX3 into  
this Standby Mode  
GPIF II interface assertion  
of CTL[0]  
Assertion of RESET#  
The program counter is reset after  
waking up from Standby  
Standby Mode  
(L3)  
GPIO pins maintain their configuration  
Crystal oscillator is turned off  
Internal PLL is turned off  
USB transceiver is turned off  
ARM926EJ-S core is powered down.  
Upon wakeup, the core re-starts and runs  
the program stored in the program/data  
RAM  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
The power consumption in this mode  
does not exceed ISB4  
Turn off VDD  
Reapply VDD  
Assertion of RESET#  
Core power is turned off  
Core Power  
Down Mode  
(L4)  
All buffer memory, configuration  
registers, and the program RAM do not  
maintain state. After exiting this mode,  
reload the firmware  
In this mode, all other power domains  
can be turned on/off individually  
Note: The power consumption depends on how the FX3 IOs are utilized in the application. Refer to KBA85505 to  
estimate the current consumption by different power domains (VIO1–VIO5).  
Datasheet  
23  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Digital I/Os  
12  
Digital I/Os  
FX3 has internal firmware-controlled pull-up or pull-down resistors on all digital I/O pins. An internal  
50-kresistor pulls the pins high, while an internal 10-kresistor pulls the pins low to prevent them from  
floating. The I/O pins may have the following states:  
• Tristated (High-Z)  
• Weak pull-up (via internal 50 k)  
• Pull-down (via internal 10 k)  
• Hold (I/O hold its value) when in low-power modes  
• The JTAG TDI, TMS, and TRST# signals have fixed 50-kinternal pull-ups, and the TCK signal has a fixed 10-k  
pull-down resistor.  
All unused I/Os should be pulled high by using the internal pull-up resistors. All unused outputs should be left  
floating. All I/Os can be driven at full-strength, three-quarter strength, half-strength, or quarter-strength. These  
drive strengths are configured separately for each interface.  
Datasheet  
24  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
GPIOs  
13  
GPIOs  
EZ-USB enables a flexible pin configuration both on the GPIF II and the serial peripheral interfaces. Any unused  
control pins (except CTL[15]) on the GPIF II interface can be used as GPIOs. Similarly, any unused pins on the serial  
peripheral interfaces may be configured as GPIOs. See “Pin configurations” on page 27 for pin configuration  
options.  
All GPIF II and GPIO pins support an external load of up to 16 pF for every pin.  
EMI  
FX3 meets EMI requirements outlined by FCC 15B (USA) and EN55022 (Europe) for consumer electronics. FX3 can  
tolerate EMI, conducted by the aggressor, outlined by these specifications and continue to function as expected.  
Datasheet  
25  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
System-level ESD  
14  
System-level ESD  
FX3 has built-in ESD protection on the D+, D–, and GND pins on the USB interface. The ESD protection levels  
provided on these ports are:  
• ±2.2-kV human body model (HBM) based on JESD22-A114 Specification  
• ±6-kV contact discharge and ±8-kV air gap discharge based on IEC61000-4-2 level 3A  
• ± 8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C.  
This protection ensures the device continues to function after ESD events up to the levels stated in this section.  
The SSRX+, SSRX–, SSTX+, and SSTX– pins only have up to ±2.2-kV HBM internal ESD protection.  
Datasheet  
26  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Pin configurations  
15  
Pin configurations  
1
2
3
4
5
6
7
8
9
10  
11  
U3VSSQ  
U3RXVDDQ  
SSRXM  
SSRXP  
SSTXP  
SSTXM  
AVDD  
VSS  
DP  
DM  
NC  
A
B
C
D
E
F
G
H
J
VIO4  
GPIO[54]  
GPIO[50]  
GPIO[47]  
VIO2  
FSLC[0]  
GPIO[55]  
GPIO[51]  
VSS  
R_USB3  
VDD  
FSLC[1]  
GPIO[57]  
GPIO[53]  
GPIO[49]  
GPIO[41]  
GPIO[30]  
GPIO[31]  
GPIO[34]  
VSS  
U3TXVDDQ  
RESET#  
CVDDQ  
XTALIN  
CLKIN_32  
FSLC[2]  
TCK  
AVSS  
XTALOUT  
CLKIN  
VSS  
R_USB2  
VSS  
VSS  
VDD  
TDO  
TRST#  
VIO5  
OTG_ID  
GPIO[52]  
VIO3  
GPIO[56]  
GPIO[48]  
GPIO[46]  
GPIO[25]  
GPIO[29]  
GPIO[28]  
GPIO[27]  
VDD  
I2C_GPIO[58] I2C_GPIO[59]  
NC  
TDI  
TMS  
VDD  
GPIO[1]  
GPIO[4]  
GPIO[7]  
GPIO[9]  
GPIO[13]  
VIO1  
VBATT  
GPIO[0]  
GPIO[3]  
GPIO[6]  
GPIO[8]  
GPIO[12]  
GPIO[11]  
VBUS  
VDD  
GPIO[45]  
GPIO[42]  
GPIO[39]  
GPIO[36]  
GPIO[33]  
VSS  
GPIO[44]  
GPIO[43]  
GPIO[40]  
GPIO[37]  
VSS  
GPIO[2]  
GPIO[21]  
GPIO[20]  
GPIO[19]  
GPIO[18]  
VDD  
GPIO[5]  
GPIO[15]  
GPIO[24]  
GPIO[14]  
GPIO[17]  
INT#  
VSS  
GPIO[22]  
GPIO[26]  
GPIO[16]  
GPIO[23]  
VSS  
VSS  
VDD  
VIO1  
VDD  
GPIO[38]  
GPIO[35]  
VSS  
GPIO[10]  
VSS  
K
L
VSS  
GPIO[32]  
Figure 6  
FX3 121-ball BGA ball map (Top view)  
1
2
3
4
5
6
7
8
9
10  
11  
VSS  
VIO4  
VDD  
NC  
NC  
NC  
NC  
AVDD  
VSS  
DP  
DM  
NC  
A
B
C
D
E
F
G
H
J
FSLC[0]  
GPIO[55]  
GPIO[51]  
VSS  
NC  
FSLC[1]  
GPIO[57]  
GPIO[53]  
GPIO[49]  
GPIO[41]  
GPIO[30]  
GPIO[31]  
GPIO[34]  
VSS  
VDD  
CVDDQ  
XTALIN  
CLKIN_32  
FSLC[2]  
TCK  
AVSS  
XTALOUT  
CLKIN  
VSS  
R_USB2  
VSS  
VSS  
VDD  
TDO  
TRST#  
VIO5  
GPIO[54]  
GPIO[50]  
GPIO[47]  
VIO2  
VDD  
RESET#  
GPIO[56]  
GPIO[48]  
GPIO[46]  
GPIO[25]  
GPIO[29]  
GPIO[28]  
GPIO[27]  
VDD  
OTG_ID  
GPIO[52]  
VIO3  
I2C_GPIO[58] I2C_GPIO[59]  
NC  
TDI  
TMS  
VDD  
GPIO[1]  
GPIO[4]  
GPIO[7]  
GPIO[9]  
GPIO[13]  
VIO1  
VBATT  
GPIO[0]  
GPIO[3]  
GPIO[6]  
GPIO[8]  
GPIO[12]  
GPIO[11]  
VBUS  
VDD  
GPIO[45]  
GPIO[42]  
GPIO[39]  
GPIO[36]  
GPIO[33]  
VSS  
GPIO[44]  
GPIO[43]  
GPIO[40]  
GPIO[37]  
VSS  
GPIO[2]  
GPIO[21]  
GPIO[20]  
GPIO[19]  
GPIO[18]  
VDD  
GPIO[5]  
GPIO[15]  
GPIO[24]  
GPIO[14]  
GPIO[17]  
INT#  
VSS  
GPIO[22]  
GPIO[26]  
GPIO[16]  
GPIO[23]  
VSS  
VSS  
VDD  
VIO1  
VDD  
GPIO[38]  
GPIO[35]  
VSS  
GPIO[10]  
VSS  
K
L
VSS  
GPIO[32]  
Figure 7  
FX3 Hi-Speed 121-ball BGA ball map (Top view)  
Note: A2 and C3 need not be connected for FX3 Hi-Speed part.  
Datasheet  
27  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Pin description  
16  
Pin description  
Table 7  
CYUSB3011, CYUSB3012, CYUSB3013, CYUSB3014 and CYUSB2014 pin list  
BGA  
Power domain  
I/O  
Name  
Description  
GPIF II interface  
DQ[0]  
Slave FIFO interface [2]  
DQ[0]  
F10  
F9  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
GPIO[8]  
GPIO[9]  
GPIO[10]  
GPIO[11]  
GPIO[12]  
GPIO[13]  
GPIO[14]  
GPIO[15]  
GPIO[16]  
GPIO[17]  
GPIO[18]  
GPIO[19]  
GPIO[20]  
GPIO[21]  
GPIO[22]  
GPIO[23]  
GPIO[24]  
GPIO[25]  
GPIO[26]  
GPIO[27]  
GPIO[28]  
GPIO[29]  
GPIO[30]  
GPIO[31]  
GPIO[32]  
INT#  
DQ[1]  
DQ[1]  
F7  
DQ[2]  
DQ[2]  
G10  
G9  
F8  
DQ[3]  
DQ[3]  
DQ[4]  
DQ[4]  
DQ[5]  
DQ[5]  
H10  
H9  
J10  
J9  
DQ[6]  
DQ[6]  
DQ[7]  
DQ[7]  
DQ[8]/A0 [3]  
DQ[9]/A1 [3]  
DQ[10]  
DQ[8]/A0 [3]  
DQ[9]/A1 [3]  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14] [4]  
DQ[15] [4]  
CLK  
K11  
L10  
K10  
K9  
J8  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14] [4]  
DQ[15] [4]  
PCLK  
G8  
J6  
K8  
K7  
J7  
CTL[0]  
SLCS#  
CTL[1]  
SLWR#  
SLOE#  
CTL[2]  
H7  
G7  
G6  
K6  
H8  
G5  
H6  
K5  
J5  
CTL[3]  
SLRD#  
CTL[4]  
FLAGA  
CTL[5]  
FLAGB  
CTL[6]  
GPIO  
CTL[7]  
PKTEND#  
GPIO  
CTL[8]  
CTL[9]  
GPIO  
CTL[10]  
CTL[11]  
CTL[12]  
PMODE[0]  
PMODE[1]  
PMODE[2]  
INT#/CTL[15]  
GPIO  
A1  
H5  
G4  
H4  
L4  
A0  
PMODE[0]  
PMODE[1]  
PMODE[2]  
CTL[15]  
L8  
Notes  
2. Slave FIFO is an example configuration of GPIF II Interface. The Slave FIFO control signal assignments can be  
modified using GPIF-II designer tool.  
3. For 8-bit data bus configuration, GPIO[8] and GPIO[9] act as address lines.  
4. GPIF II can also be configured as a serial interface. The DQ[15] pin becomes a serial output and DQ[14]  
becomes a serial input in this mode.  
Datasheet  
28  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Pin description  
Table 7  
CYUSB3011, CYUSB3012, CYUSB3013, CYUSB3014 and CYUSB2014 pin list (continued)  
BGA  
Power domain  
I/O  
Name  
Description  
CYUSB3014  
and  
CYUSB3011, CYUSB3012, CYUSB3013, CYUSB3014 and  
CYUSB2014  
CYUSB2014  
16-bit  
16-bitDataBus  
+ UART + SPI +  
I2S  
16-bit  
16-bit  
32-bit  
Data Bus +  
UART +  
GPIO  
GPIO  
only  
Data Bus + Data Bus +  
SPI + GPIO I2S + GPIO  
Data Bus  
K2  
J4  
K1  
J2  
J3  
J1  
H2  
H3  
F4  
G2  
G3  
F3  
F2  
F5  
E1  
E5  
E4  
D1  
D2  
D3  
D4  
C1  
C2  
D5  
C4  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO4  
VIO4  
VIO4  
VIO4  
VIO4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[33]  
GPIO[34]  
GPIO[35]  
GPIO[36]  
GPIO[37]  
GPIO[38]  
GPIO[39]  
GPIO[40]  
DQ[16]  
DQ[17]  
DQ[18]  
DQ[19]  
DQ[20]  
DQ[21]  
DQ[22]  
DQ[23]  
DQ[24]  
DQ[25]  
DQ[26]  
DQ[27]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I2S_CLK  
I2S_SD  
I2S_WS  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O GPIO[41]/A0 [5]  
I/O GPIO[42]/A1 [5]  
GPIO  
GPIO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[43]  
GPIO[44]  
GPIO[45]  
GPIO[46]  
GPIO[47]  
GPIO[48]  
GPIO[49]  
GPIO[50]  
GPIO[51]  
GPIO[52]  
GPIO[53]  
GPIO[54]  
GPIO[55]  
GPIO[56]  
GPIO[57]  
GPIO  
GPIO  
GPIO  
DQ[28]  
DQ[29]  
DQ[30]  
DQ[31]  
I2S_CLK  
I2S_SD  
I2S_WS  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
I2S_MCLK  
UART_RT S  
UART_CT S  
UART_TX  
UART_R X  
I2S_CLK  
I2S_SD  
I2S_WS  
SPI_SCK  
SPI_SSN  
SPI_MIS O  
SPI_MOS I  
I2S_MCL K  
UART_RTS SPI_SCK  
UART_CTS SPI_SSN  
UART_TX SPI_MISO  
UART_RX SPI_MOSI  
GPIO  
GPIO  
I2S_MCLK GPIO  
USB Port  
CYUSB301X  
SSRX-  
CYUSB201X  
A3  
A4  
A6  
A5  
B3  
U3RXVDDQ  
U3RXVDDQ  
U3TXVDDQ  
U3TXVDDQ  
U3TXVDDQ  
I
I
SSRXM  
SSRXP  
SSTXM  
SSTXP  
R_usb3  
NC  
NC  
NC  
NC  
NC  
SSRX+  
O
O
I/O  
SSTX-  
SSTX+  
Precision resistor for USB 3.0  
(Connect a 200 ±1% resistor  
between this pin and GND)  
C9  
