IR2184STRPBF [INFINEON]

HALF-BRIDGE DRIVER; 半桥驱动器
IR2184STRPBF
型号: IR2184STRPBF
厂家: Infineon    Infineon
描述:

HALF-BRIDGE DRIVER
半桥驱动器

驱动器 接口集成电路 光电二极管 PC
文件: 总24页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60174 revG  
( )( )&(PbF)  
S
IR2184 4  
HALF-BRIDGE DRIVER  
Features  
Packages  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
14-Lead PDIP  
IR21844  
Gate drive supply range from 10 to 20V  
Undervoltage lockout for both channels  
8-Lead PDIP  
IR2184  
3.3V and 5V input logic compatible  
Matched propagation delay for both channels  
Logic and power ground +/- 5V offset.  
Lower di/dt gate driver for better noise immunity  
Output source/sink current capability 1.4A/1.8A  
8-Lead SOIC  
IR2184S  
14-Lead SOIC  
IR21844S  
Also available LEAD-FREE (PbF)  
Description  
IR2181/IR2183/IR2184 Feature Comparison  
The IR2184(4)(S) are high voltage,  
high speed power MOSFET and IGBT  
drivers with dependent high and low  
side referenced output channels. Pro-  
prietary HVIC and latch immune  
CMOS technologies enable rugge-  
dized monolithic construction. The  
logic input is compatible with standard  
CMOS or LSTTL output, down to 3.3V  
logic. The output drivers feature a  
ꢁꢗꢏꢝꢝꢞ  
ꢈꢘꢌꢋꢎꢍ  
ꢙꢏꢚꢛꢜꢍ  
ꢜꢏꢘ!ꢋꢜꢎꢛꢏꢘꢍꢍ  
ꢌꢗꢟꢠꢟꢘꢎꢛꢏꢘꢍ  
ꢙꢏꢚꢛꢜꢍ  
ꢕꢖꢗꢎꢍ  
ꢊꢟꢖ!ꢞꢒꢛꢡꢟꢍ  
%ꢗꢏꢋꢘ!ꢍꢕꢛꢘꢝꢍ  
ꢒꢏꢘ&ꢒꢏꢢꢢꢍ  
*797ꢍ  
*797:ꢍ  
*79;ꢍ  
ꢁꢅꢇꢍ  
ꢀꢃꢃ&ꢁꢅꢇꢍ  
ꢁꢅꢇꢍ  
ꢄꢈꢉ&ꢆꢈꢉꢍ  
ꢄꢈꢉ&ꢆꢈꢉꢍ  
ꢈꢉ&ꢃꢊꢍ  
ꢘꢏꢍ  
ꢣꢟꢝꢍ  
ꢣꢟꢝꢍ  
ꢘꢏꢘꢟꢍ  
79ꢑ&**ꢑꢍꢘꢝꢍ  
79ꢑ&**ꢑꢍꢘꢝꢍ  
ꢐ9ꢑ&*@ꢑꢍꢘꢝꢍ  
ꢈꢘꢎꢟꢗꢘꢖꢙꢍ<ꢑꢑꢘꢝꢍ  
ꢕꢗꢏꢚꢗꢖꢡꢍꢑ>:ꢍꢤꢍ<ꢍꢋꢝꢍ  
ꢈꢘꢎꢟꢗꢘꢖꢙꢍ<ꢑꢑꢘꢝꢍ  
*79;:ꢍ  
*79:ꢍ  
ꢀꢃꢃ&ꢁꢅꢇꢍ  
ꢁꢅꢇꢍ  
*79::ꢍ  
ꢕꢗꢏꢚꢗꢖꢡꢍꢑ>:ꢍꢤꢍ<ꢍꢋꢝꢍ  
ꢀꢃꢃ&ꢁꢅꢇꢍ  
high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be  
used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600  
volts.  
Typical Connection  
ꢋꢌꢍꢎꢏꢍꢐꢑꢑꢀ  
ꢁꢁ  
ꢁꢁ  
ꢈꢉ  
ꢈꢉ  
ꢄꢅ  
ꢒꢅ  
ꢃꢊ  
ꢃꢊ  
ꢆꢅꢓꢊ  
ꢁꢅꢇ  
ꢆꢅ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢑꢀ  
IR2184  
ꢄꢅ  
IR21844  
ꢁꢁ  
ꢁꢁ  
ꢈꢉ  
ꢈꢉ  
ꢒꢅ  
ꢆꢅꢓꢊ  
ꢃꢊ  
ꢊꢒ  
ꢃꢊ  
(Refer to Lead Assignments for correct  
configuration). This/These diagram(s) show  
electrical connections only. Please refer to  
our Application Notes and DesignTips for  
proper circuit board layout.  
ꢁꢅꢇ  
ꢆꢅ  
ꢃꢃ  
ꢃꢃ  
ꢊꢒ  
www.irf.com  
1
( )(S)&(PbF)  
IR2184 4  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters  
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board  
mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Min.  
Max.  
Units  
V
B
-0.3  
625  
V
S
V
B
- 25  
V
+ 0.3  
+ 0.3  
25  
B
V
V
- 0.3  
V
HO  
S
B
V
CC  
Low side and logic fixed supply voltage  
Low side output voltage  
-0.3  
-0.3  
- 0.3  
V
V
V
V
+ 0.3  
LO  
CC  
DT  
Programmable dead-time pin voltage (IR21844 only)  
Logic input voltage (IN ꢥ SD)  
V
+ 0.3  
+ 10  
+ 0.3  
SS  
SS  
CC  
CC  
V
IN  
V
V
- 0.3  
- 25  
V
SS  
V
Logic ground (IR21844 only)  
V
SS  
CC  
dV /dt  
S
Allowable offset supply voltage transient  
50  
V/ns  
P
D
Package power dissipation ꢦ T +25°C  
A
(8-lead PDIP)  
-50  
1.0  
0.625  
1.6  
(8-lead SOIC)  
(14-lead PDIP)  
(14-lead SOIC)  
(8-lead PDIP)  
(8-lead SOIC)  
