IMW120R020M1H [INFINEON]

采用TO247-3封装的1200V 20mΩ  CoolSiCTM 碳化硅MOSFET基于先进的沟槽工艺,该工艺经过优化兼具性能与可靠性。与IGBT和MOSFET等传统的硅(Si)基器件相比,SiC MOSFET具有诸多优势,例如1200 V开关器件中最低的栅极电荷和器件电容、体二极管没有反向恢复损耗、关断损耗受温度影响小以及没有拐点电压的导通特性。因此,CoolSiC™碳化硅 MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。;
IMW120R020M1H
型号: IMW120R020M1H
厂家: Infineon    Infineon
描述:

采用TO247-3封装的1200V 20mΩ  CoolSiCTM 碳化硅MOSFET基于先进的沟槽工艺,该工艺经过优化兼具性能与可靠性。与IGBT和MOSFET等传统的硅(Si)基器件相比,SiC MOSFET具有诸多优势,例如1200 V开关器件中最低的栅极电荷和器件电容、体二极管没有反向恢复损耗、关断损耗受温度影响小以及没有拐点电压的导通特性。因此,CoolSiC™碳化硅 MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。

开关 栅 DC-DC转换器 双极性晶体管 功率因数校正 二极管 栅极
文件: 总16页 (文件大小:1225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
CoolSiC 1200 V SiC Trench MOSFET : Silicon Carbide MOSFET  
Features  
• VDSS = 1200 V at Tvj = 25°C  
• IDDC = 98 A at Tc = 25°C  
• RDS(on) = 19 mΩ at VGS = 18 V, Tvj = 25°C  
• Very low switching losses  
• Short circuit withstand time 3 µs  
• Benchmark gate threshold voltage, VGS(th) = 4.2 V  
• Robust against parasitic turn on, 0 V turn-off gate voltage can be applied  
• Robust body diode for hard commutation  
• .XT interconnection technology for best-in-class thermal performance  
Potential applications  
• General purpose drives (GPD)  
• EV-Charging  
• Online UPS/Industrial UPS  
• String inverter  
• Solar power optimizer  
Product validation  
• Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
• Please also note the application note AN2019-05 for power and thermal cycling  
Description  
1 – gate  
2 – drain  
3 – source  
Type  
Package  
Marking  
IMW120R020M1H  
PG-TO247-3-STD-NN2.5  
12M1H020  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
Table of contents  
Table of contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Body diode (MOSFET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1
2
3
4
5
6
Datasheet  
2
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
1 Package  
1
Package  
Table 1  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
Unit  
Min.  
Max.  
150  
Storage temperature  
Soldering temperature  
Tstg  
-55  
°C  
°C  
Tsold  
wave soldering 1.6 mm (0.063 in.) from case  
for 10 s  
260  
Mounting torque  
M
M3 screw, Maximum of mounting processes:  
3
0.6  
62  
Nm  
K/W  
K/W  
Thermal resistance,  
junction-ambient  
Rth(j-a)  
Rth(j-c)  
MOSFET/body diode  
thermal resistance,  
junction-case  
0.31  
0.40  
2
MOSFET  
Table 2  
Maximum rated values  
Symbol Note or test condition  
Parameter  
Values  
1200  
98  
Unit  
Drain-source voltage  
VDSS  
IDDC  
Tvj ≥ 25 °C  
VGS = 18 V  
V
A
Continuous DC drain  
current for Rth(j-c,max)  
limited by Tvj(max)  
Tc = 25 °C  
,
Tc = 100 °C  
71  
Peak drain current, tp  
limited by Tvj(max)  
IDM  
VGS  
VGS  
EAS  
EAR  
tSC  
VGS = 18 V  
213  
-10/23  
-7/20  
721  
A
V
Gate-source voltage, max.  
transient voltage1)  
tp ≤ 0.5 µs, D < 0.001  
Gate-source voltage, max.  
static voltage  
V
Avalanche energy, single  
pulse  
ID = 40.1 A, VDD = 50 V, L = 0.9 mH  
ID = 40.1 A, VDD = 50 V, L = 4.5 µH  
mJ  
mJ  
µs  
Avalanche energy,  
repetitive  
3.58  
3
Short-circuit withstand  
time  
VDD ≤ 800 V, VDS,peak < 1200 V, VGS(on) = 15 V,  
Tvj(start) = 25 °C  
MOSFET dv/dt robustness  
dv/dt  
Ptot  
VDS = 0...800 V  
Tc = 25 °C  
150  
375  
188  
V/ns  
W
Power dissipation, limited  
by Tvj(max)  
Tc = 100 °C  
1)  
Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design  
guidelines described in Application Note AN2018-09 must be considered to ensure sound operation of the device over the planned  
lifetime.  
Datasheet  
3
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
2 MOSFET  
Table 3  
Recommended values  
Symbol Note or test condition  
VGS(on)  
Parameter  
Values  
Unit  
Recommended turn-on  
gate voltage  
15...18  
V
Recommended turn-off  
gate voltage  
VGS(off)  
-5...0  
V
Table 4  
Characteristic values  
Parameter  
Symbol Note or test condition  
Values  
Typ.  
19  
Unit  
Min.  
Max.  
Drain-source on-state  
