IR3093MPBF [INFINEON]

暂无描述;
IR3093MPBF
型号: IR3093MPBF
厂家: Infineon    Infineon
描述:

暂无描述

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总39页 (文件大小:695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR3093  
DATA SHEET  
3 PHASE OPTERON, ATHLON, OR VR10.X CONTROL IC  
DESCRIPTION  
The IR3093 Control IC provides a full featured, cost effective, single chip solution to implement robust  
power conversion solutions for three different microprocessor families; 1) AMD’s Opteron, 2) AMD’s  
Athlon or 3) Intel’s VR-10.X family of processors. The user can select the appropriate VID range with a  
single pin. Control and 3 phase Gate Drive functions are integrated into a single cost effective IC. . In  
addition to CPU power, the IR3093 offers a compact, efficient solution for high current POL converters.  
FEATURES  
x
5 bit or 6 bit VID with 0.5% overall system accuracy  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Selectable VID Code for AMD Opteron or Athlon or Intel VR10.X  
Programmable Slew Rate response to “On-the-Fly” VID Code Changes  
3A GATELX Pull Down Drive Capability  
Programmable 100KHz to 540KHz oscillator  
Programmable Voltage Positioning (can be disabled)  
Programmable Softstart  
Programmable Hiccup Over-Current Protection with Delay to prevent false triggering  
Simplified Powergood provides indication of proper operation and avoids false triggering  
Operates up to 21V input with 7.9V Under-Voltage Lockout  
5V UVL with 4.36V Under-Voltage Lockout threshold  
Adjustable Voltage, 150mA Bias Regulator provides MOSFET Drive Voltage  
Enable Input  
OVP Flag Output detects high side fet short at powerup  
Pin compatible with IR3092, 2-phase PWM Control IC  
Available 48L MLPQ package  
ORDERING INFORMATION  
Device  
Order Quantity  
IR3093MTR  
*IR3093M  
3000 per Reel  
100 piece strips  
* Samples Only  
PACKAGE INFORMATION  
VID3  
GATEH1  
PGND1  
VID4  
48L MLPQ  
(7 x 7 mm Body)  
JA = 27oC/W  
ROSC  
VOSNS-  
OCSET  
VDAC  
VDRP  
GATEL1  
VCCL1_2  
5VUVL  
IR3093  
48LDMLPQ  
GATEL2  
PGND2  
FB  
GATEH2  
VCCH2  
EAOUT  
SS/DEL  
SCOMP2  
SCOMP3  
VCCH3  
GATEH3  
PGND3  
Page 1 of 39  
07/15/04  
IR3093  
PIN DESCRIPTION  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
Inputs to VID D to A Converter  
Inputs to VID D to A Converter  
Connect a resistor to VOSNS- to program oscillator frequency and FB, OCSET, BBFB, and VDAC bias currents  
Remote Sense Input. Connect to ground at the Load.  
1
2
3
4
VID3  
VID4  
ROSC  
VOSNS-  
Programs the hiccup over-current threshold through an external resistor tied to VDAC and an internal current  
source.  
5
OCSET  
Regulated voltage programmed by the VID inputs. Current Sensing and Over Current Protection are referenced  
to this pin. Connect an external RC network to VOSNS- to program Dynamic VID slew rate.  
Buffered IIN signal. Connect an external RC network to FB to program converter output impedance  
Inverting input to the Error Amplifier. Converter output voltage is offset from the VDAC voltage through an  
external resistor connected to the converter output voltage at the load and an internal current source. Bias  
current is a function of ROSC. Also OVP sense  
6
7
VDAC  
VDRP  
8
FB  
9
EAOUT  
SS/DEL  
Output of the Error Amplifier  
Controls Converter Softstart, Power Good, and Over-Current Timing. Connect an external capacitor to LGND to  
program the timing.  
10  
Compensation for the Current Share control loop. Connect a capacitor to ground to set the control loop’s  
bandwidth. Phase 2 is forced to match phase 1’s current.  
11  
SCOMP2  
Compensation for the Current Share control loop. Connect a capacitor to ground to set the control loop’s  
bandwidth. Phase 3 is forced to match phase 1’s current.  
12  
SCOMP3  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
LGND  
SETBIAS  
VCC  
Local Ground and IC substrate connection  
External resistor to ground sets voltage at BIASOUT pin. Bias current is a function of ROSC.  
Power for internal circuitry and source for BIASOUT regulator  
Non-inverting input to the Phase 3 Current Sense Amplifier.  
Inverting input to the Phase 3 Current Sense Amplifier.  
200mA open-looped regulated voltage set by SETBIAS for GATE drive bias.  
Open Collector output that drives low during Softstart or any fault condition. Connect external pull-up.  
Non-inverting input to the Phase 2 Current Sense Amplifier.  
Inverting input to the Phase 2 Current Sense Amplifier.  
Ground Selects VR10.X VID, Float Selects OPTERON VID, VCC Selects ATHLON VID  
Power for Phase 3 Low-Side Gate Driver.  
Phase 3 Low-Side Gate Driver Output and input to GATEH3 non-overlap comparator.  
Return for Phase 3 Gate Drivers  
Phase 3 High-Side Gate Driver Output and input to GATEL3 non-overlap comparator.  
Power for Phase 3 High-Side Gate Driver  
Power for Phase 2 High-Side Gate Driver  
Phase 2 High-Side Gate Driver Output and input to GATEL2 non-overlap comparator.  
Return for Phase 2 Gate Drivers  
Phase 2 Low-Side Gate Driver Output and input to GATEH2 non-overlap comparator.  
CSINP3  
CSINM3  
BIASOUT  
PWRGD  
CSINP2  
CSINM2  
VID_SEL  
VCCL3  
GATEL3  
PGND3  
GATEH3  
VCCH3  
VCCH2  
GATEH2  
PGND2  
GATEL2  
Can be used to monitor the driver supply voltage or 5V supply voltage when converting from 5V. An under  
voltage condition initiates Soft Start.  
32  
5VUVL  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
VCCL1_2  
GATEL1  
PGND1  
GATEH1  
VCCH1  
NC  
CSINM1  
CSINP1  
OVP  
ENABLE  
OVPSNS  
5VREF  
VID5  
Power for Phase 1 and 2 Low-Side Gate Drivers.  
Phase 1 Low-Side Gate Driver Output and input to GATEH1 non-overlap comparator.  
Return for Phase 1 Gate Drivers  
Phase 1 High-Side Gate Driver Output and input to GATEL1 non-overlap comparator.  
Power for Phase 1 High-Side Gate Driver  
Not connected  
Inverting input to the Phase 1Current Sense Amplifier.  
Non-inverting input to the Current Sense Amplifier.  
Output that drives high during an Over-Voltage condition.  
Enable Input. A logic low applied to this pin puts the IC into Fault mode.  
Dedicated output voltage sense pin for Over Voltage Protection.  
Compensation for internal voltage reference rail.  
Inputs to VID D to A Converter  
Inputs to VID D to A Converter  
Inputs to VID D to A Converter  
Inputs to VID D to A Converter  
VID0  
VID1  
VID2  
Page 2 of 39  
07/15/04  
IR3093  
ABSOLUTE MAXIMUM RATINGS  
Operating Junction Temperature……………..150oC  
Storage Temperature Range………………….-65oC to 150oC  
PIN  
1
2
3
4
5
6
7
8
NAME  
VID3  
VID4  
VMAX  
30V  
30V  
30V  
0.5V  
30V  
30V  
30V  
30V  
10V  
30V  
30V  
30V  
n/a  
30V  
30V  
30V  
30V  
30V  
30V  
30V  
30V  
30V  
30V  
30V  
0.3V  
30V  
30V  
30V  
30V  
0.3V  
30V  
30V  
30V  
30V  
0.3V  
30V  
30V  
n/a  
VMIN  
-0.3V  
-0.3V  
-0.5V  
-0.5V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
n/a  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
ISOURCE  
1mA  
1mA  
1mA  
10mA  
1mA  
1mA  
5mA  
1mA  
10mA  
1mA  
5mA  
5mA  
50mA  
1mA  
1mA  
250mA  
250mA  
250mA  
1mA  
250mA  
250mA  
1mA  
n/a  
ISINK  
1mA  
1mA  
1mA  
10mA  
1mA  
1mA  
5mA  
1mA  
20mA  
1mA  
5mA  
5mA  
1mA  
1mA  
250mA  
1mA  
1mA  
1mA  
20mA  
1mA  
1mA  
1mA  
ROSC  
VOSNS-  
OCSET  
VDAC  
VDRP  
FB  
EAOUT  
SS/DEL  
SCOMP2  
SCOMP3  
LGND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
SETBIAS  
VCC  
CSINP3  
CSINM3  
BIASOUT  
PWRGD  
CSINP2  
CSINM2  
VID_SEL  
VCCL3  
GATEL3  
PGND3  
GATEH3  
VCCH3  
VCCH2  
GATEH2  
PGND2  
GATEL2  
5VUVL  
VCCL1_2  
GATEL1  
PGND1  
GATEH1  
VCCH1  
NC  
CSINM1  
CSINP1  
OVP  
ENABLE  
OVPSNS  
5VREF  
VID5  
VID0  
VID1  
VID2  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V  
n/a  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V  
-0.3V  
n/a  
n/a  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V  
n/a  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
-0.3V  
-0.3V  
1mA  
n/a  
1mA  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V  
n/a  
-0.3V DC, -2V for 100ns  
3A for 100ns, 200mA DC  
3A for 100ns, 200mA DC  
-0.3V  
n/a  
n/a  
n/a  
n/a  
1mA  
1mA  
1mA  
1mA  
1mA  
20mA  
1mA  
1mA  
1mA  
1mA  
30V  
30V  
30V  
30V  
30V  
10V  
30V  
30V  
30V  
30V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
250mA  
250mA  
1mA  
1mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
Page 3 of 39  
07/15/04  
IR3093  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over: 7.4V ” VCC ” 21V, 4V ” VCCLX” 14V,  
4V ” VCCHX ” 28V, CGATEHX =3.3nF, CGATELX =6.8nF, 0oC ” TJ ” 125 oC  
PARAMETER  
VDAC Reference  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
-0.3V ” VOSNS- ” 0.3V, Connect FB to  
EAOUT, Measure V(EAOUT) –  
V(VOSNS-) deviation from Table 1.  
Applies to all VID codes.  
System Set-Point Accuracy  
0.5  
%
Sink Current  
Source Current  
RROSC = 47kŸꢀꢁ9'$& 2&6(7  
RROSC = 47kŸꢀꢁ9'$& 2&6(7  
45  
48  
53  
56  
61  
64  
PA  
VID Input Threshold, INTEL  
VID_SEL=0, Referenced to VOSNS-  