(14-lead PDIP)  
(14-lead SOIC)  
W
1.0  
Rth  
JA  
Thermal resistance, junction to ambient  
125  
200  
ꢧ5  
°C/W  
120  
150  
150  
300  
T
J
Junction temperature  
T
S
Storage temperature  
°C  
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V and V offset rating are tested with all supplies biased at 15V differential.  
S SS  
Symbol  
Definition  
Min.  
Max.  
Units  
VB  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
V
+ 10  
V + 20  
S
S
V
S
Note 1  
600  
V
HO  
V
S
V
B
V
Low side and logic fixed supply voltage  
Low side output voltage  
10  
0
20  
CC  
V
V
V
CC  
LO  
V
Logic input voltage (IN ꢥ SD)  
V
V
+ 5  
SS  
IN  
SS  
DT  
Programmable dead-time pin voltage (IR21844 only)  
Logic ground (IR21844 only)  
V
V
CC  
SS  
V
-5  
5
SS  
T
A
Ambient temperature  
-40  
125  
°C  
Note 1ꢨ Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S S BS  
DTꢩꢧ-3 for more details).  
Note 2ꢨ IN and SD are internally clamped with a 5.2V zener diode.  
2
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, V = COM, C = 1000 pF, T = 25°C, DT = VSS unless otherwise specified.  
BIAS CC BS  
L
A
SS  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
680  
2ꢧ0  
180  
0
ꢩ00  
400  
2ꢧ0  
ꢩ0  
V = 0V  
S
on  
t
V = 0V or 600V  
S
off  
t
sd  
Shut-down propagation delay  
MTon  
MToff  
Delay matching, HS ꢥ LS turn-on  
nsec  
Delay matching, HS ꢥ LS turn-off  
Turn-on rise time  
0
40  
t
40  
20  
60  
V
V
= 0V  
= 0V  
r
S
S
t
f
Turn-off fall time  
35  
DT  
Deadtimeꢨ LO turn-off to HO turn-on(DT  
280  
4
400  
5
520  
6
RDT= 0  
RDT = 200k  
RDT=0  
LO-HO) ꢥ  
HO turn-off to LO turn-on (DT  
µsec  
HO-LO)  
MDT  
Deadtime matching = DT  
- DT  
0
50  
LO - HO  
HO-LO  
nsec  
0
600  
RDT = 200k  
Static Electrical Characteristics  
V
(V , V ) = 15V, V = COM, DT= V  
BIAS CC BS SS  
and T = 25°C unless otherwise specified. The V , V and I  
SS  
A
IL IH  
IN  
parameters are referenced to V /COM and are applicable to the respective input leadsꢨ IN and SD. The V , I and Ron  
SS O O  
parameters are referenced to COM and are applicable to the respective output leadsꢨ HO and LO.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage for HO ꢥ logic “0” for LO  
Logic “0” input voltage for HO ꢥ logic “1” for LO  
2.ꢧ  
60  
1.0  
25  
0.8  
V
V
V
V
= 10V to 20V  
= 10V to 20V  
= 10V to 20V  
= 10V to 20V  
IH  
CC  
CC  
CC  
CC  
V
IL  
V
SD,TH+  
SD input positive going threshold  
SD input negative going threshold  
2.ꢧ  
V
V
0.8  
1.2  
0.1  
50  
SD,TH-  
V
OH  
High level output voltage, V  
Low level output voltage, V  
- V  
I
I
= 0A  
= 0A  
BIAS  
O
O
O
V
OL  
O
I
Offset supply leakage current  
V
= V = 600V  
B S  
LK  
µA  
mA  
µA  
I
Quiescent V supply current  
BS  
20  
0.4  
150  
1.6  
60  
V
= 0V or 5V  
QBS  
IN  
I
Quiescent V  
supply current  
V
= 0V or 5V  
IN  
QCC  
CC  
I
Logic “1” input bias current  
Logic “0” input bias current  
IN = 5V, SD = 0V  
IN = 0V, SD = 5V  
IN+  
I
IN-  
1.0  
ꢩ.8  
V
V
and V supply undervoltage positive going  
BS  
8.0  
8.ꢩ  
CCUV+  
CC  
V
threshold  