A9  
VBUS/VBATT  
VBUS/VBATT  
VBUS/VBATT  
VBUS/VBATT  
I
OTG_ID  
DP  
OTG_ID  
D+  
I/O  
I/O  
I/O  
A10  
C8  
DM  
D–  
R_usb2  
Precision resistor for USB 2.0  
(Connect a 6.04 k ±1% resistor between this pin and GND)  
Note  
5. For 24-bit data bus configuration, GPIO[41] and GPIO[42] act as address lines.  
Datasheet  
29  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Pin description  
Table 7  
CYUSB3011, CYUSB3012, CYUSB3013, CYUSB3014 and CYUSB2014 pin list (continued)  
BGA  
Power domain  
I/O  
Name  
Description  
Clock and Reset  
FSLC[0]  
XTALIN  
B2  
C6  
C7  
B4  
E6  
D7  
D6  
C5  
CVDDQ  
AVDD  
I
FSLC[0]  
XTALIN  
I/O  
AVDD  
I/O  
XTALOUT  
FSLC[1]  
FSLC[2]  
CLKIN  
XTALOUT  
FSLC[1]  
FSLC[2]  
CLKIN  
CVDDQ  
CVDDQ  
CVDDQ  
CVDDQ  
CVDDQ  
I
I
I
I
I
CLKIN_32  
RESET#  
CLKIN_32  
RESET#  
I2C and JTAG  
I2C_SCL  
I2C_SDA  
TDI  
D9  
D10  
E7  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
I/O  
I2C_GPIO[58]  
I2C_GPIO[59]  
TDI  
I/O  
I
O
I
C10  
B11  
E8  
TDO  
TDO  
TRST#  
TMS  
TRST#  
I
TMS  
F6  
I
TCK  
TCK  
D11  
O
O[60]  
GPIO  
Power  
E10  
B10  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VBATT  
VDD  
VDD  
A1  
E11  
D8  
U3VSSQ  
VBUS  
VSS  
H11  
E2  
VIO1  
VSS  
L9  
VIO1  
G1  
VSS  
VIO1  
VSS  
F1  
VIO2  
G11  
VSS  
VIO2  
E3  
L1  
B1  
L6  
VIO3  
VSS  
VIO4  
VSS  
VSS  
B6  
B5  
CVDDQ  
U3TXVDDQ  
U3RXVDDQ  
VIO5  
A2  
C11  
L11  
A7  
VSS  
AVDD  
Datasheet  
30  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Pin description  
Table 7  
BGA  
B7  
CYUSB3011, CYUSB3012, CYUSB3013, CYUSB3014 and CYUSB2014 pin list (continued)  
Power domain  
I/O  
Name  
AVSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
Description  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
C3  
B8  
E9  
B9  
F11  
GND  
GND  
GND  
H1  
L7  
J11  
L5  
K4  
L3  
K3  
L2  
A8  
No Connect  
No Connect  
A11  
NC  
Datasheet  
31  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Electrical specifications  
17  
Electrical specifications  
17.1  
Absolute maximum ratings  
Exceeding maximum ratings may shorten the useful life of the device.  
Storage temperature ......................... –65°C to +150°C  
Ambient temperature with  
power supplied (Industrial) ................ –40°C to +85°C  
Ambient temperature with  
power supplied (Commercial) ................ 0°C to +70°C  
Supply voltage to ground potential  
VDD, AVDDQ ...........................................................1.25 V  
VIO1,VIO2, VIO3, VIO4, VIO5 .......................................3.6 V  
U3TXVDDQ, U3RXVDDQ .........................................1.25 V  
DC input voltage to any input pin ...............VCC + 0.3 V  
DC voltage applied to  
outputs in high Z state ............................... VCC + 0.3 V  
(VCC is the corresponding I/O voltage)  
Static discharge voltage ESD protection levels:  
• ± 2.2-kV HBM based on JESD22-A114  
• Additional ESD protection levels on D+, D–, and GND pins, and serial peripheral pins  
• ± 6-kV contact discharge, ± 8-kV air gap discharge based on IEC61000-4-2 level 3A, ± 8-kV contact discharge, and  
± 15-kV air gap discharge based on IEC61000-4-2 level 4C  
Latch-up current ............................................ 180 mA  
Maximum output short-circuit current  
for all I/Os (cumulative) ................................ –100 mA  
Maximum output current per I/O  
(source or sink) .................................................. 20 mA  
17.2  
Operating conditions  
TA (ambient temperature under bias)  
Industrial ............................................. –40°C to +85°C  
Commercial ............................................ 0°C to +70°C  
VDD, AVDDQ, U3TXVDDQ, U3RXVDDQ  
Supply voltage .....................................1.15 V to 1.25 V  
VBATT supply voltage ..................................3.2 V to 6 V  
VIO1, VIO2, VIO3, VIO4, CVDDQ  
Supply voltage .........................................1.7 V to 3.6 V  
VIO5 supply voltage ............................... 1.15 V to 3.6 V  
Datasheet  
32  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Electrical specifications  
17.3  
DC specifications  
Table 8  
Parameter  
VDD  
DC specifications  
Description  
Core voltage supply  
Analog voltage supply  
Min  
1.15  
1.15  
Max  
1.25  
1.25  
Units  
Notes  
V
V
1.2-V typical  
1.2-V typical  
AVDD  
GPIF II I/O power supply  
domain  
VIO1  
1.7  
3.6  
V
1.8-, 2.5-, and 3.3-V typical  
VIO2  
VIO3  
IO2 power supply domain  
IO3 power supply domain  
1.7  
1.7  
3.6  
3.6  
V
V
1.8-, 2.5-, and 3.3-V typical  
1.8-, 2.5-, and 3.3-V typical  
UART/SPI/I2S power supply  
domain  
VIO4  
1.7  
3.6  
V
1.8-, 2.5-, and 3.3-V typical  
VBATT  
VBUS  
USB voltage supply  
USB voltage supply  
3.2  
4.0  
6
6
V
V
3.7-V typical  
5-V typical  
1.2-V typical. A 22-µF bypass  
capacitor is required on this power  
supply.  
U3TXVDDQ  
U3RXVDDQ  
USB 3.0 1.2-V supply  
USB 3.0 1.2-V supply  
1.15  
1.15  
1.25  
1.25  
V
V
N/A for CYUSB201X  
1.2-V typical. A 22-µF bypass  
capacitor is required on this power  
supply.  
N/A for CYUSB201X  
CVDDQ  
VIO5  
Clock voltage supply  
I2C and JTAG voltage supply  
1.7  
1.15  
3.6  
3.6  
V
V
1.8-, 3.3-V typical  
1.2-, 1.8-, 2.5-, and 3.3-V typical  
For 2.0 V VCC 3.6 V  
VIH1  
Input HIGH voltage 1  
0.625 × VCC VCC + 0.3  
VCC – 0.4 VCC + 0.3  
V
(except USB port). VCC is the  
corresponding I/O voltage supply.  
For 1.7 V VCC 2.0 V  
(except USB port). VCC is the  
corresponding I/O voltage supply.  
VCC is the corresponding I/O  
voltage supply.  
VIH2  
VIL  
Input HIGH voltage 2  
Input LOW voltage  
V
V
–0.3  
0.25 × VCC  
IOH (max) = –100 µA tested at  
quarter drive strength. VCC is the  
corresponding I/O voltage supply.  
Refer toTable 9 for values of IOH at  
various drive strength and VCC.  
IOL (min) = +100 µA tested at  
quarter drive strength. VCC is the  
corresponding I/O voltage supply.  
Refer to Table 9 for values of IOL  
measured at various drive strength  
and VCC.  
VOH  
Output HIGH voltage  
Output LOW voltage  
0.9 × VCC  
V
V
VOL  
0.1 × VCC  
All I/O signals held at VDDQ  
(For I/Os with a pull-up or  
Input leakage current for all  
pins except  
SSTXP/SSXM/SSRXP/SSRXM  
IIX  
–1  
1
µA pull-down resistor connected, the  
leakage current increases by  
VDDQ/Rpu or VDDQ/RPD  
)
Datasheet  
33  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Electrical specifications  
Table 8  
DC specifications (continued)  
Parameter  
Description  
Min  
Max  
Units  
Notes  
Output High-Z leakage  
current for all pins except  
SSTXP/ SSXM/  
IOZ  
–1  
1
µA All I/O signals held at VDDQ  
SSRXP/SSRXM  
Core and analog voltage  
operating current  
USB voltage supply  
operating current  
ICC Core  
200  
mA Total current through AVDD, VDD  
ICC USB [6]  
60 [6]  
mA  
Core current: 1.5 mA  
I/O current: 20 µA  
Total suspend current  
USB current: 2 mA  
ISB1  
ISB2  
ISB3  
ISB4  
during suspend mode with  
USB 3.0 PHY enabled (L1)  
mA  
For typical PVT (typical silicon, all  
power supplies at their respective  
nominal levels at 25°C)  
Core current: 250 µA  
I/O current: 20 µA  
Total suspend current  
during suspend mode with  
USB 3.0 PHY disabled (L2)  
USB current: 1.2 mA  
mA  
µA  
µA  
For typical PVT (Typical silicon, all  
power supplies at their respective  
nominal levels at 25°C)  
Core current: 60 µA  
I/O current: 20 µA  
Total standby current  
during standby mode (L3)  
USB current: 40 µA  
For typical PVT (typical silicon, all  
power supplies at their respective  
nominal levels at 25°C)  
Core current: 0 µA  
I/O current: 20 µA  
Total standby current  
during core power-down  
mode (L4)  
USB current: 40 µA  
For typical PVT (typical silicon, all  
power supplies at their respective  
nominal levels at 25°C)  
Voltage ramp rate on core  
and I/O supplies  
Noise level permitted on VDD  
and I/O supplies  
Noise level permitted on  
AVDD supply  
VRAMP  
VN  
0.2  
50  
100  
20  
V/ms Voltage ramp must be monotonic  
Max p-p noise level permitted on all  
supplies except AVDD  
mV  
Max p-p noise level permitted on  
AVDD  
VN_AVDD  
mV  
Note  
6. For CYUSB2014 ICC USB is typically 22 mA–23 mA.  
Datasheet  
34  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Electrical specifications  
Table 9  
VDDIO (V)  
IOH/IOL values for different drive strength and VDDIO values  
VOH (V)  
VOL (V)  
Drive strength  
Quarter  
Half  
Three-quarters  
Full  
IOH max (mA)  
1.02  
IOL min (mA)  
2.21  
1.51  
1.83  
2.28  
3.28  
3.85  
4.73  
1.7  
2.5  
3.6  
1.53  
0.17  
Quarter  
Half  
Three-quarters  
Full  
Quarter  
Half  
Three-quarters  
Full  
5.03  
7.38  
8.89  
11.07  
7.80  
11.36  
13.64  
16.92  
3.96  
5.84  
6.89  
8.61  
5.74  
8.64  
10.15  
12.67  
2.25  
3.24  
0.25  
0.36  
Datasheet  
35  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Thermal characteristics  
18  
Thermal characteristics  
Table 10  
Thermal characteristics  
Description  
Value  
125  
34.66  
27.03  
13.57  
Unit  
°C  
°C/W  
°C/W  
°C/W  
Parameter  
TJ MAX  
JA  
JB  
JC  
Maximum junction temperature  
Thermal resistance (Junction to ambient)  
Thermal resistance (Junction to board)  
Thermal resistance (Junction to case)  
Datasheet  
36  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19  
AC timing parameters  
19.1  
GPIF II lines AC characteristics at 100 MHz  
Table 11  
GPIF II lines AC characteristics at 100 MHz  
Symbol  
Parameter  
Rise time  
Fall time  
Overshoot  
Undershoot  
Min  
Typ  
Max  
2.5  
2.5  
3
Unit  
ns  
ns  
%
%
Tr  
Tf  
Tov  
Tun  
3
19.2  
GPIF II PCLK jitter characteristics  
Table 12  
GPIF II PCLK jitter characteristics  
Clk Freq (MHz)  
Period jitter (ps)  
354.44  
C-C min (ps)  
–187.92  
C-C max (ps)  
204.55  
10.08  
25.2  
205.97  
–153.54  
126.53  
50.4  
144.62  
–100.16  