VID_SEL=Float, Referenced to VOSNS-  
0.4  
1.55  
0.6  
1.65  
0.8  
1.75  
V
V
VID Input Threshold, AMD  
VID_SEL OPTERON  
Threshold  
1.0  
1.2  
1.4  
V
VID_SEL ATHLON Threshold  
VID_SEL Float Voltage  
VID_SEL Pull-up Resistance  
3.0  
2.1  
30  
3.3  
2.6  
50  
3.8  
3.2  
100  
V
V
kŸ  
Tracks ATHLON threshold  
V(VID_SEL)<2.1V  
VID_SEL Pull-down  
Resistance  
V(VID_SEL)>3.2V  
60  
150  
350  
kŸ  
VID Pull-up Current  
VID Float Voltage  
VID = 11111 Fault Blanking  
Error Amplifier  
VID0-5 = 1V  
Referenced to LGND  
Delay to PWRGD assertion  
9
4.5  
0.5  
18  
4.9  
2.1  
27  
5.2  
4.1  
PA  
V
Ps  
Connect FB to EAOUT, Measure  
V(EAOUT)-V(VDAC). Applies to all VID  
codes and -0.3V<VOSNS-<0.3V. Note  
2.  
Input Offset Voltage  
-5  
-1  
3
mV  
FB Bias Current  
DC Gain  
Gain-Bandwidth Product  
Slew Rate  
Source Current  
Sink Current  
Max Voltage  
RROSC = 47kŸ  
Note 1  
Note 1  
23.5  
90  
4
26.4  
100  
7
1.25  
430  
1.1  
4.9  
50  
29.4  
105  
PA  
dB  
MHz  
V/Ps  
PA  
mA  
V
mV  
Note 1, 50mV FB signal  
300  
.75  
4.5  
600  
1.5  
5.3  
200  
Min Voltage  
VDRP Buffer Amplifier  
V(VDRP) – V(VDAC) with  
CSINMX=CSINPX=0. Note 1.  
Positioning Offset Voltage  
Output Voltage Range  
-125  
0.2  
0
125  
mV  
V
3.75  
Page 4 of 39  
07/15/04  
IR3093  
PARAMETER  
VDRP Buffer Amplifier cont.  
Source Current  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
4
8
20  
mA  
Sink Current  
200  
300  
650  
PA  
Oscillator  
Switching Frequency  
Phase Shift  
RROSC = 47kŸ  
Sequence: GATEH1-GATEH2-GATEH3  
160  
102  
200  
120  
240  
138  
kHz  
°
BIASOUT Regulator  
SETBIAS Bias Current  
Set Point Accuracy  
BIASOUT Dropout Voltage  
RROSC = 47kŸ  
V(SETBIAS)-V(BIASOUT) @ 100mA  
I(BIASOUT)=100mA,Threshold when  
V(SETBIAS)-V(BIASOUT)=0.45V  
94  
0.1  
1.2  
103  
0.25  
1.8  
117.5  
0.55  
2.5  
PA  
V
V
BIASOUT Current Limit  
Soft Start and Delay  
SS/DEL to FB Input Offset  
Voltage  
150  
0.8  
250  
1.1  
450  
1.8  
mA  
V
With FB = 0V, adjust V(SS/DEL) until  
EAOUT drives high  
Charge Current  
Hiccup Discharge Current  
OC Discharge Current  
Charge/Discharge Current  
Ratio  
30  
3.5  
25  
9
60  
6
55  
10  
90  
9
70  
13  
PA  
PA  
PA  
PA/PA  
Charge Voltage  
Delay Comparator Threshold  
Discharge Comparator  
Threshold  
3.8  
190  
170  
4.0  
250  
265  
4.2  
300  
350  
V
mV  
mV  
Relative to Charge Voltage  
Over-Current Comparator  
Input Offset Voltage  
V(OCSET)-V(VDAC),  
CSINM=CSINP1=CSINP2=CSINP3,  
Note 1.  
-125  
0
125  
mV  
OCSET Bias Current  
Max OCSET Set Point  
Under-Voltage Lockout  
VCC Start Threshold  
VCC Stop Threshold  
VCC Hysteresis  
5VUVL Start Threshold  
5VUVL Stop Threshold  
5VUVL Hysteresis  
RROSC = 47kŸ  
23.5  
3.9  
27  
29.4  
PA  
V
7.4  
6.9  
400  
4.05  
3.92  
100  
7.9  
7.4  
540  
4.36  
4.17  
200  
8.4  
7.9  
700  
4.55  
4.33  
250  
V
V
mV  
V
V
mV  
Start – Stop  
Start – Stop  
Page 5 of 39  
07/15/04  
IR3093  
PARAMETER  
PWRGD Output  
Output Voltage  
Leakage Current  
Enable Input  
TEST CONDITION  
I(PWRGD) = 4mA  
MIN  
TYP  
MAX UNIT  
150  
0
400  
10  
mV  
V(PWRGD) = 5.5V  
PA  
Threshold, INTEL  
Threshold, AMD  
Input Resistance  
Pull-up Voltage  
Gate Drivers  
VID_SEL=0, Referenced to VOSNS-  
VID_SEL=Float, Referenced to VOSNS-  
0.4  
1.3  
5
0.6  
1.5  
10  
0.8  
1.7  
20  
V
V
kŸ  
V
2.4  
3.0  
3.7  
GATEH Rise Time  
VCCHX = 8V, Measure 1V to 7V transition  
time. Note 1.  
VCCHX = 8V, Measure 7V to 1V transition  
time. Note 1.  
VCCLX= 8V, Measure 1V to 7V transition  
time. Note 1.  
VCCLX= 8V, Measure 7V to 1V transition  
time. Note 1.  
25  
25  
50  
30  
0
50  
50  
ns  
ns  
ns  
ns  
V
GATEH Fall Time  
GATEL Rise Time  
GATEL Fall Time  
High Voltage (AC)  
Low Voltage (AC)  
90  
60  
Measure VCCLX– GATELX or VCCHX –  
GATEHX, Note 1  
Measure GATELX or GATEHX, Note 1  
0.5V  
0
0.5V  
V
GATEL low to GATEH high  
delay  
VCCHX = VCCLX= 8V, Measure the time  
from GATELX falling to 1V to GATEHX  
rising to 1V. Note 1.  
VCCHX = VCCLX= 8V, Measure the time  
from GATEHX falling to 1V to GATELX  
rising to 1V. Note 1.  
10  
10  
20  
25  
50  
ns  
GATEH low to GATEL high  
delay  
25  
35  
50  
ns  
Disable Pull-Down Current  
GATHX or GATELX=2V with VCC = 0V.  
Measure Gate pull-down current  
50  
PA  
PWM Comparator  
Propagation Delay  
Note1  
100  
150  
4
0.9  
65  
ns  
V
V
Common Mode Input Range  
Internal Ramp Start Voltage  
Internal Ramp Amplitude  
0.45  
35  
0.6  
50  
mV /  
%DTC  
Current Sense Amplifier  
CSINPX Bias Current  
CSINMX Bias Current  
Input Current Offset Ratio  
Average Input Offset Voltage  
Offset Voltage Mismatch  
Gain at TJ = 25 oC  
-1  
-1  
0.25  
-5  
0
0
1
0
0
23.5  
20.4  
0
1
1
2
5
5
25  
21.5  
1
75  
2.8  
PA  
PA  
PA/PA  
mV  
mV  
V/V  
V/V  
V/V  
mV  
V
(VDRP-VDAC)/GAIN with CSINX=0. Note1  
Monitor I(SCOMPX), Note1.  
-5  
22  
18.5  
-1  
-25  
0
Gain at TJ = 125 oC  
Gain Mismatch  
Differential Input Range  
Common Mode Input Range  
Note 1.  
Page 6 of 39  
07/15/04  
IR3093  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Share Adjust Error Amplifier  
Input Offset Voltage  
MAX Duty Cycle Adjust Ratio  
MIN Duty Cycle Adjust Ratio  
Transconductance  
Note 1  
-5  
1.5  
0.6  
100  
16  
0
5
mV  
Compare Duty Cycle to GATEHX  
Compare Duty Cycle to GATEHX  
Note 1  
2.0  
0.5  
200  
22  
300  
28  
PA/V  
PA  
SCOMPX Source/Sink Current  
Equal Duty Cycle Comparator  
Threshold  
0.45  
0.60  
0.95  
V
Duty Cycle Match at Startup  
Compare Duty Cycle to GATEHX  
V(SS/DEL)=0  
-5  
300  
-1  
450  
5
700  
%
SCOMPX Precharge Current  
0% Duty Cycle Comparator  
Threshold Voltage  
PA  
Below Internal Ramp1 Start Voltage  
80  
50  
130  
200  
180  
400  
mV  
ns  
Propagation Delay  
VCCLX= 8V. Step EAOUT from .8V to  
.3V and measure time to GATELX  
transition to < 7V.  
Body Breaking Disable  
Comparator Threshold  
OVP  
Compare V(FB) to V(VDAC)  
75  
110  
mV  
VR10.X Comparator Threshold VID_SEL=0V. Compare to V(VDAC)  
120  
360  
0.8  
150  
450  
1.1  
200  
600  
1.8  
mV  
mV  
V
AMD Comparator Threshold  
Float VID_SEL. Compare to V(VDAC)  
Power-up Headroom for OVP  
Flag  
VCC=OVPSNS where V(OVP)>0.5V.  
Same for 5VUVL=OVPSNS.  
OVPSNS Threshold at Power- VCC=2V, V(OVP) >0.5V. Same for  
0.3  
0.48  
0.60  
275  
0.85  
0.95  
400  
V
V
up  
V(5VUVL)=2V.  
SS/DEL Power-up Clear  
Threshold  
Propagation Delay  
VCC=12V, V(OVPSNS)=1V,  
0.35  
VDAC=1.6V, where OVP<0.5V  
VCCLX= 8V. V(EAOUT)=0V. Step  
OVPSNS 540mV + V(VDAC). Measure  
time to GATELX transition to >1V.  
V(OVP)=0.5V, VCC=1.8V, 5VUVL=0V  
OVP to LGND  
I(OVP)=10uA, V(VCC) or V(5VUVL)-  
V(OVP), VCC=1.8V  
ns  
OVP Source Current  
OVP Pull Down Resistance  
OVP High Voltage  
10  
30  
0.4  
75  
60  
0.70  
PA  
kŸ  
V
100  
1.1  
OVPSNS Bias Current  
5VREF  
-1  
0.3  
1.5  
uA  
Short Circuit Current  
Supply Voltage  
20  
4.5  
45  
5
60  
5.5  
mA  
V
I(5VREF)=0A  
General  
VCC Supply Current  
VOSNS- Current  
VCCHX and VCCL3 Current  
VCCL1_2 Supply Current  
5VUVL Supply Current  
V(VCC)=21V  
33  
3.2  
3
6
100  
38  
3.7  
5
10  
200  
44  
4.2  
7
17  
400  
mA  
mA  
mA  
mA  
uA  
-0.3V ” VOSNS- ” 0.3V, All VID Codes  
V(VCCHX)=28V, V(VCCL3)=14V  
V(VCCL1_2)=14V  
V(5VUVL)=5V, no OVP condition  
Note 1: Guaranteed by design, but not tested in production  
Note 2: Critical limits are identified with bold text  
Note 3: VDAC Output is trimmed to compensate for Error Amp input offsets errors  
Page 7 of 39  
07/15/04  
IR3093  
TYPICAL OPERATING CHARACTERISTICS  
I(FB) and I(OCSET) Current vs. ROSC  
I(VDAC) Sink and Source Currents vs. ROSC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
160  
I(VDAC) Source  
Current  
I(FB)  
140  
120  
100  
80  
I(OCSET)  
I(VDAC) Sink Current  
60  
40  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120  
10 20 30 40 50 60 70 80 90 100 110 120 130  
ROSC (kOhm)  
ROSC in Kohms  
I(SETBIAS) vs. ROSC  
Oscillator freq vs. ROSC  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
10  
20 30  
40 50  
60 70  
80 90 100 110 120  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120  
ROSC (kOhm)  
ROSC (kOhm)  
Frequency and Bias Current Accuracy vs. ROSC (includes  
temperature)  
Peak High side Gate drive current vs. Laod  
capacitance  
6
5
4
3
2
1
2.000  
1.900  
1.800  
1.700  
1.600  
1.500  
1.400  
1.300  
1.200  
1.100  
1.000  
Frequency  
VDAC Sink  
VDAC Source  
FB Bias  
OCSET  
I(RISE)  
I(FALL)  
SETBIAS  
1
2
3
4
5
6
7
8
9
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
C(GATEHX) in nF  
ROSC (kOhm)  
Page 8 of 39  
07/15/04  
IR3093  
Peak Low side Gate drive current vs. Laod  
capacitance  
3.250  
3.000  
2.750  
2.500  
2.250  
2.000  
1.750  
1.500  
1.250  
1.000  
I(RISE)  
I(FALL)  
1
2
3
4
5
6
7
8
9
10  
C(GATELX) in nF  
Error Amplifier Frequency Response  
180  
100  
0
93dB DC gain  
88° Phase Margin  
3.1MHz Crossover  
-100  
-180  
1.0Hz  