and V supply undervoltage negative going  
BSUV+  
V
V
ꢧ.4  
0.3  
8.2  
0.ꢧ  
ꢩ.0  
CCUV-  
CC  
BS  
V
threshold  
Hysteresis  
BSUV-  
V
V
CCUVH  
V
BSUVH  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
1.4  
1.8  
1.ꢩ  
2.3  
V = 0V,  
O
O+  
PW 10 µs  
= 15V,  
A
I
V
O
O-  
PW 10 µs  
www.irf.com  
3
( )(S)&(PbF)  
IR2184 4  
Functional Block Diagrams  
VB  
UV  
2184  
DETECT  
HO  
R
R
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
S
VSS/COM  
LEVEL  
SHIFT  
IN  
VS  
PULSE  
GENERATOR  
VCC  
LO  
DEADTIME  
UV  
DETECT  
+5V  
VSS/COM  
LEVEL  
SHIFT  
DELAY  
SD  
COM  
VB  
UV  
21844  
DETECT  
HO  
R
R
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
S
VSS/COM  
LEVEL  
SHIFT  
IN  
VS  
PULSE  
GENERATOR  
VCC  
LO  
DEADTIME  
DT  
UV  
DETECT  
+5V  
VSS/COM  
LEVEL  
SHIFT  
DELAY  
SD  
COM  
VSS  
4
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
Lead Definitions  
Symbol Description  
IN  
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM  
for IR2184 and VSS for IR21844)  
Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844)  
Programmable dead-time lead, referenced to VSS. (IR21844 only)  
Logic Ground (21844 only)  
SD  
DT  
VSS  
V
High side floating supply  
B
HO  
High side gate drive output  
V
High side floating supply return  
S
V
Low side and logic fixed supply  
CC  
LO  
Low side gate drive output  
COM  
Low side return  
Lead Assignments  
V
V
B
1
2
3
4
IN  
B
8
1
2
3
4
IN  
8
HO  
HO  
SD  
COM  
LO  
SD  
COM  
LO  
V
S
V
S
6
5
6
5
V
V
CC  
CC  
8-Lead PDIP  
8-Lead SOIC  
IR2184  
IR2184S  
14  
1
2
3
4
5
6
IN  
14  
1
IN  
V
13  
12  
11  
10  
V
SD  
13  
12  
11  
10  
B
2
3
4
5
6
SD  
B
HO  
HO  
VSS  
DT  
VSS  
DT  
V
S
V
S
COM  
LO  
COM  
LO  
8
V
8
V
CC  
CC  
14-Lead PDIP  
14-Lead SOIC  
IR21844  
IR21844S  
www.irf.com  
5
( )(S)&(PbF)  
IR2184 4  
ꢈꢉ  
ꢈꢉ^ꢆꢅ_  
<ꢑ`  
<ꢑ`  
ꢃꢊ  
ꢈꢉ^ꢄꢅ_  
ꢏꢘ  
ꢏꢢꢢ  
qꢑ`  
qꢑ`  
ꢄꢅ  
ꢆꢅ  
ꢆꢅ  
ꢄꢅ  
7ꢑ`  
7ꢑ`  
Figure 1. Input/Output Timing Diagram  
Figure 2. Switching Time Waveform Definitions  
ꢃꢊ  
<ꢑ`  
<ꢑ`  
<ꢑ`  
ꢝ!  
ꢈꢉ  
ꢄꢅ  
ꢆꢅ  
qꢑ`  
qꢑ`  
ꢊꢒ  
7ꢑ`  
ꢄꢅ  
ꢆꢅ  
ꢆꢅꢞꢄꢅ  
Figure 3. Shutdown Waveform Definitions  
ꢊꢒ  
ꢄꢅꢞꢆꢅ  
qꢑ`  
7ꢑ`  
ꢇꢊꢒ{  
ꢊꢒ  
ꢞꢍꢍꢊꢒ  
ꢆꢅꢞꢄꢅ  
ꢄꢅꢞꢆꢅ  
^ꢆꢅ_  
<ꢑ`  
<ꢑ`  
Figure 4. Deadtime Waveform Definitions  
^ꢄꢅ_  
ꢆꢅ  
ꢄꢅ  
7ꢑ`  
ꢇꢒ  
ꢇꢒ  
qꢑ`  
ꢆꢅ  
ꢄꢅ  
Figure 5. Delay Matching Waveform Definitions  
6
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
1400  
1200  
1000  
800  
1400  
1200  
1000  
800  
Max.  
Typ.  
Max.  
Typ.  
600  
600  
400  
400  
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 4A. Turn-on Propagation Delay  
vs. Temperature  
Figure4B. Turn-on Propagation Delay  
vs. Supply Voltage  
700  
600  
500  
400  
300  
200  
100  
700  
600  
500  
400  
300  
200  
100  
Max.  
Max.  
Typ.  
Typ.  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 5A. Turn-off Propagation Delay  
vs. Temperature  
Figure 5B. Turn-off Propagation Delay  
vs. Supply Voltage  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75  
100 125  
Temperature (oC)  
Supply Voltage (V)  