85.769  
100.8  
171.43  
–155.13  
157.14  
Note  
7. The clock jitter is measured using internally generated PCLK. ie. PCLK is configured as an output from GPIF.  
The data is measured over 10,000 clock cycles.  
Datasheet  
37  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.3  
GPIF II timing  
tCLKH tCLKL  
CLK  
tCLK  
tLZ  
tCO  
tHZ  
tCOE  
tDS tDH  
tDOH  
tDOH  
tLZ  
Data1  
( OUT)  
Data2  
( OUT)  
DQ- [31:0]  
Data(IN)  
tS tH  
CTL(IN)  
tCTLO  
tCOH  
CTL( OUT)  
Figure 8  
GPIF II timing in Synchronous Mode  
Table 13  
Parameter  
Frequency  
tCLK  
tCLKH  
tCLKL  
tS  
tH  
tDS  
tDH  
GPIF II timing parameters in Synchronous Mode [8]  
Description  
Interface clock frequency  
Interface clock period  
Clock high time  
Clock low time  
CTL input to clock setup time  
CTL input to clock hold time  
Data in to clock setup time  
Data in to clock hold time  
Min  
Max  
100  
Units  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
4
4
2
0.5  
2
0.5  
Clock to data out propagation delay when DQ bus is already in  
output direction  
Clock to data out propagation delay when DQ lines change to  
output from tristate and valid data is available on the DQ bus  
tCO  
7
9
ns  
ns  
tCOE  
tCTLO  
tDOH  
tCOH  
tHZ  
Clock to CTL out propagation delay  
Clock to data out hold  
Clock to CTL out hold  
Clock to high-Z  
2
0
0
8
8
ns  
ns  
ns  
ns  
ns  
tLZ  
Clock to low-Z  
Note  
8. All parameters guaranteed by design and validated through characterization.  
Datasheet  
38  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
tAH  
tDH/  
tDS/ tAS  
DATA/ ADDR  
DATA IN  
tCHZ  
tCTLassert_DQlatch  
tCTLdeassert_DQlatch  
CTL#  
(I/P, ALE/ DLE)  
tAA/tDO  
tCHZ/tOEHZ  
tCLZ/ tOELZ  
DATA OUT  
DATA OUT  
CTL#  
(I/P, non ALE/ DLE  
tCTLdeassert  
tCTLassert  
tCTLalpha  
tCTLbeta  
ALPHA  
O/P  
BETA  
O/P  
1
1
tCTLassert  
tCTLdeassert  
tCTL#  
(O/P)  
1. n is an integer >= 0  
tDST  
tDHT  
DATA/  
ADDR  
tCTLdeassert_DQassert  
tCTLassert_DQassert  
CTL#  
I/P (non DLE/ALE)  
Figure 9  
GPIF II timing in Asynchronous Mode  
tDS  
tCTLdeassert_DqlatchDDR  
tCTLassert_DQlatchDDR  
CTL#  
(I/P)  
tDS  
tDH  
tDH  
DATA IN  
Figure 10  
GPIF II timing in Asynchronous DDR Mode  
Datasheet  
39  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 14  
GPIF II timing in Asynchronous Mode[9, 10]  
Note The following parameters assume one state transition  
Parameter  
Description  
Min  
2.3  
2
2.3  
2
Max  
Units  
ns  
ns  
ns  
ns  
tDS  
tDH  
tAS  
tAH  
Data In to DLE setup time. Valid in DDR async mode.  
Data In to DLE hold time. Valid in DDR async mode.  
Address In to ALE setup time  
Address In to ALE hold time  
CTL I/O asserted width for CTRL inputs without DQ  
input association and for outputs.  
CTL I/O deasserted width for CTRL inputs without DQ  
input association and for outputs.  
tCTLassert  
7
7
ns  
ns  
tCTLdeassert  
CTL asserted pulse width for CTL inputs that signify DQ  
inputs valid at the asserting edge but do not employ  
in-built latches (ALE/DLE) for those DQ inputs.  
tCTLassert_DQassert  
20  
7
ns  
ns  
ns  
ns  
CTL deasserted pulse width for CTL inputs that signify  
tCTLdeassert_DQassert DQ input valid at the asserting edge but do not employ  
in-built latches (ALE/DLE) for those DQ inputs.  
CTL asserted pulse width for CTL inputs that signify DQ  
tCTLassert_DQdeassert inputs valid at the deasserting edge but do not employ  
in-built latches (ALE/DLE) for those DQ inputs.  
7
CTL deasserted pulse width for CTL inputs that signify  
tCTLdeassert_  
DQ inputs valid at the deasserting edge but do not  
DQdeassert  
20  
employ in-built latches (ALE/DLE) for those DQ inputs.  
CTL asserted pulse width for CTL inputs that employ  
in-built latches (ALE/DLE) to latch the DQ inputs. In this  
tCTLassert_DQlatch  
7
ns  
ns  
non-DDR case, in-built latches are always close at the  
deasserting edge.  
CTL deasserted pulse width for CTL inputs that employ  
in-built latches (ALE/DLE) to latch the DQ inputs. In this  
tCTLdeassert_DQlatch  
10  
non-DDR case, in-built latches always close at the  
deasserting edge.  
CTL asserted pulse width for CTL inputs that employ  
tCTLassert_  
in-built latches (DLE) to latch the DQ inputs in DDR  
10  
10  
ns  
ns  
ns  
ns  
DQlatchDDR  
mode.  
CTL deasserted pulse width for CTL inputs that employ  
tCTLdeassert_  
DQlatchDDR  
in-built latches (DLE) to latch the DQ inputs in DDR  
mode.  
DQ/CTL input to DQ output time when DQ change or  
CTL change needs to be detected and affects internal  
updates of input and output DQ lines.  
CTL to data out when the CTL change merely enables  
the output flop update whose data was already  
established.  
tAA  
30  
25  
tDO  
Notes  
9. All parameters guaranteed by design and validated through characterization.  
10.“alpha” output corresponds to “early output” and “beta” corresponds to “delayed output. Please refer to  
the GPIFII Designer Tool for the use of these outputs.  
Datasheet  
40  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 14  
GPIF II timing in Asynchronous Mode[9, 10] (continued)  
Note The following parameters assume one state transition  
Parameter  
Description  
Min  
0
Max  
Units  
ns  
CTL designated as OE to low-Z. Time when external  
devices should stop driving data.  
CTL designated as OE to high-Z  
CTL (non-OE) to low-Z. Time when external devices  
should stop driving data.  
tOELZ  
tOEHZ  
tCLZ  
8
8
ns  
0
ns  
tCHZ  
CTL (non-OE) to high-Z  
CTL to alpha change at output  
CTL to beta change at output  
Addr/data setup when DLE/ALE not used  
Addr/data hold when DLE/ALE not used  
30  
2
20  
30  
25  
30  
ns  
ns  
ns  
ns  
ns  
tCTLalpha  
tCTLbeta  
tDST  
tDHT  
19.4  
Slave FIFO interface  
Synchronous Slave FIFO Read sequence description  
19.4.1  
• FIFO address is stable and SLCS is asserted  
• FLAG indicates FIFO not empty status  
• SLOE is asserted. SLOE is an output-enable only, whose sole function is to drive the data bus.  
• SLRD is asserted  
The FIFO pointer is updated on the rising edge of the PCLK, while the SLRD is asserted. This starts the propagation  
of data from the newly addressed location to the data bus. After a propagation delay of tco (measured from the  
rising edge of PCLK), the new data value is present. N is the first data value read from the FIFO. To have data on  
the FIFO data bus, SLOE must also be asserted.  
The same sequence of events is applicable for a burst read.  
FLAG Usage:  
The FLAG signals are monitored for flow control by the external processor. FLAG signals are outputs from FX3 that  
may be configured to show empty, full, or partial status for a dedicated thread or the current thread that is  
addressed.  
Socket Switching Delay (Tssd):  
The socket-switching delay is measured from the time EPSWITCH# is asserted by the master, with the new socket  
address on the address bus, to the time the Current_Thread_DMA_Ready flag is asserted. For the Producer  
socket, the flag is asserted when it is ready to receive data in the DMA buffer. For the Consumer socket, the flag  
is asserted when it is ready to drive data out of the DMA buffer. For a synchronous slave FIFO interface, the  
switching delay is measured in the number of GPIF interface clock cycles; for an asynchronous slave FIFO  
interface, in PIB clock cycles. This is applicable only for the 5-bit Slave FIFO interface; there is no socket-switching  
delay in FX3’s 2-bit Slave FIFO interface, which makes use of thread switching in the GPIF™ II state machine.  
Note For burst mode, the SLRD# and SLOE# are asserted during the entire duration of the read. When SLOE# is  
asserted, the data bus is driven (with data from the previously addressed FIFO). For each subsequent rising edge  
of PCLK, while the SLRD# is asserted, the FIFO pointer is incremented and the next data value is placed on the  
data bus.  
Datasheet  
41  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Synchronous Read Cycle Timing  
tCYC  
PCLK  
SLCS  
tCH tCL  
ACCD  
t
tAS  
tAH  
FIFO ADDR  
An  
Am  
tRDH  
tRDS  
SLRD  
SLOE  
Tssd  
ACCD  
t
Tssd  
tCFLG  
FLAGA  
(dedicated thread Flag for An )  
( 1 = Not Empty 0 = Empty )  
tCFLG  
FLAGB  
(dedicated thread Flag for Am )  
( 1 = Not Empty 0 = Empty )  
tCDH  
tOELZ  
tOEZ  
tCO  
tOEZ  
High-Z  
High-Z  
High-Z  
Data  
driven:DN(An  
DN (An)  
D ( Am)  
N
Data Out  
DN+2 (Am)  
DN+1 (Am)  
)
SLWR( HIGH)  
Figure 11  
Synchronous Slave FIFO Read Mode  
Datasheet  
42  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.4.2  
Synchronous Slave FIFO Write sequence description  
• FIFO address is stable and the signal SLCS# is asserted  
• External master or peripheral outputs the data to the data bus  
• SLWR# is asserted  
• While the SLWR# is asserted, data is written to the FIFO and on the rising edge of the PCLK, the FIFO pointer is  
incremented  
• The FIFO flag is updated after a delay of t WFLG from the rising edge of the clock  
The same sequence of events is also applicable for burst write  
Note For the burst mode, SLWR# and SLCS# are asserted for the entire duration, during which all the required  
data values are written. In this burst write mode, after the SLWR# is asserted, the data on the FIFO data bus is  
written to the FIFO on every rising edge of PCLK. The FIFO pointer is updated on each rising edge of PCLK.  
Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or  
processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse  
corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.  
Zero-Length Packet: The external device or processor can signal a Zero-Length Packet (ZLP) to FX3 simply by  
asserting PKTEND#, without asserting SLWR#. SLCS# and address must be driven as shown in Figure 12.  
Synchronous Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
Am  
An  
FIFO ADDR  