100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz  
10Hz  
DB(V(comp))  
P(V(comp))  
Frequency  
Page 9 of 39  
07/15/04  
STARTUP OVP Comparator  
+
VCC  
5VREF  
ROSC  
FB  
OVPSNS  
OVP  
-
75U  
75U  
VCCH1  
GATEH1  
PGND1  
60k  
ON  
DRIVE  
INTERNAL  
REFERENCE  
IROSC  
VCC  
5VUVL  
LGND  
0.48V  
UVL  
IN  
GATEHI  
OL_OUT  
-
RESET DOMINANT  
CLK1  
4
X IROSC  
+
S
OL_IN  
SETBIAS  
BIASOUT  
5VUVL  
OVP Comparator  
Q
+
PWM COMPARATOR  
PGND  
EAOUT  
7.9V START  
7.4V STOP  
1.243  
GateHI  
-
QB  
-
R
+
AMD=450mV  
RSFF  
INTEL=150mV  
IROSC  
VCCL1_2  
DRIVE  
VDAC  
BB DISABLE Comparator  
+
IROSC/2  
UVL  
OL_IN  
OL_OUT  
GATELO  
-
-
CLK1 CLK1  
CLK2 CLK2  
CLK3 CLK3  
+
IN  
9p  
4.36V START  
4.17V STOP  
75mV  
GATEL1  
0.6V  
PGND  
GateLO  
VDAC  
PWRGD  
Oscillator  
Error_Amp  
+
-
VCCH2  
GATEH2  
PGND2  
+
+
DRIVE  
-
0% DUTY CYCLE  
DISABLE  
IN  
GATEHI  
OL_OUT  
RESET DOMINANT  
OVER CURRENT  
0.47V  
CLK2  
OCSET  
IROSC  
-
S
OL_IN  
Q
PWM COMPARATOR  
-
IAVE  
EQUAL DUTY  
CYCLE  
+
PGND  
GateHI  
QB  
COMPARATOR  
R
+
RSFF  
-
DELAY  
+
H
FORCES IROSC/2  
+
DRIVE  
AT SS<0.6V  
-
IROSC/2  
0.6V  
OL_IN  
OL_OUT  
GATELO  
250mV  
CO1  
CO2  
PRESET  
+
-
IN  
9p  
GATEL2  
4V  
0.6V  
PGND  
0
TO IROSC*3/4  
SoftStart_Clamp  
1.1V  
GateLO  
Share Adjust Error Amp  
OFF  
60U  
SCOMP2  
+
-
SS  
EAOUT  
ON  
55U  
6U  
FAULT LATCH  
VCCH3  
GATEH3  
PGND3  
VCCL3  
S
Q
DRIVE  
Discharge Comparator  
-
IN  
GATEHI  
OL_OUT  
R
IAVE  
RESET DOMINANT  
3V  
+
CLK3  
SET DOMINANT  
S
OL_IN  
Q
PWM COMPARATOR  
10k  
0.265V  
PGND  
DAC DEFAULTS TO VR10  
WITH VID_SEL GROUNDED  
GateHI  
-
QB  
ENABLE  
DAC BUFFER  
-
R
CO3  
CO2  
CO1  
+
RSFF  
+
F11111  
DAC  
-
AMD=1.5V  
INTEL=0.6V  
summer  
summer  
summer  
ATHLON_DAC  
HAMMER_DAC  
OUT  
DRIVE  
+
IROSC  
IROSC  
OL_IN  
OL_OUT  
GATELO  
VOSNS-  
18uA  
Share Adjust Error Amp  
CO1  
CO3  
PRESET  
VID_SEL  
+
-
IN  
9p  
4.9V  
GATEL3  
0.6V  
PGND  
+
5V  
0
TO IROSC*3/4  
X23.5  
X23.5  
X23.5  
GateLO  
-
3.3V  
1
SCOMP3  
3.3V  
1.2V  
50K  
150K  
+
+
-
VDRP  
-
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VOSNS-  
VDAC  
CSINM3  
CSINP3  
CSINM2  
CSINP2  
CSINM1  
CSINP1  
IR3093  
PWM Operation  
The IR3093 is a fully integrated 3 phase interleaved PWM control IC which uses voltage mode control with trailing  
edge modulation. A high-gain wide-bandwidth voltage type Error Amplifier in the Control IC is used for the voltage  
control loop. The PWM block diagram of the IR3093 is shown in Figure 2.  
IROSC  
U30  
RSFF  
CLK1  
CLK2 CLK2  
S
Q
PWM COMPARATOR  
-
QB  
CLK3  
CLK3  
R
+
RESET DOMINANT  
VIN  
OSCBLOCK  
OVPSNS  
VDAC  
GATEH1  
GATEL1  
+
-
IROSC/2  
80mV  
1
2
BB DISABLE  
RCS1 CCS1  
9p  
0.6V  
CDAC  
RDAC  
VDAC  
ERROR AMPLIFIER  
+
+
VOSNS-  
FB  
-
-
0% DUTY CYCLE  
VIN  
0.47V  
RSFF  
CLK2  
GATEH2  
GATEL2  
S
VOUT SENSE+  
VOUT+  
Q
CCOMP  
IROSC  
PWM COMPARATOR  
-
QB  
1
2
R
RCOMP  
+
RESET DOMINANT  
EAOUT  
VDRP  
COUT  
RCS2  
CCS2  
IROSC  
VOUT-  
VDRP BUFFER  
+
RDRP  
VOUT SENSE-  
-
Share Adjust Error Amp  
+
9p  
0.6V  
RFB  
0 TO IROSC*3/4  
-
SCOMP2  
CSC2  
RSC2  
VIN  
1
RSFF  
CLK3  
GATEH3  
GATEL3  
S
Q
PWM COMPARATOR  
EAOUT  
-
QB  
R
2
+
RESET DOMINANT  
RCS3  
CCS3  
IROSC  
Share Adjust Error Amp  
+
9p  
0.6V  
0 TO IROSC*3/4  
-
SCOMP3  
VDAC  
CSC3  
RSC3  
CSINM3  
CSINP3  
X23.5  
X23.5  
X23.5  
-
+
VDAC  
VDAC  
CSINM2  
CSINP2  
-
+
CSINM1  
CSINP1  
-
+
Figure 2 – PWM Block Diagram  
Refer to Figure 3. Upon receiving a clock pulse, the RSFF is set, the internal PWM ramp voltage begins to increase,  
the low side driver is turned off, and the high side driver is then turned on. For phase 1, an internal 9pf capacitor is  
charged by a current source that proportional to the switching frequency resulting in a ramp rate of 50mV per percent  
duty cycle. For example, if the steady-state operating switch node duty cycle is 10%, then the internal ramp amplitude  
is typically 500mV from the starting point (or floor) to the crossing of the EAOUT control voltage. When the PWM  
ramp voltage exceeds the Error Amplifier’s output voltage, the RSFF is reset. This turns off the high side driver, turns  
on the low side driver, and discharges the PWM ramp to 0.6V until the next clock pulse.  
Page 11 of 39  
07/15/04  
IR3093  
50% INTERNAL OSCILLATOR RAMP  
DUTY CYCLE  
CLK1  
CLK2  
CLK3  
RAMP3 MIN DUTY  
CYCLE ADJUST  
RAMP3 MAX DUTY  
CYCLE ADJUST  
RAMP3  
FIXED RAMP1  
RAMP2  
EAOUT  
0.6V  
RAMP1 SLOPE  
= 50mV / % DC  
THE SHARE ADJUST ERROR AMPLIFIER CAN  
CHANGE THE PULSE WIDTH OF RAMPS  
0.5 RAMP1 TO 2.0 RAMP1 TO FORCE  
CURRENT SHARING.  
2
& 3 FROM  
x
X
Figure 3 – 3 Phase Oscillator and PWM Waveforms  
The RSFF is reset dominant allowing both phases to go to zero duty cycle within a few tens of nanoseconds in  
response to a load step decrease. Phases can overlap and go to 100% duty cycle in response to a load step increase  
with turn-on gated by the clock pulses. An Error Amplifier output voltage greater than the common mode input range of  
the PWM comparator results in 100% duty cycle regardless of the voltage of the PWM ramp. This arrangement  
guarantees the Error Amplifier is always in control and can demand 0 to 100% duty cycle as required. It also favors  
response to a load step decrease which is appropriate given the low output to input voltage ratio of most systems. The  
inductor current will increase much more rapidly than decrease in response to load transients.  
This control method is designed to provide “single cycle transient response” where the inductor current changes in  
response to load transients within a single switching cycle maximizing the effectiveness of the power train and  
minimizing the output capacitor requirements.  
Body BrakingTM  
In a conventional synchronous buck converter, the minimum time required to reduce the current in the inductor in  
response to a load step decrease is;  
TSLEW = [L x (IMAX - IMIN)] / Vout  
The slew rate of the inductor current can be significantly increased by turning off the synchronous rectifier in response  
to a load step decrease. The switch node voltage is then forced to decrease until conduction of the synchronous  
rectifier’s body diode occurs. This increases the voltage across the inductor from Vout to Vout + VBODY DIODE. The  
minimum time required to reduce the current in the inductor in response to a load transient decrease is now;  
TSLEW = [L x (IMAX - IMIN)] / (Vout + VBODY DIODE  
)
Page 12 of 39  
07/15/04  
IR3093  
Since the voltage drop in the body diode is often higher than output voltage, the inductor current slew rate can be  
increased by 2X or more. This patent pending technique is referred to as “body braking” and is accomplished through  
the “0% Duty Cycle Comparator”. If the Error Amplifier’s output voltage drops below 0.47V, this comparator turns off  
the low side gate driver.  
Figure 4 depicts PWM operating waveforms under various conditions  
CLK1  
PULSE  
EAOUT  
PWM  
Ramp1  
0.6V  
0.47V  
GATEH1  
GATEL1  
STEADY-STATE  
OPERATION  
DUTY CYCLE INCREASE  
DUE TO LOAD  
DUTY CYCLE DECREASE DUE TO LOAD  
DECREASE (BODY BRAKING) OR FAULT  
STEADY-STATE  
OPERATION  
INCREASE  
Figure 4 – PWM Operating Waveforms  
Current Sense Amplifier  
A high speed differential current sense amplifier is shown in Figure 5. Its gain decreases with increasing temperature  
and is nominally 23.5 at 25ºC and 20.4 at 125ºC (-1400 ppm/ºC). This reduction of gain tends to compensate the 3850  
ppm/ºC increase in inductor DCR. Since in most designs the IR3093 IC junction is hotter than the inductors these two  
effects tend to cancel such that no additional temperature compensation of the load line is required.  
The current sense amplifier can accept positive differential input up to 75mV and negative up to -25mV before clipping.  
The output of the current sense amplifier is summed with the DAC voltage which is used for over current protection,  
voltage positioning and current sharing.  
vL  
L
RL  
iL  
Vo  
Rs  
Cs  
vc  
Co  
CSA  
CO  
Figure 5 – Inductor Current Sensing and Current Sense Amplifier  
Page 13 of 39  
07/15/04  
IR3093  
VCC Under Voltage Lockout (UVLO)  
The VCC UVLO function monitors the IR3093’s VCC supply pin and ensures enough voltage is available to power the  
internal circuitry. During power-up the fault latch is reset when VCC exceeds 7.9V and all other faults are cleared. The  
fault latch is set when VCC drops below 7.4V and SS/DEL is below 3.75V.  
5VUVL Under Voltage Lockout (5VUVL)  
The 5VUVL function is provided for converters using a separate voltage supply other than VCC for gate driver bias.  
The 5VUVL comparator prevents operation by discharging SS/DEL below 3.75V to force EAOUT low. The 5VUVL  
comparator has an OK threshold of 4.36V ensuring adequate gate drive voltage is present and a fault threshold of  
4.17V.  
Power Good Output  
