IR21034 [INFINEON]

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDIP14, PLASTIC, DIP-14;
IR21034
型号: IR21034
厂家: Infineon    Infineon
描述:

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDIP14, PLASTIC, DIP-14

驱动 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Data Sheet No. PD60045I  
IR2103/IR21034  
HIGH AND LOW SIDE DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
Gate drive supply range from 10 to 20V  
Undervoltage lockout  
V
600V max.  
130 mA / 270 mA  
10 - 20V  
OFFSET  
I +/-  
O
V
OUT  
5V Schmitt-triggered input logic  
Cross-conduction prevention logic  
Matched propagation delay for both channels  
Internal set deadtime  
High side output in phase with HIN input  
Low side output out of phase with LIN input  
t
(typ.)  
680 & 150 ns  
520 ns  
on/off  
Deadtime (typ.)  
Packages  
Description  
The IR2103/IR21034 are high voltage, high speed  
power MOSFET and IGBT drivers with independent  
high and low side referenced output channels. Propri-  
etary HVIC and latch immune CMOS technologies  
enable ruggedized monolithic construction. The logic  
input is compatible with standard CMOS or LSTTL  
output. The output drivers feature a high pulse cur-  
rent buffer stage designed for minimum driver  
cross-conduction. The floating channel can be used  
to drive an N-channel power MOSFET or IGBT in the  
high side configuration which operates up to 600 volts.  
8 Lead SOIC  
IR2103S  
14 Lead SOIC  
IR21034S  
8 Lead PDIP  
IR2103  
14 Lead PDIP  
IR21034  
Typical Connection  
up to 600V  
VCC  
VCC  
VB  
HO  
VS  
HIN  
LIN  
HIN  
LIN  
TO  
LOAD  
COM  
LO  
IR2103/IR21034  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
V
-0.3  
625  
B
S
V
V
- 25  
V
B
V
B
+ 0.3  
+ 0.3  
25  
B
V
HO  
V
- 0.3  
S
V
V
CC  
-0.3  
-0.3  
-0.3  
V
V
+ 0.3  
+ 0.3  
LO  
CC  
V
Logic input voltage (HIN &  
)
V
CC  
LIN  
IN  
dV /dt  
s
Allowable offset supply voltage transient  
50  
V/ns  
W
P
Package power dissipation @ T +25°C (8 Lead PDIP)  
1.0  
0.625  
1.6  
D
A
(8 Lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
1.0  
Rth  
Thermal resistance, junction to ambient  
(8 Lead PDIP)  
(8 Lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
125  
200  
75  
JA  
°C/W  
°C  
120  
150  
150  
300  
T
J
Junction temperature  
T
Storage temperature  
-55  
S
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
V
V
+ 10  
V + 20  
S
B
S
S
V
Note 1  
600  
V
HO  
V
V
B
S
V
V
CC  
10  
0
20  
V
V
LO  
CC  
CC  
V
Logic input voltage (HIN &  
Ambient temperature  
)
0
V
LIN  
IN  
°C  
T
A
-40  
125  
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V .  
BS  
S
S
2
IR2103/IR21034  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, C = 1000 pF and T = 25°C unless otherwise specified.  
BIAS CC BS L A  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
Turn-on rise time  
680  
150  
100  
50  
820  
220  
170  
90  
V = 0V  
S
on  
off  
t
V
S
= 600V  
t
t
r
f
Turn-off fall time  
ns  
DT  
Deadtime, LS turn-off to HS turn-on &  
HS turn-on to LS turn-off  
400  
520  
650  
MT  
Delay matching, HS & LS turn-on/off  
60  
Static Electrical Characteristics  
V
(V , V ) = 15V and T = 25°C unless otherwise specified. The V , V and I parameters are referenced to  
BIAS CC BS A IN TH IN  
COM. The V and I parameters are referenced to COM and are applicable to the respective output leads: HO or LO.  
O
O
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
LIN  
LIN  
V
Logic “1” (HIN) & Logic “0” (  
) input voltage  
) input voltage  
3
0.8  
100  
100  
50  
V
= 10V to 20V  
IH  
CC  
CC  
V
V
Logic “0” (HIN) & Logic “1” (  
8
V
= 10V to 20V  
IL  
V
OH  
High level output voltage, V  
- V  
O
I
I
= 0A  
= 0A  
BIAS  
O
mV  
V
Low level output voltage, V  
OL  
LK  
O
O
I
Offset supply leakage current  