SLWR  
Tssd  
tWRS  
tWRH  
tCFLG  
tFAD  
FLAGA  
dedicated thread FLAG for An  
( 1 = Not Full0= Full)  
Tssd  
tCFLG  
tFAD  
FLAGB  
current thread FLAG for Am  
( 1 = Not Full0= Full)  
tDS tDH  
tDS tDH  
tDH  
DN(Am)  
DN+1(Am) DN+2(Am)  
DN(An)  
DataIN  
High-Z  
t
PES tPEH  
PKTEND  
SLOE  
(HIGH)  
Figure 12  
Synchronous Slave FIFO Write Mode  
Datasheet  
43  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Synchronous ZLP Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
An  
FIFO ADDR  
SLWR  
(HIGH)  
t
PES tPEH  
PKTEND  
tCFLG  
FLAGA  
dedicated thread FLAG for An  
(1 = Not Full 0= Full)  
FLAGB  
current thread FLAG for Am  
(1 = Not Full 0= Full)  
High-Z  
Data IN  
SLOE  
(HIGH)  
Figure 13  
Synchronous Slave FIFO ZLP Write Cycle timing  
Datasheet  
44  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 15  
Parameter  
FREQ  
tCYC  
Synchronous Slave FIFO parameters[11]  
Description  
Interface clock frequency  
Clock period  
Min  
10  
4
Max  
100  
Units  
MHz  
ns  
tCH  
Clock HIGH time  
ns  
tCL  
Clock LOW time  
4
ns  
tRDS  
tRDH  
tWRS  
tWRH  
tCO  
SLRD# to CLK setup time  
SLRD# to CLK hold time  
SLWR# to CLK setup time  
SLWR# to CLK hold time  
Clock to valid data  
2
0.5  
2
0.5  
ns  
ns  
ns  
ns  
7
ns  
tDS  
tDH  
tAS  
tAH  
tOELZ  
tCFLG  
tOEZ  
tPES  
tPEH  
tCDH  
Data input setup time  
CLK to data input hold  
Address to CLK setup time  
CLK to address hold time  
SLOE# to data low-Z  
CLK to flag output propagation delay  
SLOE# deassert to Data Hi Z  
PKTEND# to CLK setup  
2
0.5  
2
0.5  
0
2
0.5  
2
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK to PKTEND# hold  
CLK to data output hold  
ns  
ns  
Clock  
cycles  
Clock  
cycles  
Clock  
cycles  
tSSD  
tACCD  
tFAD  
Socket switching delay  
2
2
3
68  
2
Latency from SLRD# to Data  
Latency from SLWR# to FLAG  
3
Note Three-cycle latency from ADDR to DATA/FLAGS.  
Note  
11.All parameters guaranteed by design and validated through characterization.  
Datasheet  
45  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.4.3  
Asynchronous Slave FIFO Read sequence description  
• FIFO address is stable and the SLCS# signal is asserted.  
• SLOE# is asserted. This results in driving the data bus.  
• SLRD # is asserted.  
• Data from the FIFO is driven after assertion of SLRD#. This data is valid after a propagation delay of tRDO from  
the falling edge of SLRD#.  
• FIFO pointer is incremented on deassertion of SLRD#  
In Figure 14, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read  
cycle, SLOE# must be in an asserted state. SLRD# and SLOE# can also be tied.  
The same sequence of events is also shown for a burst read.  
Note In the burst read mode, during SLOE# assertion, the data bus is in a driven state (data is driven from a  
previously addressed FIFO). After assertion of SLRD# data from the FIFO is driven on the data bus (SLOE# must  
also be asserted). The FIFO pointer is incremented after deassertion of SLRD#.  
Asynchronous Read Cycle Timing  
SLCS  
tAS  
tAH  
An  
tRDl tRDh  
Am  
FIFO ADDR  
SLRD  
SLOE  
tFLG  
tRFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not empty 0 = Empty)  
FLAGB  
dedicated thread Flag for Am  
(1=Not empty 0 = Empty)  
tRDO  
tRDO  
tOH  
tOE  
tLZ  
tOE  
tRDO  
tOH  
DN(An)  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
Data Out  
High-Z  
SLWR  
(HIGH)  
Figure 14  
Asynchronous Slave FIFO Read Mode  
Datasheet  
46  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.4.4  
Asynchronous Slave FIFO Write sequence description  
• FIFO address is driven and SLCS# is asserted  
• SLWR# is asserted. SLCS# must be asserted with SLWR# or before SLWR# is asserted  
• Data must be present on the tWRS bus before the deasserting edge of SLWR#  
• Deassertion of SLWR# causes the data to be written from the data bus to the FIFO, and then the FIFO pointer is  
incremented  
• The FIFO flag is updated after the tWFLG from the deasserting edge of SLWR.  
The same sequence of events is shown for a burst write.  
Note that in the burst write mode, after SLWR# deassertion, the data is written to the FIFO, and then the FIFO  
pointer is incremented.  
Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or  
processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse  
corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.  
Zero-Length Packet: The external device or processor can signal a zero-length packet (ZLP) to FX3 simply by  
asserting PKTEND#, without asserting SLWR#. SLCS# and the address must be driven as shown in Figure 16.  
FLAG Usage: The FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3  
outputs that can be configured to show empty, full, and partial status for a dedicated address or the current  
address.  
SLCS  
tAS  
tAH  
An  
Am  
FIFO ADDR  
SLWR  
tWRl  
tWRh  
tFLG  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1= Not Full0 = Full)  
tWFLG  
FLAGB  
dedicated thread Flag for Am  
(1= Not Full0 = Full)  
tWR  
tWR  
tWRH  
tWRH  
S
S
High-Z  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
DATA In  
tWRPE  
tPEh  
PKTEND  
SLOE  
(HIGH)  
Figure 15  
Asynchronous Slave FIFO Write Mode  
Datasheet  
47  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
SLCS  
tAS  
tAH  
An  
FIFO ADDR  
SLWR  
(HIGH)  
tPEl  
tPEh  
PKTEND  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1= Not Full0 = Full)  
FLAGB  
dedicated thread Flag for Am  
(1= Not Full0 = Full)  
High-Z  
DATA In  
SLOE  
(HIGH)  
Figure 16  
Asynchronous ZLP Write Cycle timing  
Datasheet  
48  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 16  
Parameter  
tRDI  
tRDh  
tAS  
Asynchronous Slave FIFO parameters[12]  
Description  
SLRD# LOW  
SLRD# HIGH  
Address to SLRD#/SLWR# setup time  
SLRD#/SLWR#/PKTEND to address hold time  
SLRD# to FLAGS output propagation delay  
ADDR to FLAGS output propagation delay  
SLRD# to data valid  
OE# low to data valid  
OE# low to data low-Z  
SLOE# deassert data output hold  
SLWR# LOW  
SLWR# HIGH  
Data to SLWR# setup time  
SLWR# to Data Hold time  
SLWR#/PKTEND to Flags output propagation delay  
PKTEND LOW  
PKTEND HIGH  
SLWR# deassert to PKTEND deassert  
Min  
20  
10  
7
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
2
tRFLG  
tFLG  
tRDO  
tOE  
tLZ  
tOH  
0
20  
10  
7
2
20  
7.5  
2
35  
22.5  
25  
25  
22.5  
35  
tWRI  
tWRh  
tWRS  
tWRH  
tWFLG  
tPEI  
tPEh  
tWRPE  
Note  
12.All parameters guaranteed by design and validated through characterization.  
Datasheet  
49  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.5  
Host Processor Interface (P-Port) timing  
19.5.1  
Asynchronous SRAM timing  
Socket Read – Address Transition Controlledtiming (OE# is asserted)  
A[0]  
tAA  
tAH  
tOH  
HIGH  
DATA  
IMPEDANCE  
OUT  
DATA VALID  
DATA VALID  
DATA VALID  
tOE  
OE#  
OE# Controlled timing  
ADDRESS  
WE# (HIGH)  
CE#  
tAOS  
tOHC  
tRC  
OE#  
tOHH  
tOE  
t
OEZ  
tOLZ  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
DATA OUT  
DATA  
VALID  
DATA  
VALID  
Figure 17  
Non-multiplexed Asynchronous SRAM Read timing  
Datasheet  
50  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Write Cycle 1 WE# Controlled, OE# HIGH during Write  
tWC  
ADDRESS  
tCW  
CE#  
tAW  
tAH  
tDH  
tWP  
WE#  
tAS  
tWPH  
OE#  
tDS  
VALID DATA  
DATA I/O  
VALID DATA  
tWHZ  
Write Cycle 2 CE# Controlled, OE# HIGH during Write  
tWC  
ADDRESS  
tAS  
tCW  
tCPH  
CE#  
tAW  
tAH  
tDH  
tWP  
WE#  
OE#  
tDS  
VALID DATA  
DATA I/O  
VALID DATA  
tWHZ  
Figure 18  
Non-multiplexed Asynchronous SRAM Write timing (WE# and CE# Controlled)  
Datasheet  
51  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Write Cycle 3 WE# Controlled. OE# LOW  
tWC  
tCW  
CE#  
tAW  
tAH  
tAS  
tWP  
WE#  
tDS  
tDH  
DATA I/O  
VALID DATA  
tOW  
tWHZ  
Note: tWP must be adjusted such that tWP > tWHZ + tDS  
Figure 19  
Non-multiplexed Asynchronous SRAM Write timing (WE# Controlled, OE# LOW)  
Datasheet  
52  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 17  
Parameter  
tRC  
tAA  
tAOS  
tOH  
tOHH  
tOHC  
tOE  
tOLZ  
tWC  
tCW  
tAW  
tAS  
tAH  
tWP  
tWPH  
tCPH  
tDS  
Asynchronous SRAM timing parameters[13]  
Description  
SRAM interface bandwidth  
Read cycle time  
Min  
32.5  
Max  
61.5  
30  
Units  
Mbps  
ns  
ns  
ns  
Address to data valid  
Address to OE# LOW setup time  
Data output hold from address change  
OE# HIGH hold time  
OE# HIGH to CE# HIGH  
OE# LOW to data valid  
OE# LOW to Low-Z  
Write cycle time  
CE# LOW to write end  
Address valid to write end  
Address setup to write start  
Address hold time from CE# or WE#  
WE# pulse width  
7
3
7.5  
2
0
30  
30  
30  
7
25  
22.5  
22.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
20  
10  
10  
7
2
WE# HIGH time  
CE# HIGH time  
Data setup to write end  
Data hold to write end  
Write to DQ High-Z output  
OE# HIGH to DQ High-Z output  
End of write to Low-Z output  
tDH  
tWHZ  
tOEZ  
tOW  
0
ns  
ns  
Note  
13.All parameters guaranteed by design and validated through characterization.  
Datasheet  
53  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.5.2  
ADMux timing for Asynchronous Access  
tRC  
tACC  
Valid Address  
tAVS  
tVP  
Valid  
Addr  
Valid Data  
A[0:7]/DQ[0:15]  
ADV#  
tAVH  
WE# (HIGH)  
CE#  
tCEAV  
tCPH  
tHZ  
tCO  
tHZ  
tOLZ  
tOE  
OE#  
tAVOE  
Note:  
1. Multiple read cycles can be executed while keeping CE# low.  
2. Read operation ends with either de-assertion of either OE# or CE#, whichever comes earlier.  
Figure 20  
ADMux Asynchronous Random Read  
tWC  
Valid  
Addr  
Address Valid  
Data Valid  
tDS  
A[0:7]/DQ[0:15]  
ADV#  
tAW  
tAVH  
tAVS  
tVP  
tDH  
tVPH  
tCEAV  
CE#  
tCPH  
tCW  
tWP  
tWPH  
WE#  
tAVWE  
Note:  
1. Multiple write cycles can be executed while keeping CE# low.  