The PWRGD pin is an open-collector output and should be pulled up to a voltage source through a resistor. During soft  
start, the PWRGD remains low until the output voltage is in regulation and SS/DEL is above 3.75V. The PWRGD pin  
becomes low if the fault latch is set. A high level at the PWRGD pin indicates that the converter is in operation and has  
no fault, but does not ensure the output voltage is within the specification. Output voltage regulation within the design  
limits can logically be assured however, assuming no component failure in the system.  
Tri-State Gate Drivers  
The GATELX drivers can pull down up to 3.5A peak current and source up to 1.5A. The GATEHX drivers can source  
and sink up to 1.5A peak current. An adaptive non-overlap circuit monitors the voltage on the GATEHX and GATELX  
pins to prevent MOSFET shoot-through current while minimizing body diode conduction.  
The Error Amplifier output of the Control IC drives low in response to any fault condition such as VCC input under  
voltage or output overload. The 0% duty cycle comparator detects this and drives both gate outputs low. This tri-state  
operation prevents negative inductor current and negative output voltage during power-down.  
The Gate Drivers revert to a high impedance “off” state at VCCLX and VCCHX supply voltages below the normal  
operating range. An 80kŸꢁUHVLVWRUꢁLVꢁFRQQHFWHGꢁDFURVVꢁWKHꢁ*$7(;ꢁDQGꢁ3*1';ꢁSLQVꢁWRꢁSUHYHQWꢁWKHꢁ*$7(;ꢁYROWDJHꢁ  
from rising due to leakage or other cause under these conditions.  
Over Voltage Protection (OVP)  
The output Over-Voltage Protection comparator monitors the output voltage through the OVPSNS pin, the positive  
remote sense point. If OVPSNS exceeds VDAC plus 150mV (for VR-10.0, 450mV for OPTERON and ATHLON,  
selected with the VID_SEL pin), both GATEL pins drive high and the OVP pin sources 75uA current. The OVP circuit  
over-rides the normal PWM operation and will fully turn-on the low side MOSFET within approximately 150ns. The low  
side MOSFET will remain ON until the over-voltage condition ceases. The lower MOSFETs alone can not clamp the  
output voltage however an SCR or N-MOSFET could be triggered with the OVP pin to prevent processor damage.  
In the event of a high side MOSFET short, the OVP flag is activated with as little supply voltage as possible. The  
OVPSNS pin is compared against both VCC and 5VUVL for OVP conditions at power-up. VCC is monitored for  
conversion off 12V, 5VUVL is monitored for conversion off 5V. The OVP pin flags a voltage greater than 0.5V with  
supply voltages as low as 1.0V. This headroom voltage varies inversely with temperature. An external comparator  
can be used to disable the silver box, activate a crowbar, or supply source.  
The overall system must be considered when designing for OVP. In many cases the over-current protection of the AC-  
DC or DC-DC converter supplying the multiphase converter will be triggered thus providing effective protection without  
damage as long as all PCB traces and components are sized to handle the worst-case maximum current. If this is not  
possible, a fuse can be added in the input supply to the multiphase converter.  
Page 14 of 39  
07/15/04  
IR3093  
A Body BrakingTM Disable Comparator has been included to prevent false OVP firing during dynamic VID down  
changes. The BB DISABLE Comparator disables Body BrakingTM when FB exceeds VDAC by 75mV. The low side  
MOSFETs will then be controlled to keep V(FB) and V(VOUT) within 80mV of V(VDAC), below the 150mV INTEL OVP  
trip point.  
Page 15 of 39  
07/15/04  
IR3093  
APPLICATIONS INFORMATION  
VIN  
CIN  
VIN  
GNDIN  
ENABLE  
OVP  
VOUT SENSE+  
VOUT+  
RCS1 CCS1  
2
C5VREF  
CBST1  
1
VID5  
VID0  
VID1  
VID2  
COUT  
VID3  
VID4  
VOUT-  
U13  
VIN  
VOUT SENSE-  
RROSC  
CDAC  
VID3  
VID4  
ROSC  
VOSNS-  
OCSET  
VDAC  
VDRP  
FB  
EAOUT  
SS/DEL  
SCOMP2  
SCOMP3  
GATEH1  
PGND1  
GATEL1  
VCCL1_2  
5VUVL  
GATEL2  
PGND2  
GATEH2  
VCCH2  
VCCH3  
GATEH3  
PGND3  
CBST2  
RFB  
RDAC  
RDRP  
1
2
IR3093  
48LD MLPQ  
ROCSET  
RCS2  
CCS2  
CCOMP  
RCOMP  
CSC2 CSC3  
VIN  
1
CSS  
CBIAS  
Csense-  
RSC2 RSC3  
IR3093  
CBST3  
VIN  
CVCC  
2
RSET  
RCS3  
CCS3  
POWERGOOD  
Figure 6 – System Diagram  
VID Control  
The IR3093 provides three different microprocessor solutions. The VID_SEL pin selects the appropriate Digital-to-  
Analog Converters (DAC), VID threshold voltages, and Over Voltage Protection (OVP) threshold for either VR-10.0,  
OPTERON, or ATHLON solutions. Reference voltages are shown in Table 1. The DAC output voltage is available  
at the VDAC pin. A detailed block diagram of the VID control circuitry can be found in Figure 7. The VID pins are  
internally pulled up to 4.9V by 18uA current sources. The VID input comparators have a 0.6V threshold for VR-10.0  
or 1.65V threshold for OPTERON and ATHLON. The selected DAC voltage is provided at the Error Amplifier  
positive input and to the VDAC pin by the trans-conductance DAC Buffer.  
The VDAC voltage is trimmed to the Error Amplifier output voltage with EAOUT tied to FB via an accurate resistor.  
This compensates DAC Buffer input offset, Error Amplifier input offset, and errors in the generation of the FB bias  
current which is based on RROSC. This trim method provides a 0.5% system accuracy.  
The IR3093 can accept changes in the VID code while operating and vary the VDAC voltage accordingly. The  
IR3093 detects a VID change and blanks the DAC output response for 400ns to verify the new code is valid and not  
due to skew or noise. The sink/source capability of the VDAC buffer amp is programmed by the same external  
resistor that sets the oscillator frequency, RROSC. The slew rate of the voltage at the VDAC pin can be adjusted by an  
external capacitor between VDAC pin and the VOSNS- pin. A resistor connected in series with this capacitor is  
Page 16 of 39  
07/15/04  
IR3093  
required to compensate the VDAC buffer amplifier. Digital VID transitions result in a smooth analog transition of the  
VDAC voltage and converter output voltage minimizing inrush currents in the input and output capacitors and  
overshoot of the output voltage.  
18uA  
4.9V  
TO FAULT  
VID=11111X FAULT  
BLANKING, 3.3us  
VID5  
VID0  
VID1  
VID2  
VID3  
VID4  
"SLOW" VDAC  
VID INPUT  
COMPARATORS  
(1 OF 6 SHOWN)  
DIGITAL TO ANALOG  
CONVERTER  
VDAC  
DAC BUFFER  
-
SHOWN DEFAULT  
"FAST" VDAC  
+
TO VR10 WITH  
IROSC  
VID_SEL GROUNDED  
+
DAC DEFAULTS  
TO VR10 WITH  
-
VID_SEL GROUNDED  
0.6V  
1.65V  
5V  
2.6V FLOAT VOLTAGE  
3.3V  
-
H=OPTERON  
+
50K  
150K  
1.2V  
+
VID_SEL  
H=ATHLON  
-
3.3V  
VOSNS-  
Figure 7– VID Control Block Diagram  
VID = 11111X Fault  
VID codes of 111111 and 111110 will set the fault latch and disable the Error Amplifier once SS/DEL is below 3.75V.  
Page 17 of 39  
07/15/04  
IR3093  
AMD Opteron VID Table  
AMD ATHLON VID Table  
VID_SEL Open. V(VDAC) is pre-  
positioned 50mV higher than Vout  
values listed below for load positioning.  
VIDSEL to VCC. V(VDAC) is pre-  
positioned 50mV higher than Vout values  
listed below for load positioning.  
Vout is measured at EAOUT with  
ROSC=47K and a 1890 ohm resistor  
connecting FB to EAOUT to cancel the  
50mV pre-position offset.  
Vout  
VID4 VID3 VID2 VID1 VID0  
(V)  
Vout is measured at EAOUT with  
ROSC=47K and a 1890 ohm resistor  
connecting FB to EAOUT to cancel the  
50mV pre-position offset.  
Vout  
VID4 VID3 VID2 VID1 VID0  
(V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.300  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
OFF4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.850  
1.825  
1.800  
1.775  
1.750  
1.725  
1.700  
1.675  
1.650  
1.625  
1.600  
1.575  
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.300  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
OFF4  
Note: 4 Output disabled (Fault mode)  
Table 1 - Voltage Identification (VID)  
Page 18 of 39  
07/15/04  
IR3093  
INTEL VR-10.0 VID Table (VID_SEL Grounded, measured at EAOUT=FB. )  
Processor Pins (0 = low, 1 = high)  
Vout  
(V)  
Processor Pins (0 = low, 1 = high)  
Vout  
(V)  
VID4 VID3 VID2 VID1 VID0 VID5  
VID4 VID3 VID2 VID1 VID0 VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
OFF4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
OFF4  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
Note: 4. Output disabled (Fault mode)  
Table 1 Continued - Voltage Identification (VID)  
Slew Rate Programming Capacitor CDAC and Resistor RDAC  
VDAC sink current ISINK and source current ISOURCE are determined by RROSC, and their value can be found using  
the curve in this data sheet. The slew rate of VDAC down-slope SRDOWN can be programmed by the external  
capacitor CDAC as defined in Equation (1) and shown in Figure1. Resistor RDAC is used to compensate VDAC  
circuit and is determined by Equation (2). The slew rate of VDAC up-slope SRUP is proportional to the down-slope  
slew rate SRDOWN and is given by Equation (3).  
ISINK  
CDAC  
 