Quiescent V supply current  
V = V = 600V  
B S  
I
I
30  
150  
3
55  
V
= 0V or 5V  
= 0V or 5V  
QBS  
BS  
IN  
IN  
Quiescent V  
supply current  
270  
10  
V
µA  
QCC  
CC  
I
Logic “1” input bias current  
Logic “0” input bias current  
HIN = 5V, LIN = 0V  
LIN  
= 5V  
IN+  
I
1
HIN = 0V,  
IN-  
V
V
CC  
supply undervoltage positive going  
8.9  
9.8  
CCUV+  
threshold  
supply undervoltage negative going  
V
V
V
CC  
7.4  
130  
270  
8.2  
210  
360  
9
CCUV-  
threshold  
I
Output high short circuit pulsed current  
V = 0V, V = V  
O IN IH  
O+  
PW 10 µs  
mA  
I
Output low short circuit pulsed current  
V
O
= 15V, V = V  
O-  
IN  
IL  
PW 10 µs  
3
IR2103/IR21034  
Functional Block Diagram  
VB  
Q
HV  
LEVEL  
SHIFT  
R
S
HO  
PULSE  
FILTER  
DEAD  
TIME  
HIN  
PULSE  
GEN  
VS  
UV  
DETECT  
VCC  
v
15V  
LIN  
LO  
DEAD  
TIME  
COM  
4
IR2103/IR21034  
Lead Definitions  
Symbol Description  
HIN  
Logic input for high side gate driver output (HO), in phase  
Logic input for low side gate driver output (LO), out of phase  
High side floating supply  
LIN  
V
B
HO  
High side gate drive output  
V
V
High side floating supply return  
Low side and logic fixed supply  
Low side gate drive output  
S
CC  
LO  
COM  
Low side return  
Lead Assignments  
V
V
1
2
3
4
V
CC  
B
8
1
2
3
4
V
CC  
B
8
7
HO  
HO  
HIN  
LIN  
HIN  
LIN  
7
6
5
V
S
V
S
6
5
LO  
LO  
COM  
COM  
8 Lead PDIP  
8 Lead SOIC  
IR2103  
IR2103S  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
1
2
3
4
5
6
7
2
3
4
5
6
7
V
CC  
V
CC  
V
V
HIN  
LIN  
B
HIN  
LIN  
B
HO  
HO  
V
S
V
S
COM  
LO  
COM  
LO  
8
8
14 Lead PDIP  
14 Lead SOIC  
IR21034  
IR21034S  
5
IR2103/IR21034  
01-3003 01  
8 Lead PDIP  
8 Lead SOIC  
01-0021 08  
6
IR2103/IR21034  
01-3002 03  
14 Lead PDIP  
14 Lead SOIC (narrow body)  
01-3063 00  
7
IR2103/IR21034  
HIN  
LIN  
LIN  
50%  
50%  
t
HIN  
t
t
t
f
on  
off  
r
90%  
90%  
HO  
LO  
HO  
LO  
10%  
10%  
Figure 1. Input/Output Timing Diagram  
Figure 2. Switching Time Waveform Definitions  
LIN  
50%  
50%  
HIN  
LIN  
50%  
50%  
HO  
HIN  
LO  
90%  
10%  
10%  
HO  
LO  
DT  
90%  
DT  
MT  
MT  
90%  
10%  
LO  
HO  
Figure 3. Delay Matching Waveform Definitions  
Figure 4. Deadtime Waveform Definitions  
8
IR2103/IR21034  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
20  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 6A. Turn-On Time vsTemperature  
Figure 6B. Turn-On Time vs Voltage  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 7B. Turn-Off Time vs Voltage  
Figure 7A. Turn-Off Time vs Temperature  
500  
400  
300  
500  
400  
300  
200  
100  
0
Max .  
Typ.  
200  
Max.  
100  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 9B. Turn-On Rise Time  
vs Voltage  
Figure 9A. Turn-On Rise Time  
vs Temperature  
9
IR2103/IR21034  
200  
150  
200  
150  
100  
50  
Max .  
Typ.  
100  
Max.  
Typ.  
50  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 10A. Turn Off Fall Time  
vs Temperature  
Figure 10B. Turn Off Fall Time vs Voltage  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
Max .  
Ty p.  
Max.  
p.  
Ty  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 11A. Deadtime vs Temperature  
Figure 11B. Deadtime vs Voltage  
8
7
6
5
8
7
6
5
4
3
2
1
0
4
Min.  
Min.  
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 12B. Logic "1" (HIN) & Logic "0" (LIN)  
Input Voltage vs Voltage  
Figure12A. Logic "1" (HIN) & Logic "0" (LIN)  
Input Voltage vs Temperature  
10  
IR2103/IR21034  
4
3.2  
2.4  
1.6  
0.8  
0
4
3.2  
2.4  
1.6  
0.8  
0
Max .  
Max .  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 13B. Logic "0"(HIN) & Logic "1"(LIN)  
Input Voltage vs Voltage  
Figure 13A. Logic "0"(HIN) & Logic "1"(LIN)  
Input Voltage vs Temperature  
1
0.8  
0.6  
0.4  
1