2. Write operation ends with de-assertion of either WE# or CE#, whichever comes earlier.  
Figure 21  
ADMux Asynchronous Random Write  
Datasheet  
54  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 18  
Asynchronous ADMux timing parameters[14]  
Description Min  
Parameter  
Max  
Units  
Notes  
ADMux Asynchronous READ Access timing parameters  
This parameter is dependent  
ns on when the P-port processors  
deasserts OE#  
Read cycle time (address valid to  
address valid)  
tRC  
54.5  
tACC  
tCO  
tAVOE  
tOLZ  
tOE  
Address valid to data valid  
CE# assert to data valid  
ADV# deassert to OE# assert  
OE# assert to data Low-Z  
OE# assert to data valid  
2
0
32  
34.5  
25  
ns  
ns  
ns  
ns  
ns  
ns  
tHZ  
Read cycle end to data High-Z  
22.5  
ADMux Asynchronous WRITE Access timing parameters  
Write cycle time (Address Valid to  
Address Valid)  
tWC  
52.5  
ns  
tAW  
tCW  
tAVWE  
tWP  
tWPH  
tDS  
Address valid to write end  
CE# assert to write end  
ADV# deassert to WE# assert  
WE# LOW pulse width  
WE# HIGH pulse width  
Data valid setup to WE# deassert  
Data valid hold from WE# deassert  
30  
30  
2
20  
10  
18  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
ADMux Asynchronous Common READ/WRITE Access timing parameters  
Address valid setup to ADV#  
tAVS  
tAVH  
5
2
ns  
ns  
deassert  
Address valid hold from ADV#  
deassert  
tVP  
ADV# LOW pulse width  
CE# HIGH pulse width  
ADV# HIGH pulse width  
CE# assert to ADV# assert  
7.5  
10  
15  
0
ns  
ns  
ns  
ns  
tCPH  
tVPH  
tCEAV  
Note  
14.All parameters guaranteed by design and validated through characterization.  
Datasheet  
55  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.5.3  
Synchronous ADMux timing  
tCLK  
tCLKL  
2- cycle latency from OE# to DATA  
tCLKH  
CLK  
tCO  
tS  
tH  
Valid Data  
Valid Address  
A[0:7]/DQ[0:31]  
tS  
tH  
tOHZ  
ADV#  
CE#  
tS  
tAVOE  
tOLZ  
OE#  
RDY  
tKW  
tKW  
tCH  
WE# (HIGH)  
Note:  
1) External P-Port processor and FX3 operate on the same clock edge  
2) External processor sees RDY assert 2 cycles after OE # asserts andand sees RDY deassert a cycle after the data appears on the output  
3) Valid output data appears 2 cycle after OE # asserted. The data is held until OE # deasserts  
4) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)  
Figure 22  
Synchronous ADMux Interface – Read Cycle timing  
2-cycle latency between  
WE# and data being latched  
2-cycle latency between this clk edge and RDY deassertion seen by  
the host  
CLK  
tCLK  
tDS  
tDH  
tS  
tH  
Valid Address  
Valid Data  
A[0:7]/DQ[0:31]  
tS  
tH  
ADV#  
tS  
CE#  
tAVWE  
tS  
tH  
WE#  
RDY  
tKW  
tKW  
Note:  
1) External P-Port processor and FX3 operate on the same clock edge  
2) External processor sees RDY assert 2 cycles after WE # asserts and deassert 3 cycles after the edge sampling the data.  
3) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)  
Figure 23  
Synchronous ADMux Interface – Write Cycle timing  
Datasheet  
56  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
2-cycle latency fromOE# to Data  
tCLK  
tCLKH  
tCLKL  
CLK  
tCO  
tCH  
tS  
tH  
ValidAddress  
D0  
D1  
D2  
D3  
A[0:7]/DQ[0:31]  
tS  
tH  
ADV#  
CE#  
tHZ  
tS  
tAVOE  
tOLZ  
OE#  
RDY  
tKW  
tKW  
Note:  
1) External P-Port processor and FX3 work operate on the same clock edge  
2) External processor sees RDY assert 2 cycles after OE # asserts andand sees RDY deassert a cycle after the last burst data appears on the output  
3) Valid output data appears 2 cycle after OE # asserted. The last burst data is held until OE# deasserts  
4) Burst size of 4 is shown. Transfer size for the operation must be amultiple of burst size. Burst size is usually power of2. RDYwill not deassert in the middle of the burst.  
5) External processor cannot deassert OE in the middle of a burst. If it does so, any bytes remaining in the burst packet could get lost.  
6) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)  
Figure 24  
Synchronous ADMux Interface – Burst Read timing  
2-cycle latency between  
WE# and data being latched  
2-cycle latency between this clk edge and RDY  
deassertion seen by the host  
tCLKH  
tCLKL  
CLK  
tCLK  
tDS  
tDH  
tDH  
tS  
tH  
D0  
Valid Address  
D1  
D2  
D3  
A[0:7]/DQ[0:31]  
tS  
tH  
ADV#  
CE#  
tS  
tAVWE  
WE#  
RDY  
tKW  
tKW  
Note:  
1) External P-Port processor and FX3 operate on the same clock edge  
2) External processor sees RDY assert 2 cycles after WE # asserts and deasserts 3 cycles after the edge sampling the last burst data.  
3) Transfer size for the operation must be a multiple of burst size. Burst size is usually power of 2. RDY will not deassert in the middle of the burst. Burst size of 4 is shown  
4) External processor cannot deassert WE in the middle of a burst. If it does so, any bytes remaining in the burst packet could get lost.  
5)Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)  
Figure 25  
Sync ADMux Interface – Burst Write timing  
Datasheet  
57  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 19  
Parameter  
FREQ  
tCLK  
tCLKH  
tCLKL  
tS  
tH  
tCH  
tDS  
tDH  
tAVDOE  
tAVDWE  
tHZ  
tOHZ  
tOLZ  
Synchronous ADMux timing parameters[15]  
Description  
Interface clock frequency  
Clock period  
Clock HIGH time  
Clock LOW time  
Min  
10  
4
Max  
100  
Unit  
MHz  
ns  
ns  
ns  
4
CE#/WE#/DQ setup time  
CE#/WE#/DQ hold time  
2
0.5  
0
2
0.5  
0
0
0
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to data output hold time  
Data input setup time  
Clock to data input hold  
ADV# HIGH to OE# LOW  
ADV# HIGH to WE# LOW  
CE# HIGH to Data High-Z  
OE# HIGH to Data High-Z  
OE# LOW to Data Low-Z  
Clock to RDY valid  
8
8
ns  
ns  
ns  
tKW  
Note  
15.All parameters guaranteed by design and validated through characterization.  
Datasheet  
58  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.6  
Serial Peripherals timing  
19.6.1  
I2C timing  
Figure 26  
I2C timing definition  
Datasheet  
59  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 20  
I2C timing parameters[16]  
Parameter  
I2C Standard Mode parameters  
Description  
Min  
Max  
Units  
fSCL  
tHD:STA  
tLOW  
SCL clock frequency  
0
4
4.7  
4
4.7  
0
250  
4
4.7  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Hold time START condition  
LOW period of the SCL  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
Data setup time  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
1000  
300  
tf  
tSU:STO  
tBUF  
tVD:DAT  
tVD:ACK  
tSP  
3.45  
3.45  
n/a  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
n/a  
I2C Fast Mode parameters  
fSCL  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
SCL clock frequency  
Hold time START condition  
LOW period of the SCL  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
0
0.6  
1.3  
0.6  
0.6  
0
100  
0.6  
1.3  
0
400  
300  
300  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tf  
tSU:STO  
tBUF  
tVD:DAT  
tVD:ACK  
tSP  
0.9  
0.9  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
Note  
16.All parameters guaranteed by design and validated through characterization.  
Datasheet  
60  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 20  
I2C timing parameters[16] (continued)  
Description  
Parameter  
Min  
Max  
Units  
I2C Fast Mode Plus Parameters (Not supported at I2C_VDDQ = 1.2 V)  
fSCL  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
SCL clock frequency  
Hold time START condition  
LOW period of the SCL  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
0
0.26  
0.5  
0.26  
0.26  
0
50  
0.26  
0.5  
0
1000  
120  
120  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
Data setup time  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus-free time between a STOP and START condition  
Data valid time  
tf  
tSU:STO  
tBUF  
tVD:DAT  
tVD:ACK  
tSP  
0.45  
0.55  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
Datasheet  
61  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.6.2  
I2S timing diagram  
tT  
tTR  
tTF  
tTH  
tTL  
SCK  
tThd  
SA,  
WS (output)  
tTd  
Figure 27  
I2S transmit cycle  
Table 21  
Parameter  
tT  
tTL  
tTH  
tTR  
tTF  
tThd  
tTd  
I2S timing parameters[17]  
Description  
Min  
Ttr  
0.35 × Ttr  
0.35 × Ttr  
Max  
Units  
ns  
ns  
I2S transmitter clock cycle  
I2S transmitter cycle LOW period  
I2S transmitter cycle HIGH period  
I2S transmitter rise time  
ns  
0
0.15 × Ttr ns  
0.15 × Ttr ns  
I2S transmitter fall time  
I2S transmitter data hold time  
I2S transmitter delay time  
ns  
ns  
0.8tT  
Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz).  
Note  
17.All parameters guaranteed by design and validated through characterization.  
Datasheet  
62  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.6.3  
SPI timing specification  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
SCK  
(CPOL=0,  
Output)  
trf  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
tsdi  
thoi  
LSB  
MISO  
(input)  
MSB  
MSB  
td  
tdis  
tsdd  
tdi  
v
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 0  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
trf  
SCK  
(CPOL=0,  
Output)  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
thoi  
LSB  
tsdi  
MISO  
(input)  
MSB  
MSB  
tdis  
tdi  
tdv  
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 1  
Figure 28  
SPI timing  
Datasheet  
63  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
Table 22  
Parameter  
fop  
SPI timing parameters[18]  
Description  
Operating frequency  
Cycle time  
Min  
0
30  
Max  
33  
Units  
MHz  
ns  
tsck  
twsck  
tlead  
tlag  
trf  
tsdd  
tdv  
tdi  
tssnh  
tsdi  
thoi  
tdis  
Clock high/low time  
SSN-SCK lead time  
Enable lag time  
Rise/fall time  
Output SSN to valid data delay time  
Output data valid time  
Output data invalid  
Minimum SSN high time  
Data setup time input  
13.5  