(1)  
SRDOWN  
Page 19 of 39  
07/15/04  
IR3093  
15  
3.2 10  
RDAC   0.5  
(2)  
(3)  
2
CDAC  
ISOURCE  
SRUP  
 
CDAC  
Oscillator Resistor RROSC  
The oscillator frequency is programmable from 100kHz to 540kHz with an external resistor RROSC as shown in  
Figure 6 oscillator generates an internal 50% duty cycle sawtooth signal (Figure 3.) that is used to generate 120°  
out-of-phase timing pulses to set Phase 1,2 and 3 RS flip-flops. Once the switching frequency is chosen, RROSC can  
be determined from the curve in the Typical Operating Characteristics Section.  
Soft Start, Over-Current Fault Delay, and Hiccup Mode  
The IR3093 has a programmable soft-start function to limit the surge current during converter power-up. A capacitor  
connected between the SS/DEL and LGND pins controls soft start timing as well as over-current protection delay  
and hiccup mode timing.  
Figure 8 depicts the various operating modes of the SS/DEL function. Under a no fault condition, the SS/DEL  
capacitor will charge. The SS/DEL charge soft-start duration is controlled by a 60uA charge current which charges  
CSS up to 4.0V. The Error Amplifier output is clamped low until SS/DEL reaches 1.1V. The Error Amplifier will then  
regulate the converter’s output voltage to match the SS/DEL voltage less the 1.1V offset until it reaches the level  
determined by the VID inputs. The PWRGD signal is asserted once the SS/DEL voltage exceeds 3.75V.  
Five different faults will immediately cause SS/DEL to begin discharging and set the Fault Latch once SS/DEL is  
below 3.75V;  
1. VCC Under Voltage Lock Out  
2. 5VUVL Under Voltage Lock Out  
3. VID=11111x fault  
4. Low Enable pin  
5. Over Current Condition.  
A delay is included if any fault condition occurs after a successful soft start sequence. This is required since  
momentary faults can occur as part of normal operation due to load transients such as exciting an over-current  
condition or a VID=11111x code while going through VID transitions. If any fault occurs during normal operation, the  
SS/DEL capacitor will discharge through a 55uA current sink but will not set the fault latch immediately. If the fault  
condition persists long enough for the SS/DEL capacitor to discharge below the 3.75V threshold of the delay  
comparator, the Fault latch will be set pulling the Error Amplifier’s output low, inhibiting switching and de-asserting  
the PWRGD signal. The SS/DEL capacitor is then discharged through a 6uA discharge current resulting in a long  
hiccup duration.  
The SS/DEL capacitor will continue to discharge until it reaches 0.265V where the fault latch is reset allowing a  
normal soft start to occur. If a fault condition is again encountered during the soft start cycle, the fault latch will be  
set without any delay and hiccup mode will begin. During hiccup mode the 10 to 1 charge to discharge ratio results  
in a 9.1% hiccup mode duty cycle regardless of at what point a fault condition occurs.  
The converter can be disabled if the SS/DEL pin is pulled below 0.9V.  
Page 20 of 39  
07/15/04  
IR3093  
7.4V  
VCC  
UVLO  
(12V)  
4.36V  
5VUVL  
3.75V  
1.1V  
SS/DEL  
VOUT  
PWRGD  
OCP THRESHOLD  
IOUT  
START-UP  
NORMAL OPERATION  
OCP  
DELAY  
HICCUP OVER-CURRENT  
PROTECTION  
RE-START  
AFTER OCP  
CLEARS  
POWER-DOWN  
(5VUVL GATES  
FAULT MODE)  
(VOUT CHANGES DUE TO  
LOAD AND VID CHANGES)  
(VCC GATES  
FAULT MODE)  
Figure 8 – Operating Waveforms  
Soft-start delay time tSSDEL is the time SS/DEL charged up to 1.1V. After that the error amplifier output is released  
to allow the soft start. The soft start time tSS represents the time during which converter output voltage rises from  
zero to VO. tSS can be programmed by CSS using equation (4).  
6
I
CHG *tSS 60*10 *tSS  
VO  
CSS  
 
 
(4)  
VO  
Once CSS is chosen, the soft start delay time tSSDEL, the over-current fault latch delay time tOCDEL, and the delay  
time tVccPG from output voltage (VO) in regulation to Power Good are fixed and shown in equation (5), (6) and (7)  
respectively.  
CSS *'V CSS *1.1  
tSSDEL  
tOCDEL  
tVccPG  
 