resistance  
RDS(on) ID = 41 A  
Tvj = 25 °C,  
VGS(on) = 18 V  
26.9  
mΩ  
Tvj = 100 °C,  
VGS(on) = 18 V  
25  
36  
Tvj = 175 °C,  
VGS(on) = 18 V  
Tvj = 25 °C,  
VGS(on) = 15 V  
23.7  
30  
Gate-source threshold  
voltage  
VGS(th) ID = 17.6 mA, VDS = VGS  
(tested afꢀr 1 ms pulse  
at VGS = 20 V)  
Tvj = 25 °C  
3.5  
4.2  
3.6  
5.2  
V
Tvj = 175 °C  
Zero gate-voltage drain  
current  
IDSS  
VDS = 1200 V, VGS = 0 V  
Tvj = 25 °C  
Tvj = 175 °C  
VGS = 23 V  
VGS = -10 V  
320  
µA  
nA  
5.4  
Gate leakage current  
IGSS  
VDS = 0 V  
100  
-100  
Forward transconductance  
Internal gate resistance  
Input capacitance  
gfs  
RG,int  
Ciss  
ID = 41 A, VDS = 20 V  
27.4  
1.8  
S
f = 1 MHz, VAC = 25 mV  
VDD = 800 V, VGS = 0 V, f = 100 kHz, VAC = 25 mV  
VDD = 800 V, VGS = 0 V, f = 100 kHz, VAC = 25 mV  
VDD = 800 V, VGS = 0 V, f = 100 kHz, VAC = 25 mV  
3460  
159  
23  
pF  
pF  
pF  
Output capacitance  
Coss  
Crss  
Reverse transfer  
capacitance  
Coss stored energy  
Total gate charge  
Eoss  
QG  
VDD = 800 V, VGS = 0 V, f = 100 kHz, VAC = 25 mV  
65  
µJ  
nC  
VDD = 800 V, ID = 41 A, VGS = 0/18 V, turn-on  
pulse  
109  
Plateau gate charge  
QGS(pl) VDD = 800 V, ID = 41 A, VGS = 0/18 V, turn-on  
27.1  
21.8  
nC  
nC  
pulse  
Gate-to-drain charge  
QGD  
VDD = 800 V, ID = 41 A, VGS = 0/18 V, turn-on  
pulse  
(table continues...)  
Datasheet  
4
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
2 MOSFET  
Table 4  
(continued) Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
23  
Unit  
Min.  
Max.  
Turn-on delay time  
td(on)  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
ns  
Tvj = 175 °C  
21  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
Rise time  
tr  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
21.9  
28.2  
ns  
ns  
ns  
µJ  
µJ  
µJ  
°C  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
Turn-off delay time  
td(off)  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
29  
32  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
Fall time  
tf  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
16.5  
16.4  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
Tvj  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
1050  
1273  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
400  
444  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
VDD = 800 V, ID = 41 A,  
VGS = 0/18 V,  
Tvj = 25 °C  
1627  
2194  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = 0 V  
Virtual junction  
temperature  
-55  
175  
Datasheet  
5
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
3 Body diode (MOSFET)  
Note:  
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of  
the maximum ratings stated in this datasheet.  
The chip technology was characterized up to 200 kV/µs. The measured dV/dt was limited by measurement  
test setup and package.  
Dynamic test circuit see Fig. F.  
3
Body diode (MOSFET)  
Table 5  
Maximum rated values  
Parameter  
Symbol Note or test condition  
Values  
1200  
94  
Unit  
Drain-source voltage  
VDSS  
ISDC  
Tvj ≥ 25 °C  
VGS = 0 V  
V
A
Continuous reverse drain  
current for Rth(j-c,max)  
limited by Tvj(max)  
Tc = 25 °C  
,
Tc = 100 °C  
58  
Peak reverse drain current,  
tp limited by Tvj(max)  
ISM  
VGS = 0 V  
213  
A
Table 6  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
3.8  
Unit  
Min.  
Max.  
Drain-source reverse  
voltage  
VSD  
Qfr  
Ifrm  
Efr  
ISD = 41 A, VGS = 0 V  
Tvj = 25 °C  
Tvj = 100 °C  
Tvj = 175 °C  
Tvj = 25 °C  
Tvj = 175 °C  
5
V
3.7  
3.6  
MOSFET forward recovery  
charge  
VDD = 800 V,  
340  
nC  
A
ISD = 41 A, VGS = 0 V,  
diSD/dt = 3000 A/µs, Qfr  
includes also QC  
622  
MOSFET peak forward  
recovery current  
VDD = 800 V,  
Tvj = 25 °C  
17  
21  
ISD = 41 A, VGS = 0 V,  
diSD/dt = 3000 A/µs, Qfr  
includes also QC  
Tvj = 175 °C  
MOSFET forward recovery  
energy  
VDD = 800 V,  
Tvj = 25 °C  
177  
477  
µJ  
°C  
ISD = 41 A, VGS = 0 V,  