ns  
ns  
1/2 tsck[19] – 5 1.5 tsck[19] + 5  
0.5  
0
10  
8
0
1.5 tsck[19] + 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
5
5
Data hold time input  
Disable data output on SSN high  
0
ns  
Notes  
18.All parameters guaranteed by design and validated through characterization.  
19.Depends on LAG and LEAD setting in the SPI_CONFIG register.  
Datasheet  
64  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
AC timing parameters  
19.7  
Reset sequence  
FX3’s hard reset sequence requirements are specified in this section.  
Table 23  
Reset and Standby timing parameters  
Definition  
Parameter  
Conditions  
Clock input  
Crystal input  
Clock input  
Crystal input  
Min (ms) Max (ms)  
1
1
5
1
5
tRPW  
tRH  
Minimum RESET# pulse width  
Minimum HIGH on RESET#  
Reset recovery time (after which Boot loader begins  
firmware download)  
tRR  
Time to enter standby/suspend (from the time  
MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)  
tSBY  
tWU  
tWH  
1
Clock input  
Crystal input  
1
5
Time to wakeup from standby  
Minimum time before Standby/Suspend source may  
be reasserted  
5
VDD  
( core )  
xVDDQ  
XTALIN/  
CLKIN  
XTALIN/ CLKIN must be stable  
before exiting Standby/Suspend  
tRh  
tRR  
Mandatory  
Reset Pulse  
Hard Reset  
RESET #  
tWH  
tWU  
tRPW  
tSBY  
Standby/  
Suspend  
Source  
Standby/Suspend source Is asserted  
(MAIN_POWER_EN/ MAIN_CLK_EN bit  
is set)  
Standby/Suspend  
source Is deasserted  
Figure 29  
Reset sequence  
Datasheet  
65  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Package diagram  
20  
Package diagram  
2X  
0.10 C  
E1  
6
E
B
(datum B)  
A1 CORNER  
A
11 10  
9
8
7
5
4
3
2
1
7
A1 CORNER  
A
B
C
D
E
F
6
SD  
D1  
D
(datum A)  
G
H
J
K
eD  
L
2X  
0.10 C  
6
eE  
TOP VIEW  
SE  
BOTTOM VIEW  
0.20 C  
DETAIL A  
A1  
0.08 C  
C
121XØb  
5
A
Ø0.15 M C A B  
Ø0.08 M C  
SIDE VIEW  
DETAIL A  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
DIMENSIONS  
SYMBOL  
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.  
MIN.  
-
NOM.  
MAX.  
1.20  
-
A
-
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX  
SIZE MD X ME.  
A1  
D
0.15  
-
10.00 BSC  
E
10.00 BSC  
8.00 BSC  
8.00 BSC  
11  
D1  
E1  
MD  
ME  
N
5.  
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A  
PLANE PARALLEL TO DATUM C.  
6.  
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND  
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.  
11  
121  
0.30  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,  
"SD" OR "SE" = 0.  
b
0.25  
0.35  
eD  
eE  
SD  
SE  
0.80 BSC  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,  
"SD" = eD/2 AND "SE" = eE/2.  
0.80 BSC  
0.00  
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK  
METALIZED MARK, INDENTATION OR OTHER MEANS.  
7.  
0.00  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER  
BALLS.  
001-54471 *F  
CAE
O T  
SHEET  
OF  
1
2
Figure 30  
121-ball BGA package diagram  
Datasheet  
66  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Ordering information  
21  
Ordering information  
Table 24  
Ordering information  
GPIF II data bus  
width  
Operating  
Ordering code  
USB  
SRAM (kB)  
Package type  
temperature  
CYUSB3011-BZXC  
CYUSB3012-BZXC  
CYUSB3013-BZXC  
CYUSB3014-BZXC  
CYUSB3014-BZXI  
CYUSB2014-BZXC  
CYUSB2014-BZXI  
USB 3.0  
USB 3.0  
USB 3.0  
USB 3.0  
USB 3.0  
USB 2.0  
USB 2.0  
256  
256  
512  
512  
512  
512  
512  
16-bit  
32-bit  
16-bit  
32-bit  
32-bit  
32-bit  
32-bit  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
121-ball BGA  
121-ball BGA  
121-ball BGA  
121-ball BGA  
121-ball BGA  
121-ball BGA  
121-ball BGA  
21.1  
Ordering code definitions  
Datasheet  
67  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Acronyms  
22  
Acronyms  
Table 25  
Acronyms  
Acronym  
Description  
DMA  
FIFO  
GPIF  
HNP  
I2C  
direct memory access  
first in, first out  
general programmable interface  
host negotiation protocol  
inter-integrated circuit  
inter IC sound  
I2S  
MISO  
MOSI  
MMC  
MSC  
MTP  
OTG  
OVP  
PHY  
PLL  
PMIC  
PVT  
RTOS  
SCL  
master in, slave out  
master out, slave in  
multimedia card  
mass storage class  
media transfer protocol  
on-the-go  
overvoltage protection  
physical layer  
phase locked loop  
power management IC  
process voltage temperature  
real-time operating system  
serial clock line  
SCLK  
SD  
serial clock  
secure digital  
SD  
secure digital  
SDA  
SDIO  
SLC  
serial data clock  
secure digital input / output  
single-level cell  
SLCS  
SLOE  
SLRD  
SLWR  
SPI  
SRP  
SSN  
UART  
UVC  
USB  
Slave Chip Select  
Slave Output Enable  
Slave Read  
Slave Write  
serial peripheral interface  
session request protocol  
SPI slave select (Active low)  
universal asynchronous receiver transmitter  
USB Video Class  
universal serial bus  
Datasheet  
68  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Document conventions  
23  
Document conventions  
23.1  
Units of measure  
Table 26  
Units of measure  
Symbol  
Unit of measure  
°C  
µA  
µs  
mA  
Mbps  
MBps  
MHz  
ms  
ns  
degree Celsius  
microamperes  
microseconds  
milliamperes  
Megabits per second  
Megabytes per second  
mega hertz  
milliseconds  
nanoseconds  
ohms  
pF  
pico Farad  
V
volts  
Datasheet  
69  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Errata  
24  
Errata  
This section describes the errata for Revision D, C and B of the FX3. Details include errata trigger conditions, scope  
of impact, available workaround, and silicon revision applicability. Contact your local Infineon Sales  
Representative if you have questions.  
Part numbers affected  
Part number  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
Device characteristics  
All variants  
All variants  
24.1  
Qualification status  
Product Status: Production  
24.2  
Errata summary  
The following table defines the errata applicability to available Rev. D EZ-USB FX3 SuperSpeed USB Controller  
family devices.  
Silicon  
Items  
Part number  
Fix status  
Revision  
1. Turning off VIO1 during Normal, Suspend, and  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
Workaround  
provided  
Rev. D, C, B  
Standby modes causes the FX3 to stop working.  
2. USB enumeration failure in USB boot mode when  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
Workaround  
provided  
Workaround  
provided  
Workaround  
provided  
Workaround  
provided  
Rev. D, C, B  
Rev. D, C, B  
Rev. D, C, B  
Rev. D, C, B  
FX3 is self-powered.  
3. Extra ZLP is generated by the COMMIT action in the  
GPIF II state.  
4. Invalid PID Sequence in USB 2.0 ISOC data transfer.  
5. USB data transfer errors are seen when ZLP is  
followed by data packet within same microframe.  
Use FX3 in  
6. Bus collision is seen when the I2C block is used as a CYUSB301x-xxxx  
Rev. D, C, B single-master  
configuration  
master in the I2C Multi-master configuration.  
CYUSB201x-xxxx  
CYUSB301x-xxxx  
CYUSB301x-xxxx  
CYUSB301x-xxxx  
7. Low Power U1 Fast-Exit Issue with USB3.0 host  
Workaround  
provided  
Workaround  
provided  
Workaround  
provided  
Rev. D, C, B  
controller.  
8. USB data corruption when operating on hosts with  
Rev. D, C, B  
poor link quality.  
9. Device treats Rx Detect sequence from the USB 3.0  
Rev. D, C, B  
host as a valid U1 exit LFPS burst.  
No  
Rev. D, C, B workaround  
needed  
10. I2C Data Valid (tVD:DAT) specification violation at  
CYUSB301x-xxxx  
CYUSB201x-xxxx  
400 kHz with a 40/60 duty cycle.  
11. FX3 Device does not respond correctly to Port  
Workaround  
Rev. D, C, B  
Capability Request from Host after multiple power CYUSB301x-xxxx  
provided  
cycles.  
Datasheet  
70  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Errata  
1. Turning off VIO1 during Normal, Suspend, and Standby modes causes the FX3 to stop working.  
Problem definition  
Turning off the VIO1 during Normal, Suspend, and Standby modes will cause the FX3  
to stop working.  
Parameters affected NA  
Trigger condition(s) This condition is triggered when the VIO1 is turned off during Normal, Suspend, and  
Standby modes.  
Scope of impact  
Workaround  
Fix status  
FX3 stops working.  
VIO1 must stay on during Normal, Suspend, and Standby modes.  
No fix. Workaround is required.  
2.USB enumeration failure in USB boot mode when FX3 is self-powered.  
When FX3 is self-powered and not connected to the USB host, it enters low-power  
mode and does not wake up when connected to USB host afterwards. This is because  
the bootloader does not check the VBUS pin on the connector to detect USB  
connection. It expects that the USB bus is connected to the host when it is powered on.  
Problem definition  
Parameters affected NA  
Trigger condition(s) This condition is triggered when FX3 is self-powered in USB boot mode.  
Scope of impact  
Workaround  
Fix status  
Device does not enumerate  
Reset the device after connecting to USB host.  
No fix. Workaround is required.  
3.Extra ZLP is generated by the COMMIT action in the GPIF II state.  
When COMMIT action is used in a GPIF-II state without IN_DATA action then an extra  
zero length packet (ZLP) is committed along with the data packets.  
Parameters affected NA  
Problem definition  
This condition is triggered when COMMIT action is used in a state without IN_DATA  
action.  
Trigger condition(s)  
Scope of impact  
Workaround  
Fix status  
Extra ZLP is generated.  
Use IN_DATA action along with COMMIT action in the same state.  
No fix. Workaround is required.  
Datasheet  
71  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Errata  
4.Invalid PID Sequence in USB 2.0 ISOC data transfer.  
When the FX3 device is functioning as a high speed USB device with high bandwidth  
isochronous endpoints, the PID sequence of the ISO data packets is governed solely by  