 
(5)  
(6)  
(7)  
6
ICHG  
60*10  
CSS *'V CSS *0.25  
 
 
6
IDISCHG  
61*10  
CSS *'V CSS *(3.75 VO 1.1)  
 
 
6
ICHG  
60*10  
Over Current Protection (OCP)  
The current limit threshold is set by a resistor connected between the OCSET and VDAC pins. If the average  
Current Sense Amplifier output plus VDAC voltage exceeds the OCSET voltage, the over-current protection is  
triggered.  
Page 21 of 39  
07/15/04  
IR3093  
A delay is included if an over-current condition occurs after a successful soft-start sequence. This is required since  
over-current conditions can occur as part of normal operation due to load transients or VID transitions. If an over-  
current fault occurs during normal operation, the Over Current Comparator will initiate the discharge of the  
capacitor at SS/DEL but will not set the fault latch immediately. If the over-current condition persists long enough  
for the SS/DEL capacitor to discharge below the 250mV offset of the delay comparator, the Fault latch will be set  
pulling the Error Amplifier’s output low inhibiting switching in the phase ICs and de-asserting the PWRGD signal.  
See Soft Start, Over-Current Fault Delay, and Hiccup Mode. The hiccup mode duty cycle of over current protection  
is determined by the ratio of the charge to discharge current and is fixed at 9.1% for the ratio of 10 to 1.  
The inductor DC resistance RL is utilized to sense the inductor current. The current limit threshold is set by a  
resistor ROCSET connected between the OCSET and VDAC pins, as shown in Fig1. ILIMIT is the required over  
current limit. IOCSET, the bias current of OCSET pin, is set by RROSC and is determined by the curve in this data  
sheet. OCP need to satisfy the high temperature condition. RL_MAX and RL_ROOM are the inductor DCR at  
maximum temperature TL_MAX and room temperature T_ROOM respectively, the maximum inductor DCR can be  
calculated from Equation (8)  
6
RL _ MAX   RL _ ROOM [1 3850*10 (TL_ MAX TROOM )]  
(8)  
The current sense amplifier gain of IR3093 decreases with temperature at the rate of1400 PPM, which  
compensates part of the inductor DCR increase. The minimum current sense amplifier gain at the maximum IC  
temperature TIC_MAX is calculated from Equation (9).  
6
GCS _ MIN   GCS _ ROOM [11400*10 (TIC _ MAX TROOM )]  
(9)  
ROCSET can be calculated by the following equation (10), where ¨I is the ripple current in each output inductor.  
ILIMIT 'I  
ROCSET   [(  
) RL _ MAX ]GCS _ MIN / IOCSET  
(10)  
(11)  
3
2
Vo(Vin Vo)  
'I   
LVin fsw  
Adaptive Voltage Positioning  
Adaptive voltage positioning is needed to reduce output voltage deviations during load transients and power  
dissipation of the load when it is drawing maximum current. The circuitry related to voltage positioning is shown in  
Figure 8. Resistor RFB is connected between the Error Amplifier’s inverting input pin FB and the converter’s output  
voltage. An internal current source whose value is programmed by the same external resistor that programs the  
oscillator frequency, RROSC, pumps current out of the FB pin. The FB bias current develops a positioning voltage  
drop across RFB which forces the converter’s output voltage lower to V(VDAC)-I(FB)* RFB to maintain a balance at  
the Error Amplifier inputs. RFB is selected to program the desired amount of fixed offset voltage below the DAC  
voltage.  
The voltage at the VDRP pin is an average of three phase Current Sense Amplifiers and represents the sum of the  
VDAC voltage and the average inductor current of all the phases. The VDRP pin is connected to the FB pin  
through the resistor. The Error Amplifier forces the voltage on the FB pin to equal VDAC through the power supply  
loop therefore the current through RDRP is equal to (VDRP-VDAC) / RDRP. As the load current increases, the  
VDRP voltage increases accordingly which results in an increase RFB current, further positioning the output  
regulated voltage lower thus making the output voltage reduction proportional to an increase in load current. The  
droop impedance or output impedance of the converter can thus be programmed by the resistor RDRP. The offset  
and slope of the converter output impedance are independent of the VDAC voltage.  
Page 22 of 39  
07/15/04  
IR3093  
AMD specifies the acceptable power supply regulation window as ±50mV around their specified VID tables. VR-  
10.0 specifies the VID table voltages as the absolute maximum power supply voltage. In order to have all three  
DAC options, the OPTERON and ATHLON DAC output voltages are pre-positioned 50mV higher than listed in AMD  
specs. During testing, a series resistor is placed between EAOUT and FB to cancel the additional 50mV out of the  
DAC. The FB bias current, equal to IROSC, develops the 50mV cancellation voltage. Trimming the VDAC voltage  
by monitoring V(EAOUT) with this 50mV cancellation resistor in circuit also trims out errors in the FB bias current.  
The VDRP pin voltage represents the average current of the converter plus the DAC voltage. The load current can  
be retrieved by subtracting the VDAC voltage from the VDRP voltage.  
VDAC  
CDAC  
VDAC  
ERROR AMPLIFIER  
+
RDAC  
VOSNS-  
FB  
-
IROSC  
RCOMP  
CCOMP  
VDAC  
VDAC  
VDAC  
EAOUT  
CSINM3  
CSINP3  
X23.5  
X23.5  
X23.5  
-
+
IROSC  
VDRP BUFFER  
+
IDRP RDRP  
VDRP  
CSINM2  
CSINP2  
-
-
- V(CSav g) +  
+
CSINM1  
CSINP1  
-
+
+
VPOSITIONING  
RFB  
-
VOUT SENSE+  
VOUT SENSE-  
Figure 9 - Adaptive voltage positioning  
A resistor RFB between FB pin and the converter output is used to create output voltage offset VO_NLOFST which is  
the difference between VDAC voltage and output voltage at no load condition. An internal current source whose  
value is programmed by the same external resistor that programs the oscillator frequency, RROSC, pumps current IFB  
out of the FB pin.  
The VDRP pin is connected to the FB pin through the Adaptive Voltage Positioning Resistor RDRP. Adaptive voltage  
positioning lowers the converter voltage by RO*IO, where RO is the required output impedance of the converter. RFB  
and RDRP are determined by (12) and (13) respectively, where RO is the required output impedance of the  
converter.  
VO _ NLOFST  
RFB  
 
(12)  
IFB  
Page 23 of 39  
07/15/04  
IR3093  
RFB  RL _ MAX GCS _ MIN  
n  RO  
RDRP  
 
(13)  
Lossless Average Inductor Current Sensing  
Inductor current can be sensed by connecting a series resistor and a capacitor network in parallel with the inductor  
and measuring the voltage across the capacitor. The equation of the sensing network is,  
RL  sL  
1 sRS CS  
1
vC (s)   vL (s)  
  iL (s)  
1 sRS CS  
Usually the resistor Rcs and capacitor Ccs are chosen so that the time constant of Rcs and Ccs equals the time  
constant of the inductor which is the inductance L over the inductor DCR. If the two time constants match, the  
voltage across Ccs is proportional to the current through L, and the sense circuit can be treated as if only a sense  
resistor with the value of RL was used. The mismatch of the time constants does not affect the measurement of  
inductor DC current, but affects the AC component of the inductor current.  
The advantage of sensing the inductor current versus high side or low side sensing is that actual output current  
being delivered to the load is obtained rather than peak or sampled information about the switch currents. The  
output voltage can be positioned to meet a load line based on real time information. Except for a sense resistor in  
series with the inductor, this is the only sense method that can support a single cycle transient response. Other  
methods provide no information during either load increase (low side sensing) or load decrease (high side sensing).  
An additional problem associated with peak or valley current mode control for voltage positioning is that they suffer  
from peak-to-average errors. These errors will show in many ways but one example is the effect of frequency  
variation. If the frequency of a particular unit is 10% low, the peak to peak inductor current will be 10% larger and  
the output impedance of the converter will drop by about 10%. Variations in inductance, current sense amplifier  
bandwidth, PWM prop delay, any added slope compensation, input voltage, and output voltage are all additional  
sources of peak-to-average errors.  
Measure the inductance L and the inductor DC resistance RL. Pre-select the capacitor CCS and calculate RCSX as  
follows.  
L RL  
CCS  
RCSX  
 
(14)  
Inductor DCR Temperature Correction  
If the Current Sense Amplifier temperature dependent gain is not adequate to compensate the inductor DCR TC, a  
negative temperature coefficient (NTC) thermistor can be added. The thermistor should be placed close to the  
inductor and connected in parallel with the feedback resistor, as shown in Figure 9. The resistor in series with the  
thermistor is used to reduce the nonlinearity of the thermistor.  
Page 24 of 39  
07/15/04  
IR3093  
VDAC  
VDAC  
ERROR AMPLIFIER  
+
EAOUT  
VOSNS-  
FB  
-
IROSC  
VDRP BUFFER  
+
Current  
+ VDAC  
RDRP  
VDRP  
-
VOUT SENSE+  
RFB  
RLINEAR  
RNTC  
Figure 10 - Temperature compensation of inductor DCR  
Remote Voltage Sensing  
To compensate for impedance in the ground plane, the VOSNS- pin is used for remote sensing and connects  
directly to the load. The VDAC voltage is referenced to VOSNS- to avoid additional error terms or delay related to  
a separate differential amplifier. The capacitor connecting the VDAC and VOSNS- pins ensure that high speed  
transients are fed directly into the Error Amplifier without delay.  
Master-Slave Current Share Loop  
Current sharing between phases of the converter is achieved by a Master-Slave current share loop topology. The  
output of the Phase 1 Current Sense Amplifier sets the reference for the Share Adjust Error Amplifiers. Each  
Share Adjust Error Amplifier adjusts the duty cycle of its respective PWM Ramp and to force its input error to zero  
compared to the master Phase 1, resulting in accurate current sharing.  
The maximum and minimum duty cycle adjust range of Ramps 2 & 3 compared to Ramp1 has been limited to a  
minimum of 0.5x and a maximum of 2.0x typical (see Figure 3.). The crossover frequency of the current share loop  
can be programmed with a capacitor at the SCOMPX pin so that the share loop does not interact with the output  
voltage loop.  
The SCOMPX capacitor is driven by a trans-conductance stage capable of sourcing and sinking 22uA. The duty  
cycle of Ramps 2 & 3 inversely tracks the voltage on their SCOMPX pin; if V(SCOMP2) increases, Ramp2’s slope  
will increase and the effective duty cycle will decrease resulting in a reduction in Phase 2’s output current. Due to  
the limited 22uA source current, an SCOMPX pre-charge circuit has been included to pre-condition V(SCOMPX)  
so that the duty cycle of Ramps 2 & 3 are equal to Ramp1 prior to any GATEHX high pulses. The pre-condition  
circuit can source 450uA. The Equal Duty Cycle Comparator (see Block Diagram) activates a pre-charge circuit  
when SS/DEL is less than 0.6V. The Error Amplifier becomes active enabling GATEH switching when SS/DEL is  
above 1.1V.  
Set BIASOUT voltage  
BIASOUT pin provides 150mA open-looped regulated voltage for GATE drive bias, and the voltage is set by  
SETBIAS through an external resistor Rset connecting between SETBIAS pin and ground. Bias current ISETBIAS is a  
function of ROSC. Rset is chosen by equation (15). VFD in the equation is the forward voltage drop across the  
Bootstrap diode.  
Page 25 of 39  
07/15/04  
IR3093  
VBIASOUT VFD  
RSET  
 