Figure 6A. SDPropagation Delay  
vs. Temperature  
Figure 6B. SDPropagation Delay  
vs. Supply Voltage  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
Max.  
Typ.  
Max.  
Typ.  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 7A. Turn-on Rise Time vs. Temperature  
Figure 7B. Turn-on Rise Time vs. Supply Voltage  
8
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Max.  
Typ.  
Max.  
Typ  
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 8A. Turn-off Fall Time vs. Temperature  
Figure 8B. Turn-off Fall Time vs. Supply Voltage  
1100  
900  
1100  
900  
700  
700  
Max.  
Max.  
Typ.  
500  
500  
Typ.  
Min.  
Min.  
300  
300  
100  
100  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (v)  
Figure 9A. Deadtime vs. Temperature  
Figure 9B. Deadtime vs. Supply Voltage  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Max.  
Typ.  
Min.  
Min.  
0
50  
100  
(K )  
150  
200  
-50  
-25  
0
25  
50  
75  
100 125  
R
Η
DT  
Temperature (oC)  
Figure 9C. Deadtime vs. R  
DT  
Figure 10A. Logic "1" Input Voltage  
vs. Temperature  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
Min.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (oC)  
Supply Voltage (V)  
Figure 10B. Logic "1" Input Voltage  
vs. Supply Voltage  
Figure 11A. Logic "0" Input Voltage  
vs. Temperature  
10  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Min.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (oC)  
Supply Voltage (V)  
Figure 11B. Logic "0" Input Voltage  
vs. Supply Voltage  
Figure 12A. SDInput Positive Going Threshold  
vs. Temperature  
6
5
4
3
2
1
0
5
4
3
2
1
0
Min.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage (V)  
Temperature (oC)  
Figure 13A. SDInput Negative Going Threshold  
vs. Temperature  
Figure 12B. SDInput Positive Going Threshold  
vs. Supply Voltage  
www.irf.com  
11  
( )(S)&(PbF)  
IR2184 4  
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max.  
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 14A. High Level Output vs. Temperature  
Figure 13B. SDInput Negative Going Threshold  
vs. Supply Voltage  
0.5  
0.4  
0.3  
0.2  
5
4
3
2
Max.  
Max.  
0.1  
1
0
0.0  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 14B. High Level Output vs. Supply Voltage  
Figure 15A. Low Level Output vs. Temperature  
12  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
500  
400  
300  
200  
100  
0
Max.  
Max.  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 16A. Offset Supply Leakage Current vs.  
Temperature  
Figure 15B. Low Level Output vs. Supply Voltage  
500  
400  
300  
200  
250  
200  
150  
100  
50  
Max.  
Typ.  
Min.  
100  
Max.  
0
0
100  
200  
300  
400  
500  
600  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (oC)  
VB Boost Voltage (V)  
Figure 16B. Offset Supply Leakage Current vs.  
VB Boost Voltage  
Figure 17A. VBS Supply Current  
vs. Temperature  
www.irf.com  
13  
( )(S)&(PbF)  
IR2184 4  
5
4
3
2
1
0
250  
200  
150  
100  
50  
Max.  
Max.  
Typ.  
Min.  
Typ.  
Min.  
0
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBS Floating Supply Voltage (V)  