diSD/dt = 3000 A/µs, Qfr  
includes also QC  
Tvj = 175 °C  
Virtual junction  
temperature  
Tvj  
-55  
175  
Datasheet  
6
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
4
Characteristics diagrams  
Reverse bias safe operating area (RBSOA)  
IDS = f(VDS  
Tvj ≤ 175 °C, VGS = 0/18 V, Tc = 25 °C  
Power dissipation as a function of case temperature  
limited by bond wire  
Ptot = f(Tc)  
)
250  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
0
200  
400  
600  
800 1000 1200 1400  
0
25  
50  
75  
100  
125  
150  
175  
Maximum DC drain to source current as a function of Maximum source to drain current as a function of case  
case temperature limited by bond wire  
temperature limited by bond wire  
IDS = f(Tc)  
ISD = f(Tc)  
VGS = 0 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
150  
175  
Datasheet  
7
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical transfer characteristic  
Typical gate-source threshold voltage as a function of  
junction temperature  
VGS(th) = f(Tvj)  
IDS = f(VGS  
)
VDS = 20 V, tp = 20 µs  
ID = 17.6 mA  
700  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
600  
500  
400  
300  
200  
100  
0
-50 -25  
0
25  
50  
75 100 125 150 175  
0
4
8
12  
16  
20  
Typical output characteristic, VGS as parameter  
IDS = f(VDS  
Typical output characteristic,VGS as parameter  
IDS = f(VDS  
)
)
Tvj = 25 °C, tp = 20 µs  
Tvj = 175 °C, tp = 20 µs  
700  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
0
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Datasheet  
8
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical on-state resistance as a function of junction  
temperature  
RDS(on) = f(Tvj)  
Typical gate charge  
VGS = f(QG)  
ID = 41 A, VDS = 800 V  
ID = 41 A  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
10  
8
6
4
2
0
-50 -25  
0
25  
50  
75 100 125 150 175  
0
30  
60  
90  
120  
Typical capacitance as a function of drain-source  
voltage  
Typical reverse drain voltage as function of junction  
temperature  
C = f(VDS  
)
VSD = f(Tvj)  
f = 100 kHz, VGS = 0 V  
ISD = 41 A, VGS = 0 V  
5
4
3
2
1
0
10000  
1000  
100  
10  
1
1
-50 -25  
0
25  
50  
75 100 125 150 175  
10  
100  
1000  
Datasheet  
9
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical reverse drain current as function of reverse  
drain voltage, VGS as parameter  
Typical reverse drain current as function of reverse  
drain voltage, VGS as parameter  
ISD = f(VSD  
)
ISD = f(VSD)  
Tvj = 175 °C, tp = 20 µs  
Tvj = 25 °C, tp = 20 µs  
200  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Typical switching energy as a function of junction  
temperature, test circuit in Fig. F, 2nd device own  
body diode: VGS = 0 V  
Typical switching energy as a function of drain  
current, test circuit in Fig. F, 2nd device own body  
diode: VGS = 0 V  
E = f(Tvj)  
E = f(ID)  
VGS = 0/18 V, ID = 41 A, RG,ext = 2 Ω, VDD = 800 V  
VGS = 0/18 V, Tvj = 175 °C, RG,ext = 2 Ω, VDD = 800 V  
3000  
2500  
2000  
1500  
1000  
500  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
25  
50  
75  
100  
125  
150  
175  
20  
30  
40  
50  
60  
70  
80  
Datasheet  
10  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical switching energy losses as a function of gate  
Typical switching times as a function of gate  
resistance, test circuit in Fig. F, 2nd device own body resistance, test circuit in Fig. F, 2nd device own body  
diode: VGS = 0 V  
E = f(RG,ext  
diode: VGS = 0 V  
t = f(RG,ext  
)
)
VGS = 0/18 V, ID = 41 A, Tvj = °C, VDD = 800 V  
VGS = 0/18 V, ID = 41 A, Tvj = 175 °C, VDD = 800 V  
9000  
400  
350  
300  
250  
200  
150  
100  
50  
6000  
3000  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Typical reverse recovery charge as a function of  
Typical reverse recovery current as a function of  
revere drain current slope, test circuit in Fig. F, 2nd  
device own body diode: VGS = 0 V  
reverse drain current slope, test circuit in Fig. F, 2nd  