(15)  
ISETBIAS  
Compensation of the Current Share Loop  
The crossover frequency of the current share loop should be at least one decade lower than that of the voltage  
loop in order to eliminate the interaction between the two loops. A 22nF capacitor from SCOMP to LGND is good  
for most of the applications. If necessary have a 1k resistor in series with the Csc to make the current loop a little  
bit faster.  
Compensation of Voltage Loop  
The adaptive voltage positioning is used in the computer applications to meet the load line requirements. Like  
current mode control, the adaptive voltage positioning loop introduces extra zero to the voltage loop and splits the  
double poles of the power stage, which make the voltage loop compensation much easier.  
Resistors RFB and RDRP are chosen according to Equations (12) and (13), and the selection of compensation  
types depends on the capacitors used. For the applications using Electrolytic, Polymer or AL-Polymer capacitors,  
type II compensation shown in Figure 11 (a) is usually enough. While for the applications with only low ESR  
ceramic capacitors, type III compensation shown in Figure 11 (b) is preferred.  
CCP1  
CCP1  
RFB  
CFB  
RCOMP  
CCOMP  
VO+  
RCOMP  
CCOMP  
RFB1  
FB  
-
EAOUT  
RFB  
EAOUT  
VO+  
FB  
VDAC  
RDRP  
-
+
VDRP  
EAOUT  
EAOUT  
VDAC  
RDRP  
CDRP  
+
VDRP  
(a) Type II compensation  
(b) Type III compensation  
Figure 11 . Voltage loop compensation network  
Type II Compensation  
Determine the compensation at no load, the worst case condition. Assume the time constant of the resistor and  
capacitor across the output inductors matches that of the inductor, the crossover frequency of the voltage loop can  
be estimated by Equations (16), where CE and RCE are the equivalent capacitance and ESR of output capacitors  
respectively and RLE is the equivalent resistance of inductor DCR.  
RDRP  
(16)  
fC   
2S *CE  (GCS * RFB  RLE  RCE )  
RCOMP and CCOMP have limited effect on the crossover frequency, and are used only to fine tune the crossover  
frequency and transient load response. Choose the desired crossover frequency fc1 around fc estimated by  
Equation (16) and determine RCOMP and CCOMP.  
Page 26 of 39  
07/15/04  
IR3093  
(2S  fC1 )2  LE CE  RFB  
VIN  FM  
RCOMP  
 
(17)  
(18)  
10  LE CE  
CCOMP  
 
RCOMP  
CCP1 is optional and may be needed in some applications to reduce the jitter caused by the high frequency noise.  
A ceramic capacitor between 10pF and 220pF is usually enough. In equation (17), VIN is the input voltage, FM is  
the PWM comparator gain (refer to equation (25)).  
Type III Compensation  
Determine the compensation at no load, the worst case condition. Assume the time constant of the resistor and  
capacitor across the output inductors matches that of the inductor, the crossover frequency of the voltage loop can  
be estimated by Equations (19).  
RDRP  
(19)  
fC   
2S *CE GCS * RFB  RLE  
Choose the desired crossover frequency fc1 around fc estimated by Equation (19). Select other components to  
ensure the slope of close loop gain is -20dB/Dec around the crossover frequency. Choose resistor RFB1 according  
to Equation (20), and determine CFB and CDRP from Equations (21) and (22).  
1
2
RFB1   RFB  
to  
RFB1   RFB  
(20)  
(21)  
2
3
1
CFB  
 
4S  fC1  RFB1  
(RFB  RFB1 ) CFB  
(22)  
CDRP  
 
RDRP  
RCOMP and CCOMP have limited effect on the crossover frequency, and are used only to fine tune the crossover  
frequency and transient load response. Determine RCOMP and CCOMP from Equations (23) and (24), where FM is  
the PWM comparator gain defined by Equation (25).  
(2S  fC1 )2  LE CE  RFB  
RCOMP  
 
(23)  
(24)  
VI  FM  
10 LE CE  
CCOMP  
 
RCOMP  
VO  
(25)  
FM   
VI *VRAMP  
CCP1 is optional and may be needed in some applications to reduce the jitter caused by the high frequency noise.  
A ceramic capacitor between 10pF and 220pF is usually enough.  
Page 27 of 39  
07/15/04  
IR3093  
DESIGN EXAMPLE  
IR3093 Demo Board for VRD10.1 Application  
Specifications:  
Input Voltage: VI=12 V  
DAC Voltage: VDAC=1.35 V  
No Load Output Voltage Offset: VO_NLOFST=20 mV  
Output Current: IO=101 A DC  
Output Current Limit set point: ILIMIT=130 A  
Output Impedance: RO=1mŸ  
VCC Ready to VCC Power Good Delay: tVccPG=0-10mS  
Soft Start Time: tSS=2 mS  
Dynamic VID Down-Slope Slew Rate: SRDOWN=2.5mV/uS  
Power Stage Design  
Control IC: IR3093  
Phase Number: n=3  
Switching Frequency: fSW=300 kHz  
Output Inductors: L=0.25 uH, RL=0.65 mŸꢁ  
Output Capacitors: C=0.007F, RCE=0.7 mŸ  
External Components of IR3093  
Oscillator Resistor Rosc  
Once the switching frequency is chosen, ROSC can be determined from the curve in the datasheet of  
IR3093 data sheet. For switching frequency of 300 kHz per phase, Choose ROSC=30kŸ  
Soft Start Capacitor CSS  
Calculate the soft start capacitor from the required soft start time 2mS.  
6
3
ICHG *tSS  
60*10 *2*10  
6
CSS  
 
 
  0.09*10 F  
Choose CSS = 0.1 uF  
3
VO  
1.35  20*10  
With the selected Css value, we can calculate the following delay times:  
The Over-Current fault latch delay time tOCDEL will be:  
6
CSS *'V  
IDISCHG  
0.1*10 *0.25  
tOCDEL  
 
 
  0.4mS  
6
61*10  
The soft start delay time is  
6
CSS * 'V  
0.1*10 *1.1  
tSSDEL  
 
 
  1.8mS  
6
ICHG  
60*10  
Page 28 of 39  
07/15/04  
IR3093  
The power good delay time is  
6
CSS * 'V  
0.1*10 *(3.75 1.33 1.1)  
tVccPG  
 
 
  2.2mS  
6
ICHG  
60*10  
VDAC Slew Rate Programming Capacitor CDAC and Resistor RDAC  
From IR3093 data sheet, the sink current ISINK of VDAC pin corresponding to ROSC=30kŸꢁ LVꢁ ꢂꢃX$ꢄꢁ  
Calculate the VDAC down-slope slew-rate programming capacitor from the required down-slope slew  
rate.  
6
ISINK  
8510  
CVDAC  
 
 
  34nF  
6
3
SRDOWN 2.510 /10  
Choose CVDAC = 33nF  
Calculate the programming resistor.  
15  
15  
3.210  
3.2*10  
3.4Ÿ  
RDAC   0.5  
  0.5  
 
2
9
2
CDAC  
33*10  
In practice slightly adjust RDAC to get desired slew rate.  
Over Current Setting Resistor ROCSET  
According to the spec, the output current limit set point ILIMIT = 130A. The bias current IOCSET set by  
RROSC is around 40uA. Assume the maximum temperature TL_MAX = 120 C, the room temperature  
TROOM=25 C, so  
3
6
RL _ MAX   0.65*10 [1 3850*10 (120  25)]   0.9m:  
Assume maximum IC temperature TIC_MAX=110C, the minimum current sense amplifier gain can be  
calculated from Equation (11).  
6
GCS _ MIN   23.5[11400*10 (110  25)]   21  
Using Equation (12) and (13) to calculate ROCSET:  
Vo(Vin Vo)  
LVin fsw  
1.33(12 1.33)  
A
'I   
 
 15.8  
6
0.2510 12300103  
ILIMIT  
3
'I  
2
130 15.8  
) RL _ MAX ]GCS _ MIN / IOCSET   [( )0.910 ]21/(4010 )   24.2k:  
3
6
ROCSET   [(  
3
2
Choose ROCSET = 25 kŸꢁ  
No Load Output Voltage Setting Resistor RFB and Adaptive Voltage Positioning Resistor RDRP  
The value of the internal current source current IFB in the curve is 42uA according to RROSC = 30kŸꢄ  
Page 29 of 39  
07/15/04  
IR3093  
3
6
VO _ NLOFST  
20*10  
42*10  
RFB  
 
 
  476Ÿꢄꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ&KRRVHꢁ5FB = 499Ÿꢁꢁꢁꢁꢁꢁ  
IFB  
3
RFB  RL _ MAX GCS _ MIN  
n RO  
4990.910 21  
RDRP  
 
 
  3.1k:  
3
3110  
Choose RDRP = 3.09kŸꢁꢁꢁꢁꢁꢁꢁꢁ  
Inductor Current Sensing Capacitor CCS and Resistors RCS1 and RCS2  
Choose capacitor CCS = 0.22uF calculate RCS1  
6
3
L RL 0.25*10 /0.65*10  
CCS  
RCS1  
 
 
 1.8k:  
Choose RCS1=2kŸ  
6
0.22*10  
Set BIASOUT voltage Resistor Rset  
Bias current ISETBIAS is around 160uA in this case. Set VBIASOUT around 8V to be gate drive voltage of  
MOSFETs.  
VBIASOUT  0.3  
8  0.3  
16010  
RSET  
 