Figure 17B. VBS Supply Current  
vs. VBS Floating Supply Voltage  
Figure 18A. VCC Supply Current  
vs. Temperature  
5
4
3
2
1
120  
100  
80  
60  
40  
20  
0
Max.  
Max.  
Typ.  
Min.  
Typ.  
0
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 19A. Logic "1" Input Bias Current  
vs. Temperature  
Figure 18B. VCC Supply Current  
vs. VCC Supply Voltage  
14  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
Max.  
Typ.  
Max.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 20A. Logic "0" Input Bias Current  
vs. Temperature  
Figure 19B. Logic "1" Input Bias Current  
vs. Supply Voltage  
12  
11  
10  
9
5
4
3
2
1
0
Max.  
Typ.  
Min.  
8
Max.  
7
6
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 21. VCC and VBS Undervoltage Threshold (+)  
vs. Temperature  
Figure 20B. Logic "0" Input Bias Current  
vs. Supply Voltage  
www.irf.com  
15  
( )(S)&(PbF)  
IR2184 4  
12  
11  
10  
9
5
4
3
2
1
0
Max.  
Typ.  
Min.  
Typ.  
Min.  
8
7
6
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (oC)  
Temperature (oC)  
Figure 22. VCC and VBS Undervoltage Threshold (-)  
vs. Temperature  
Figure 23A. Output Source Current  
vs. Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
5
4
3
2
1
0
Typ.  
Typ.  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 24A. Output Sink Current  
vs. Temperature  
Figure 23B. Output Source Current  
vs. Supply Voltage  
16  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
140  
120  
100  
80  
5
4
3
2
1
0
140v  
70v  
0v  
Typ.  
Min.  
60  
40  
20  
10  
12  
14  
16  
18  
20  
1
10  
Frequency (KHz)  
Figure 21.IR2181 vs.Frequency (IRFBC20),  
100  
1000  
Supply Voltage (V)  
Figure 24B. Output Sink Current  
vs. Supply Voltage  
=33,V  
Rgate  
CC=15V  
140  
120  
100  
80  
140  
120  
100  
80  
140v  
70v  
0v  
140v  
70v  
0v  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 22.IR2181 vs.Frequency (IRFBC30),  
Rgate CC=15V  
Figure 23.IR2181 vs.Frequency (IRFBC40),  
Rgate CC=15V  
=22,V  
=15,V  
www.irf.com  
1ꢧ  
( )(S)&(PbF)  
IR2184 4  
140v  
140  
120  
100  
80  
140  
120  
100  
80  
70v  
0v  
60  
60  
140v  
70v  
0v  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 24.IR2181 vs.Frequency (IRFPE50),  
Figure 25.IR21814 vs.Frequency (IRFBC20),  
=10,V  
Rgate  
CC=15V  
=33,V  
Rgate  
CC=15V  
140  
120  
100  
80  
140  
120  
100  
80  
140v  
70v  
0v  
140v  
70v  
0v  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 27.IR21814 vs.Frequency (IRFBC40),  
Rgate CC=15V  
Figure 26.IR21814 vs.Frequency (IRFBC30),  
Rgate CC=15V  
=15,V  
=22,V  
18  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
140v  
140  
120  
100  
80  
140  
120  
100  
80  
70v  
0v  
140v  
70v  
0v  
60  
60  
40  
40  
20  
20  
1
10  
Frequency (KHz)  
Figure 29.IR2181s vs.Frequency (IRFBC20),  
100  
1000  
1
10  
Frequency (KHz)  
Figure 28.IR21814 vs.Frequency (IRFPE50),  
100  
1000  
=33,V  
Rgate  
CC=15V  
=10,V  
Rgate  
CC=15V  
140v70v  
140  
120  
100  
80  
140  
120  
100  
80  
140v  
70v  
0v  