device own body diode: VGS = 0 V  
Qfr = f(diSD/dt )  
Ifrm = f(diSD/dt )  
VGS = 0/18 V, ISD = 41 A, VDD = 800 V  
VGS = 0/18 V, ISD = 41 A, VDD = 800 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
30  
25  
20  
15  
10  
5
0
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
Datasheet  
11  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical switching energy losses as a function of dead Max. transient thermal impedance (MOSFET/diode)  
time / blanking time, test circuit in Fig. F, 2nd device  
own body diode: VGS = -5 V  
Zth(j-c),max = f(tp)  
D = tp/T  
E = f(tdead  
)
VGS = -5/18 V, ID = 41 A, Tvj = 175 °C, VDD = 800 V  
1400  
1
0.1  
1200  
1000  
800  
600  
400  
200  
0
0.01  
0.001  
0.0001  
1E-6  
1E-5 0.0001 0.001  
0.01  
0.1  
1
50  
250  
450  
650  
850  
1050  
Datasheet  
12  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
5 Package outlines  
5
Package outlines  
PG-TO247-3-STD-NN2.5  
PACKAGE - GROUP  
NUMBER:  
PG-TO247-3-U06  
MILLIMETERS  
DIMENSIONS  
MIN.  
4.83  
2.27  
1.85  
1.07  
1.90  
2.87  
0.55  
20.80  
16.25  
0.95  
15.70  
13.10  
3.68  
1.00  
MAX.  
5.21  
2.54  
2.16  
1.33  
2.41  
3.38  
0.68  
21.10  
17.65  
1.35  
16.13  
14.15  
5.10  
2.60  
A
A1  
A2  
b
b1  
b2  
c
D
D1  
D2  
E
E1  
E2  
E3  
e
5.44  
3
N
L
19.80  
4.10  
3.50  
5.49  
6.04  
20.32  
4.47  
3.70  
6.00  
6.30  
L1  
øP  
Q
S
Figure 1  
Datasheet  
13  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
6 Testing conditions  
6
Testing conditions  
I,V  
VDS  
90%  
diSD/dt  
tfr = ta + tb  
Qfr = Qa + Qb  
ISD  
tfr  
ta  
tb  
10%  
t
VGS  
Qa  
Qb  
10% Ifrm  
td(on)  
td(off)  
Ifrm  
tr  
ton  
tf  
toff  
VSD  
Figure A. Definition of switching times  
VGS(t)  
90% VGS  
Figure B. Definition of body diode  
switching characteristics  
VGS,VDS  
Q
97% VDS  
VGS = 18 V  
10% VGS  
t
ID(t)  
1% ID  
t
VDS  
VDS(t)  
t, Q  
QGS,pl  
QG,tot  
QGD  
Figure D. Definition of QGD  
½Lσ  
Eon  
ʃ VDS*ID*dt  
=
Eoff  
ʃ VDS*ID*dt  
=
t4  
t2  
second  
device  
t3  
t1  
3% VDS  
t
L
Cσ  
t1  
t2  
t3  
t4  
VGS(off)  
Figure C. Definition of switching losses  
VDD  
τ1/r1  
τ2/r2  
τn/rn  
RG  
DUT  
Tj(t)  
p(t)  
r1  
r2  
r3  
½Lσ  
M
TC  
=
Figure F. Dynamic test circuit  
Parasitic inductance Lσ,  
Parasitic capacitor Cσ,  
=
Figure E. Thermal equivalent circuit  
Figure 2  
Datasheet  
14  
Revision 1.30  
2023-05-08  
IMW120R020M1H  
CoolSiC 1200 V SiC Trench MOSFET  
Revision history  
Revision history  
Document revision  
Date of release Description of changes  
1.00  
1.10  
2022-02-02  
2022-08-12  
Final datasheet  
Change of test condition of dynamic capacitances in Table 4,  
“Characteristic values” (Ciss, Coss, Crss): VDD= 25 V to VDD= 800 V  
Correction of unit of “Input capacitance” Ciss from nF to pF  
Change of VGS “Gate-source voltage, max. static voltage” in Table 2,  
“Maximum rated values” from -5/20 V to -7/20 V  
Editorial changes in “Features” on page 1  
Editorial changes in “Package” on page 1  
Correction of unit of x-axis at diagram “Max. transient thermal  
impedance (MOSFET/diode)” from µs to s, on page 13  
Correction of diagram “Typical reverse drain current as a function of  
reverse drain voltage, VGS as parameter, on page 11  
1.20  
1.30  
2023-02-20  
2023-05-08  
Correction of IDSS in table 4 on page 4  
Editorial changes  
Correction of gate charge values in Table 4  
Datasheet  
15  
Revision 1.30  
2023-05-08  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2023-05-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents  
of the Automotive Electronics Council.  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Bꢀschaffꢀnhꢀitsgarantiꢀ”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Warnings  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies officꢀ.  
©
2023 Infineon Technologies AG  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Document reference  
IFX-ABB900-004  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