0.8  
0.6  
0.4  
0.2  
0.2  
Max.  
Max.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 14A. High Level Output  
vs Temperature  
Figure 14B. High Level Output vs Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
Max.  
Max .  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 15A. Low Level Output  
vs Temperature  
Figure 15B. Low Level Output vs Voltage  
11  
IR2103/IR21034  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
Max.  
100  
Max.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
200  
400  
600  
800  
Temperature (oC)  
VB Boost Voltage (V)  
Figure 16A. Offset Supply Current  
vs Temperature  
Figure 16B. Offset Supply Current vs Voltage  
150  
120  
90  
150  
120  
90  
60  
60  
Max.  
Max .  
30  
30  
Ty p.  
-25  
Typ.  
0
0
-50  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBS Floating Supply Voltage (V)  
Figure 17A. VBS Supply Current  
vs Temperature  
Figure 17B. VBS Supply Current vs Voltage  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
Max.  
Typ.  
300 Max.  
200  
100  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 18A. Vcc Supply Current  
vs Temperature  
Figure 18B. Vcc Supply Current vs Voltage  
12  
IR2103/IR21034  
3 0  
2 5  
2 0  
1 5  
1 0  
5
30  
25  
20  
15  
10  
5
Ma x .  
Ty p .  
Max  
Ty p.  
0
0
1 0  
1 2  
1 4  
1 6  
1 8  
2 0  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 19A. Logic "1" Input Current  
vs Temperature  
Figure 19B. Logic "1" Input Current  
vs Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max .  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Vcc Supply Voltage (V)  
Figure 20B. Logic "0" Input Current  
vsVoltage  
Figure 20A. Logic "0" Input Current  
vs Temperature  
11  
11  
10  
9
Max .  
10  
9
Max .  
Typ.  
Typ.  
Min.  
8
8
7
7
Min.  
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 21A. Vcc UndervoltageThreshold(+)  
vs Temperature  
Figure 21B. Vcc UndervoltageThreshold (-)  
vs Temperature  
13  
IR2103/IR21034  
500  
400  
500  
400  
300  
200  
100  
0
Ty p.  
300  
200  
Typ.  
100  
0
Min.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 22A. Output Source Current vs  
Temperature  
Figure 22B. Output Source Current  
vs Voltage  
700  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Ty p.  
Min.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 23B. Output Sink Current  
vsVoltage  
Figure 23A. Output Sink Current  
vs Temperature  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331  
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020  
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2 Tel: (905) 453-2200  
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590  
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111  
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: 81 3 3983 0086  
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: 65 838 4630  
IR TAIWAN: 16 Fl. Suite D..207, Sec.2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936  
http://www.irf.com/  
Data and specifications subject to change without notice. 3/22/99  
14  

相关型号:

IR21034S

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDSO14, SOIC-14
INFINEON

IR2103PBF

Half-Bridge Driver
INFINEON

IR2103S

HALF-BRIDGE DRIVER
INFINEON

IR2103SPBF

Half-Bridge Driver
INFINEON

IR2103STR

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDSO8, SOIC-8
INFINEON

IR2103STRPBF

Half-Bridge Driver
INFINEON

IR2103_13

Half-Bridge Driver
INFINEON

IR2104

HALF-BRIDGE DRIVER
INFINEON

IR21044

HIGH AND LOW SIDE DRIVER(205.08 k)
ETC

IR21044PBF

Half Bridge Based MOSFET Driver, 0.27A, CMOS, PDIP14, PLASTIC, DIP-14
INFINEON

IR21044S

Half Bridge Based MOSFET Driver, 0.27A, CMOS, PDSO14, SOIC-14
INFINEON

IR21044SPBF

Half Bridge Based MOSFET Driver, 0.27A, CMOS, PDSO14, SOIC-14
INFINEON