the isomult setting. The length of the data packet is not considered while generating  
the PID sequence during each microframe. For example, even if a short packet is being  
sent on an endpoint with MULT set to 2; the PID used will be DATA2.  
Problem definition  
Parameters affected NA  
Trigger condition(s) This condition is triggered when high bandwidth ISOC transfer endpoints are used.  
Scope of impact  
Workaround  
Fix status  
ISOC data transfers failure.  
This problem can be worked around by reconfiguring the endpoint with a lower  
isomult setting prior to sending short packets, and then switching back to the original  
value.  
No fix. Workaround is required.  
5.USB data transfer errors are seen when ZLP is followed by data packet within same microframe.  
Some data transfer errors may be seen if a ZLP is followed very quickly (within one  
microframe or 125 µs) by another data packet on a burst enabled USB IN endpoint  
operating at super speed.  
Problem definition  
Parameters affected NA  
Trigger condition(s) This condition is triggered in SuperSpeed transfer with ZLPs  
Scope of impact  
Workaround  
Fix status  
Data failure and lower data speed.  
The solution is to ensure that some time is allowed to elapse between a ZLP and the  
next data packet on burst enabled USB IN endpoints. If this cannot be ensured at the  
data source, the CyU3PDmaChannelSetSuspend() API can be used to suspend the  
corresponding USB DMA socket on seeing the EOP condition. The channel operation  
can then be resumed as soon as the suspend callback is received.  
No fix. Workaround is required.  
6.Bus collision is seen when the I2C block is used as a master in the I2C Multi-master configuration.  
When FX3 is used as a master in the I2C multi-master configuration, there can be  
occasional bus collisions.  
Problem definition  
Parameters affected NA  
This condition is triggered only when the FX3 I2C block operates in Multi-master  
Trigger condition(s)  
configuration.  
Scope of impact  
Workaround  
Fix status  
The FX3 I2C block can transmit data when the I2C bus is not idle leading to bus collision.  
Use FX3 as a single master.  
No fix.  
Datasheet  
72  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Errata  
7.Low Power U1 Fast-Exit Issue with USB3.0 host controller.  
When FX3 device transitions from Low power U1 state to U0 state within 5 µs after  
entering U1 state, the device sometimes fails to transition back to U0 state, resulting  
in USB Reset.  
Problem definition  
Parameters affected NA  
Trigger condition(s) This condition is triggered during low power transition mode.  
Scope of impact  
Workaround  
Fix status  
Unexpected USB warm reset during data transfer.  
This problem can be worked around in the FW by disabling LPM (Link Power  
Management) during data transfer.  
FW workaround is proven and reliable.  
8.USB data corruption when operating on hosts with poor link quality.  
If FX3 is operating on a USB 3.0 link with poor signal quality, the device could send  
corrupted data on any of the IN endpoints (including the control endpoint).  
Problem definition  
Parameters affected NA  
Trigger condition(s) This condition is triggered when the USB3.0 link signal quality is very poor.  
Scope of impact  
Workaround  
Fix status  
Data corruption in any of the IN endpoints (including the control endpoint).  
The application firmware should perform an error recovery by stalling the endpoint on  
receiving CYU3P_USBEPSS_RESET_EVT event, and then stop and restart DMA path  
when the CLEAR_FEATURE request is received.  
Note: SDK versions 1.3.3 and above internally manages the DMA transfers and  
performs the endpoint reset when potential error conditions are seen. For more details  
in application firmware, please refer to GpiftoUsb example available with SDK.  
FW Work-around is proven and reliable.  
9.Device treats Rx Detect sequence from the USB 3.0 host as a valid U1 exit LFPS burst.  
The USB 3.0 PHY in the FX3 device uses an electrical idle detector to determine whether  
LFPS is being received. The duration for which the receiver does not see an electrical  
Problem definition  
idle condition is timed to detect various LFPS bursts. This implementation causes the  
device to treat an Rx Detect sequence from the USB host as a valid U1 exit LFPS burst.  
Parameters affected NA  
This condition is triggered when the USB host is initiating an Rx Detect sequence while  
the USB 3.0 Link State Machine on the FX3 is in the U1 state. Since the host will only  
Trigger condition(s) perform Rx Detect sequence in the RX Detect and U2 states, the error condition is seen  
only in cases where the USB link on the host has moved into the U2 state while the link  
on FX3 is in the U1 state.  
FX3 moves into Recovery prematurely leading to a Recovery failure followed by Warm  
Reset and USB re-enumeration. This sequence can repeat multiple times resulting in  
data transfer failures.  
Scope of impact  
FX3 can be configured to transition from U1 to U2 a few microseconds before the host  
does so. This will ensure that the link will be in U2 on the device side before the host  
attempts any Rx Detect sequence; thereby preventing a false detection of U1 exit.  
Workaround  
Fix status  
Workaround is implemented in FX3 SDK library 1.3.4 and above.  
Datasheet  
73  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Errata  
10. I2C Data Valid (tVD:DAT) specification violation at 400 kHz with a 40/60 duty cycle.  
I2C Data Valid (tVD:DAT) parameter at 400 kHz with a 40/60 duty cycle is 1.0625 µs,  
Problem definition  
which exceeds the I2C specification limit of 0.9 µs.  
Parameters affected NA  
Trigger condition(s) This violation occurs only at 400 kHz with a 40/60 duty cycle of the I2C clock.  
Setup time (tSUDAT) is met with a huge margin for the transmitted data for 400 kHz and  
so tvd:DAT violation will not cause any data integrity issues.  
Scope of impact  
Workaround  
Fix status  
No workaround needed.  
No fix needed.  
11.FX3 Device does not respond correctly to Port Capability Request from Host after multiple power  
cycles.  
During multiple power cycles, sometimes the FX3 device does not respond correctly  
to the Port Capability request (Link Packet) from the USB Controller. In view of this,  
FX3 does not get the subsequent Port Configuration request from the USB controller,  
resulting in SS.Disabled state. The device fails to recover from this state and finally  
results in enumeration failure.  
Problem definition  
Parameters affected NA  
This condition is triggered when the FX3 provides an incorrect response to the Port  
Trigger condition(s)  
Scope of impact  
Capability request from the host.  
Device fails to enumerate after multiple retries.  
Since the host does not send the Port Configuration request to the FX3 device, it causes  
a Port Configuration request timeout interrupt to be triggered in the device. This  
interrupt is handled in the FX3 SDK 1.3.4 onwards to generate and signal  
CY_U3P_USB_EVENT_LMP_EXCH_FAIL event to the application. This event should be  
handled in the user application such that it does a USB Interface Block Restart. Refer  
the Knowledge Base Article (KBA225778) for more details and the firmware  
workaround example project.  
Workaround  
Fix status  
Suggested firmware work-around is proven and reliable.  
Datasheet  
74  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
2009-03-06  
New data sheet.  
Updated the part# from CYX01XXBB to CYUSB3011-BZXI  
Changed status from “ADVANCE” to “ADVANCE INFORMATION”  
In page 1, the second bullet (Flexible Host Interface), add “32-bit, 100 MHz”  
to first sub bullet.  
In page 1, changed the second bullet “Flexible Host Interface” to General  
Programmable Interface.  
In page 1, the second bullet (Flexible Host Interface), removed “DMA Slave  
Support” and “MMC Slave support with Pass through Boot” sub bullets.  
In page 1, third bullet, changed “50 A with Core Power” to “60 A with Core  
Power”  
In page 1, fifth bullet, added “at 1 MHz”  
In page 1, seventh bullet, added “up to 4 MHz” to UART  
In page 1, Applications Section, move “Digital Still Cameras” to second line.  
In page 1, Applications Section, added “Machine Vision” and Industrial  
Cameras”  
*A  
2009-09-01  
Added ™ to GPIF and FX3.  
In page 1, updated Logic Block Diagram.  
In page 2, section of “Functional Overview, updated the whole section.  
In page 2, removed the section of “Product Interface”  
In page 2, removed the section of “Processor Interface (P-Port)”  
In page 2, removed the section of “USB Interface (U-Port)”  
In page 2, removed the section of “Other Interfaces”  
In page 2, added a section of “GPIF II”  
In page 2, added a section of “CPU”  
In page 2, added a section of “JTAG Interface”  
In page 2, added a section of “Boot Options”  
In page 2, added a section of “ReNumeration”  
In page 2, added a section of “Power”  
In the section of “Package, replaced “West Bridge USB 3.0 Platform” by FX3.  
In the section of “Package, added 0.8 mm pitch in front of BGA.  
Added Pin List (Table 1)  
Changed title to EZ-USB™ FX3: SuperSpeed USB Controller  
Features:  
Added the thrid bullet “Fully accessible 32-bit ARM9 core with 512kB of  
embedded SRAM”  
*B  
*C  
2009-09-29  
2009-12-08  
Added the thrid line “EZ USB™ Software and DVK for easy code  
development”  
Table 1: Pin 74, corrected to NC - No Connect.  
Added data sheet to the USB 3.0 EROS spec 001-51884. No technical  
updates.  
Datasheet  
75  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Changed status from Advance to Preliminary.  
Changed part number from CYUSB3011 to CYUSB3014  
Added the following sections: Power, Digital I/Os, Digital I/Os,  
System-level ESD, DC specifications, AC timing parameters, Reset  
sequence, Package diagram  
Added DC specifications table  
*D  