IMW120R030M1H

IMW120R030M1H是采用TO247-3封装的1200 V、30 mΩ CoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW120R045M1

1200 V, 45 mΩ的 CoolSiC™碳化硅MOSFET 采用TO247-3封装, 基于先进的沟槽半导体工艺,该工艺经过优化,兼具可靠性与性能优势。与IGBT和MOSFET等基于传统硅(Si)的开关相比,碳化硅MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW120R060M1H

IMW120R060M1H是采用TO247-3封装的1200 V、60 mΩ CoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。 与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW120R090M1H

IMW120R090M1H是采用TO247-3封装的1200 V、90 mΩCoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW120R140M1H

IMW120R140M1H是采用TO247-3封装的1200 V、140 mΩ CoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。 与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW120R220M1H

IMW120R220M1H是采用TO247-3封装的1200 V、220 mΩ CoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。 与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMW65R027M1H

CoolSiC™ MOSFET 技术通过最大限度地发挥碳化硅强大的物理特性,从而增强了设备性能、稳健性和易用性等独特优势。IMW65R107M1H 650V CoolSiC™ MOSFET 基于先进的沟槽半导体技术,并经过优化,在毫不折衷的情况下,在应用中实现最低损耗,并在运行中实现最佳可靠性。此 SiC MOSFET 采用 TO247 3 引脚封装,以提供经济高效的性能。
INFINEON

IMW65R030M1H

CoolSiC™ MOSFET 技术通过最大限度地发挥碳化硅强大的物理特性,从而增强了设备性能、稳健性和易用性等独特优势。IMW65R030M1H 650V CoolSiC™ MOSFET 基于先进的沟槽半导体技术,并经过优化,在毫不折衷的情况下,在应用中实现最低损耗,并在运行中实现最佳可靠性。 此 SiC MOSFET 采用 TO247 3 引脚封装,以提供经济高效的性能。
INFINEON

IMW65R039M1H

CoolSiC™ MOSFET 技术通过最大限度地发挥碳化硅强大的物理特性,从而增强了设备性能、稳健性和易用性等独特优势。IMW65R039M1H 650V CoolSiC™ MOSFET 基于先进的沟槽半导体技术,并经过优化,在毫不折衷的情况下,在应用中实现最低损耗,并在运行中实现最佳可靠性。 此 SiC MOSFET 采用 TO247 3 引脚封装,以提供经济高效的性能。
INFINEON

IMX-1000

Industrial Mobile Handheld Device
ETC

IMX-1100

Industrial Mobile Handheld Device
ETC

IMX-2000

Industrial Mobile Handheld Device
ETC