0v  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 30.IR2181s vs.Frequency (IRFBC30),  
Rgate CC=15V  
Figure 31.IR2181s vs.Frequency (IRFBC40),  
Rgate CC=15V  
=22,V  
=15,V  
www.irf.com  
1ꢩ  
( )(S)&(PbF)  
IR2184 4  
140V 70V 0V  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
140v  
70v  
0v  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 33. IR21814s vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
Figure 32. IR2181s vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
140  
120  
100  
80  
140  
120  
100  
80  
140v  
70v  
0v  
140v  
70v  
0v  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 34. IR21814s vs. Frequency (IRFBC30),  
Rgate=22 , VCC=15V  
Figure 35. IR21814s vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
20  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
140v70v  
140  
120  
100  
80  
0v  
60  
40  
20  
1
10  
100  
1000  
Frequency (KHz)  
Figure 36. IR21814s vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
www.irf.com  
21  
( )(S)&(PbF)  
IR2184 4  
01-6014  
01-3003 01 (MS-001AB)  
8-Lead PDIP  
IN C H E S  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
E
A1 .0040  
b
c
.013  
.0075  
.189  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
D
E
e
H
.1497  
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
K x 45°  
e1  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C A  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
NOTES:  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
01-602ꢧ  
01-0021 11 (MS-012AA)  
8-Lead SOIC  
22  
www.irf.com  
( )(S)&(PbF)  
IR2184 4  
01-6010  
01-3002 03 (MS-001AC)  
14-Lead PDIP  
01-601ꢩ  
14-Lead SOIC (narrow body)  
01-3063 00 (MS-012AB)  
www.irf.com  
23  
( )(S)&(PbF)  
IR2184 4  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRxxxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
8-Lead PDIP IR2184 order IR2184  
8-Lead SOIC IR2184S order IR2184S  
14-Lead PDIP IR21844 order IR21844  
14-Lead SOIC IR21844 order IR21844S  
8-Lead PDIP IR2184 order IR2184PbF  
8-Lead SOIC IR2184S order IR2184SPbF  
14-Lead PDIP IR21844 order IR21844PbF  
14-Lead SOIC IR21844 order IR21844SPbF  
Thisproduct has been designed and qualified for the industrial market.  
Qualification Standards can be found on IR’s Web Site http://www.irf.com  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
4/4/2006  
24  
www.irf.com  

相关型号:

IR2189

Half Bridge Based MOSFET Driver, 0.35A, CMOS, PDIP8, PLASTIC, DIP-8
INFINEON

IR2189S

Half Bridge Based MOSFET Driver, 0.35A, CMOS, PDSO8, SOIC-8
INFINEON

IR2213

HIGH AND LOW SIDE DRIVER
INFINEON

IR2213PBF

High and Low Side Driver
INFINEON

IR2213PBF_15

High and Low Side Driver
INFINEON

IR2213S

High and Low Side Driver. Noninverting Inputs in a 16-lead SOIC package
ETC

IR2213SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2213STR

暂无描述
INFINEON

IR2213STRPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2214

HALF-BRIDGE GATE DRIVER IC
INFINEON

IR22141

HALF-BRIDGE GATE DRIVER IC
INFINEON

IR22141PBF

Half Bridge Based Peripheral Driver, 3A, PDSO24, MO-150AH, SSOP-24
INFINEON