2010-11-08  
Updated feature list  
Updated Pin List  
Added support for selectable clock input frequencies.  
Updated block diagram  
Updated part number  
Updated package diagram  
Updated Slave FIFO protocol and added ZLP signaling protocol  
Changed GPIFII asynchronous tDO parameter  
Changed Async Slave FIFO tOE parameter  
Changed Async Slave FIFO tRDO parameter  
Added tCOE parameter to GPIFII Sync mode timing parameters  
Renamed GPIFII Sync mode tDO to tCO and tDO_ss0 to tCO_ss0  
Modified description of GPIFII Sync tCO (previously tDO) parameter  
Changed tAH(address hold time) parameter in Async Slave FIFO modes to  
be with respect to rising edge of SLWR#/SLRD# instead of falling edge.  
Correspondingly, changed the tAH number.  
*E  
2011-03-24  
Removed 24 bit data bus support for GPIFII.  
*F  
2011-04-07  
2011-04-20  
Minor ECN - Release to web. No content changes.  
Minor updates in Features.  
*G  
Updated GPIFII Synchronous Timing diagram. Added SPI Boot option.  
Corrected values of R_USB2 and R_USB3. Corrected TCK and TRST#  
pull-up/pull-down configuration. Minor updates to block diagrams.  
Corrected Synchronous Slave FIFO tDH parameter.  
*H  
*I  
2011-04-06  
2011-07-07  
Minor ECN - Correct ECN number in revision *F. No content changes.  
Changed datasheet status from Preliminary to Final.  
Changed tWRPE parameter to 2 ns  
Updated tRR and tRPW for crystal input  
Added clarification regarding IOZ and IIX  
Updated Sync SLave FIFO Read timing diagram  
Updated SPI timing diagram  
Removed tGRANULARITY parameter  
Updated I2S Timing diagram and tTd parameter  
Updated 121-ball BGA package diagram.  
*J  
2011-12-06  
2012-02-24  
Added clarification regarding VCC in DC Specifications table  
In Power Modes description, stated that VIO1 cannot be turned off at any  
time if the GPIFII is used in the application  
Updated Absolute Maximum Ratings  
Added requirement for by-pass capacitor on U3RXVDDQ and U3TXVDDQ  
Updated tPEI parameter in Async Slave FIFO timing table  
Updated Sync Slave FIFO write and read timing diagrams  
Updated I2C interface tVD:ACK parameter for 1MHz operation  
Clarified that CTL[15] is not usable as a GPIO  
*K  
Corrected typo in the block diagram.  
Datasheet  
76  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Changed part number to CYUSB301X.  
Added 256 KB range for embedded SRAM.  
Updated Functional Overview, Other Interfaces, and Clocking sections.  
Added Pin List for CYUSB3011 and CYUSB3013 parts.  
Updated Ordering information:  
*L  
2012-08-16  
2012-12-20  
Updated part numbers.  
*M  
Updated 121-ball BGA package diagram to current revision.  
Included Commercial Temperature Range related information in all  
instances across the document.  
Included 131-ball WLCSP Package related information in all instances  
across the document.  
Updated Pin description:  
*N  
2013-05-31  
Updated Table 7.  
Updated Package diagram:  
Added 131-ball WLCSP Package Diagram.  
Updated Ordering information:  
Updated part numbers.  
Updated Package diagram:  
spec 001-62221 – Changed revision from *B to *C.  
Updated to new template.  
*O  
*P  
2014-05-02  
2014-08-14  
Completing Sunset Review.  
Added CYUSB201x MPNs, ball map, and pin list to the datasheet.  
Datasheet  
77  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Features:  
Updated description.  
Updated Logic block diagram.  
Updated Functional description:  
Added “  
For a complete list of related documentation, click here.” at the end.  
Added More information.  
Updated Functional overview:  
Updated Application examples:  
Updated Figure 1.  
Updated Figure 2.  
Updated USB interface:  
Updated description.  
Removed Figure “USB Interface Signals.  
Updated Reset:  
Updated Hard reset:  
Updated description.  
Updated Pin configurations:  
Updated Figure 6.  
Updated Pin description:  
*Q  
2015-02-24  
Updated Table 7:  
Updated entire table.  
Modified CVDDQ power domain description.  
Removed Table “CYUSB3011 and CYUSB3013 Pin List (GPIF II with 16-bit  
Data Bus Width).  
Removed Table “CYUSB2014 Pin List (GPIF II with 32-bit Data Bus Width).  
Updated DC specifications:  
Added ISS parameter and its details.  
Updated Slave FIFO interface:  
Updated Synchronous Slave FIFO Read sequence description:  
Updated Figure 11.  
Updated Synchronous Slave FIFO Write sequence description:  
Updated Figure 12.  
Updated Table 15.  
Updated AC timing parameters:  
Added Host Processor Interface (P-Port) timing.  
Updated Acronyms.  
Added Errata.  
Replaced West Bridge Benicia with FX3.  
Updated Slave FIFO interface:  
Updated Synchronous Slave FIFO Read sequence description:  
Updated Figure 11.  
Updated Synchronous Slave FIFO Write sequence description:  
Updated Figure 12.  
*R  
2015-03-27  
Updated Table 15:  
Updated minimum value of tSSD parameter.  
Added tACCD, tFAD parameters and their details.  
Datasheet  
78  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Electrical specifications:  
Updated DC specifications:  
Updated Table 8 (Removed ISS parameter and its corresponding details).  
Updated Errata:  
*S  
*T  
2016-04-07  
2016-06-29  
Updated Errata summary:  
Updated description.  
Added item “Bus collision is seen when the I2C block is used as a master in  
the I2C Multi-master configuration.” and its corresponding details in the  
table.  
Updated AC timing parameters:  
Updated GPIF II timing:  
Updated Table 13:  
Changed maximum value of tCO parameter from 8 ns to 7 ns.  
Updated Slave FIFO interface:  
Updated Synchronous Slave FIFO Write sequence description:  
Updated Table 15:  
Changed maximum value of tCO parameter from 8 ns to 7 ns.  
Updated to new template.  
*U  
*V  
2017-04-20  
2018-02-19  
Updated Cypress Logo and Copyright.  
Removed 131-ball WLCSP Package related information in all instances  
across the document.  
Updated Package diagram:  
spec 001-54471 – Changed revision from *E to *F.  
Updated to new template.  
Datasheet  
79  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Features:  
Updated description.  
Updated More information:  
Updated description.  
Updated Functional overview:  
Updated description.  
Updated USB interface:  
Removed “EZ-Dtect.  
Updated JTAG interface:  
Updated description.  
Updated Other interfaces:  
Updated I2S interface:  
Updated description.  
Updated Boot options:  
Updated description.  
Updated Power:  
Updated description.  
Updated Table 6.  
Updated Pin configurations:  
Updated Figure 6.  
*W  
2018-09-25  
Updated Figure 7.  
Updated Pin description:  
Updated Table 7.  
Updated Electrical specifications:  
Updated DC specifications:  
Updated Table 8.  
Added Table 9.  
Added Thermal characteristics.  
Updated AC timing parameters:  
Added GPIF II lines AC characteristics at 100 MHz.  
Added GPIF II PCLK jitter characteristics.  
Updated Errata:  
Updated description.  
Updated Errata summary:  
Updated description.  
Updated details in “Silicon Revision” column for all items in the table.  
Added items “Low Power U1 Fast-Exit Issue with USB3.0 host controller.,  
“USB data corruption when operating on hosts with poor link quality.,  
“Device treats Rx Detect sequence from the USB 3.0 host as a valid U1 exit  
LFPS burst., I2C Data Valid (tVD:DAT) specification violation at 400 kHz  
with a 40/60 duty cycle.” and their corresponding details in the table.  
Updated Pin description:  
Updated Table 7.  
Updated Errata:  
Updated Errata summary:  
Updated description.  
*X  
2018-12-17  
Added item “FX3 Device does not respond correctly to Port Capability  
Request from Host after multiple power cycles.” and its corresponding  
details in the table.  
Datasheet  
80  
001-52136 Rev. *Z  
2022-09-29  
EZ-USB FX3  
SuperSpeed USB Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Document Title to read as “CYUSB301X, CYUSB201X, EZ-USB FX3  
SuperSpeed USB Controller.  
Added a note on Errata in page 2.  
Updated More information:  
Updated description.  
Added hyperlink in required places.  
Updated Functional overview:  
Updated Application examples:  
Updated Figure 1.  
*Y  
2022-08-11  
Updated Figure 2.  
Updated USB interface:  
Updated description.  
Updated Boot options:  
Updated description.  
Updated Errata:  
Updated Errata summary:  
Updated details in “[Part Number]” column for Errata items 7, 8, 9, and 11.  
Migrated to Infineon template.  
Updated Features:  
Updated description.  
Updated More information:  
Updated description.  
Updated hyperlinks.  
Updated Functional overview:  
Updated description.  
Updated USB interface:  
Updated description.  
*Z  
2022-09-29  
Updated Boot options:  
Updated description.  
Updated Table 2.  
Updated Electrical specifications:  
Updated Absolute maximum ratings:  
Updated details corresponding to “Latch-up current.  
Updated Pin description:  
Updated Table 7.  
Datasheet  
81  
001-52136 Rev. *Z  
2022-09-29  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-09-29  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
001-52136 Rev. *Z  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CYUSB3014-BZXI

EZ-USB FX3 SuperSpeed USB Controller UART support up to 4 Mbps
CYPRESS

CYUSB3014-BZXI

EZ-USB™ FX3 USB 5 Gbps外设控制器
INFINEON

CYUSB3014-BZXIT

IC ARM9 USB CONTROLLER 121FBGA
CYPRESS

CYUSB3014-BZXIT

EZ-USB™ FX3 USB 5 Gbps外设控制器
INFINEON

CYUSB3014-FBXCT

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3014-FBXIT

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3014_1107

EZ-USB FX3 SuperSpeed USB Controller
CYPRESS

CYUSB301X

EZ-USB® FX3 SuperSpeed USB Controller
CYPRESS

CYUSB301X_13

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3023-FBXCT

SD3™ USB and Mass Storage Peripheral Controller
CYPRESS

CYUSB3025-BZXI

USB Bus Controller, CMOS, PBGA121, FBGA-121
CYPRESS

CYUSB3025-BZXI

EZ-USB™ SD3 USB 5 Gbps存储控制器
INFINEON