 
  51.9k:  
6
ISETBIAS  
Choose RSET=51.1kŸ  
Compensation of Voltage Loop  
AL-Polymer output capacitors are used in the design, and the crossover frequency of the voltage loop  
can be estimated as,  
3.09*103  
RDRP  
fC   
 
  28kHz  
3
3
2S CE (GCS  RFB  RLE  RCE )  
2S 0.007[23.5499(0.65*10 /3)  0.7*10 ]  
RCOMP and CCOMP are used to fine tune the crossover frequency and transient load response. Choose  
the desired crossover frequency fc1 (=30kHz) and determine RCOMP and CCOMP.  
VO  
VI VRAMP 12 0.63  
1.33  
FM   
 
  0.18  
(2S  fC1 )2  LE CE  RFB  
VI  FM  
9
(2S 30103 )2 (25010 / 3)0.007 499  
RCOMP  
 
 
  5k:  
120.18  
9
10  LE CE  
10  (250 10 / 3) 0.007  
5103  
CCOMP  
 
 
  48nF  
RCOMP  
In practice, adjust RCOMP and CCOMP if need to get desired dynamic load response performance.  
Page 30 of 39  
07/15/04  
IR3093  
MathCAD file to estimate the power dissipation of the IC  
this Mathcad file step by step shows how to estimate the power dissipation of IR3093 .  
Initial Conditions:  
No.of Phases:  
n  3  
IC Supply Voltage:  
, IC Supply Current(quiescent):  
Vcc  12 (V)  
Icq  38 (mA)  
Total High side Driver VCCH supply current(quiescent):  
Total Low side Driver VCCL supply Current(quiescent):  
Iqh  5 ˜ n (mA)  
Iql  5 ˜ n (mA)  
Biasout Voltage:  
Vbias  7.5 (V)  
Switching Frequency per phase:  
Thermal Impedance of IC:  
fsw  300 (kHz)  
o
( C/W)  
T
 27  
JA  
The data from the selected MOSFETs:  
ControI FET IR6623, Number of Control FET per phase:  
Control FET total gate charge:  
Synchronous FET IR6620, Number of sync. FET per phase:  
Sync FET total gate charge:  
nc  1  
ns  1  
Qgc  16 (nC)  
Qgs  45 (nC)  
Power Dissipation:  
The IC will have less power dissipation if using external gate driver supply. For the worst case estimation,  
assuming using the bias regulator for all the gate drive supply voltage.  
1. Quiescent Power dissipation  
Total Quiescent Power Dissipation:  
3
Pq  (Icq  Iqh  Iql) ˜ Vcc ˜ 10  
2. The Power Loss to drive the gate of the MOSFETs  
Pq   0.816 (W)  
With the assumption of the low MOSFET gate resistances, most gate drive losses are dissipated in  
the driver circuit.  
3
9
ª
º
Pdrv  Vbias ˜ fsw ˜ 10 ˜ n ˜ (nc ˜ Qgc  ns ˜ Qgs) ˜ 10  
¬
¼
Pdrv   0.412 (W)  
3
9
Where the  
term in the equation gives the total  
Ig  fsw ˜ 10 ˜ n ˜ (nc ˜ Qgc  ns ˜ Qgs) ˜ 10  
average bias current required to drive all the MOSFETs.  
3. The bias regulator Power Loss to supply driving the MOSFETs  
Preg  (Vcc  Vbias) ˜ Ig  
Preg   0.247 (W)  
4. Total Power Dissipation of the IC:  
Pdiss  Pq  Pdrv  Preg  
Pdiss   1.475 (W)  
o
( C)  
And the total Junction temperature rising is:  
Pdiss ˜ T   39.82  
JA  
Page 31 of 39  
07/15/04  
IR3093  
APPLICATION CIRCUIT - 3 PHASE OPTERON CONVERTER  
1 H C C V  
C N  
3 L E T A G  
3 L C C V  
1 M N I S C  
1 P N I S C  
P V O  
E L B A N E  
S N S P V O  
F E R V 5  
5 D I V  
L E S _ D I V  
2 M N I S C  
2 P N I S C  
D G R W P  
T U O S A I B  
3 M N I S C  
3 P N I S C  
C C V  
0 D I V  
1 D I V  
2 D I V  
S A I B T E S  
D N G L  
2 9 0 3 U R I  
Figure 12. 12V Control, 12V Power Opteron Converter  
Page 32 of 39  
07/15/04  
IR3093  
APPLICATION CIRCUIT - 3 PHASE VR10.X CONVERTER  
1 H C C V  
C N  
3 L E T A G  
3 L C C V  
1 M N I S C  
1 P N I S C  
P V O  
E L B A N E  
S N S P V O  
F E R V 5  
5 D I V  
L E S _ D I V  
2 M N I S C  
2 P N I S C  
D G R W P  
T U O S A I B  
3 M N I S C  
3 P N I S C  
C C V  
0 D I V  
1 D I V  
2 D I V  
S A I B T E S  
D N G L  
2 9 0 3 U R I  
Figure 13. 12V Control, 5V Power, VR10 Converter  
Page 33 of 39  
07/15/04  
IR3093  
LAYOUT GUIDELINES  
The following layout guidelines are recommended to reduce the parasitic inductance and resistance of the PCB  
layout, therefore minimizing the noise coupled to the IC. Refer to the schematic in Figure 6 – System Diagram.  
x Dedicate at least one inner layer of the PCB as power ground plane (PGND).  
x The center pad of IC must be connected to ground plane (PGND) using the recommended via pattern shown in  
“Package Dimensions”.  
x The IC’s PGND1, 2, 3 and LGND should connect to the center pad under IC.  
x The following components must be grounded directly to the LGND pin on the IC using a ground plane on the  
component side of PCB: CSS, RSC2, RSC3, RSET, CVCC and C5VREF. The LGND should only be connected to  
ground plan on the center pad under IC  
x Place the decoupling capacitors CVCC and CBIAS as close as possible to the VCC and VCCL1_2, VCCL3  
pins. The ground side of CBIAS should not be connected to LGND and it should directly grounded through vias.  
x The following components should be placed as close as possible to the respective pins on the IC: RROSC,  
ROCSET, CDAC, RDAC, CSS, CSC2, RSC2, CSC3, RSC3, RSET.  
x Place current sense capacitors CCS1, 2, 3 and resistors RCS1, 2, 3 as close as possible to CSINP1, 2, 3 pins  
of IC and route the two current sense signals in pairs connecting to the IC. The current sense signals should be  
located away from gate drive signals and switch nodes.  
x Use Kelvin connections to route the current sense traces to each individual phase inductor, in order to achieve  
good current share between phases.  
x Place the input decoupling capacitors closer to the drain of top MOSFET and the source of the bottom  
MOSFET. If possible, Use multiple smaller value ceramic caps instead of one big cap, or use low inductance type  
of ceramic cap, to reduce the parasitic inductance.  
x Route the high current paths using wide and short traces or polygons. Use multiple vias for connections  
between layers.  
x The symmetry of the following connections from phase to phase is important for proper operation:  
- The Kelvin connections of the current sense signals to inductors.  
- The gate drive signals from the IC to the MOSFETS.  
- The polygon shape of switching nodes.  
Page 34 of 39  
07/15/04  
IR3093  
PCB AND STENCIL DESIGN METHODOLOGY  
x
x
x
7x7  
48 Lead  
0.5mm pitch MLPQ  
See Figures 14-16.  
PCB Metal Design (0.5mm Pitch Leads)  
1. Lead land width should be equal to nominal part lead width. The minimum lead to lead  
spacing should be •ꢁꢅꢄꢆPPꢁWRꢁPLQLPL]HꢁVKRUWLQJꢄ  
2. Lead land length should be equal to maximum part lead length + 0.2 mm outboard extension +  
0.05mm inboard extension. The outboard extension ensures a large and inspectable toe fillet,  
and the inboard extension will accommodate any part misalignment and ensure a fillet.  
3. Center pad land length and width should be = maximum part pad length and width. However,  
the minimum metal to metal spacing should be •ꢁꢅꢄꢇꢈPPꢁꢉꢆꢁR]ꢄꢁ&RSSHUꢀꢁ•ꢁꢅꢄꢆꢊPPꢁIRUꢁꢊꢁR]ꢄꢁ  
Copper and •ꢁꢅꢄꢇPPꢁIRUꢁꢇꢁR]ꢄꢁ&RSSHUꢋ  
4. Sixteen 0.30mm diameter vias shall be placed in the pad land spaced at 1.2mm, and  
connected to ground to minimize the noise effect on the IC, and to transfer heat to the PCB.  
PCB Solder Resist Design (0.5mm Pitch Leads)  
1. Lead lands. The solder resist should be pulled away from the metal lead lands by a minimum  
of 0.060mm. The solder resist mis-alignment is a maximum of 0.050mm and it is  
recommended that the lead lands are all NSMD. Therefore pulling the S/R 0.060mm will  
always ensure NSMD pads.  
2. The minimum solder resist width is 0.13mm, therefore it is recommended that the solder resist  
is completely removed from between the lead lands forming a single opening for each “group”  
of lead lands.  
3. At the inside corner of the solder resist where the lead land groups meet, it is recommended to  
provide a fillet so a solder resist width of •ꢁꢅꢄꢇꢈPPꢁUHPDLQVꢄ  
4. Land Pad. The land pad should be SMD, with a minimum overlap of the solder resist onto the  
copper of 0.060mm to accommodate solder resist mis-alignment. In 0.5mm pitch cases it is  
allowable to have the solder resist opening for the land pad to be smaller than the part pad.  
5. Ensure that the solder resist in-between the lead lands and the pad land is •ꢁꢅꢄꢇꢃPPꢁGXHꢁWRꢁ  
the high aspect ratio of the solder resist strip separating the lead lands from the pad land.  
6. The single via in the land pad should be tented with solder resist 0.4mm diameter, or 0.1mm  
larger than the diameter of the via.  
Stencil Design (0.5mm Pitch Leads)  
1. The stencil apertures for the lead lands should be approximately 80% of the area of the lead  
lands. Reducing the amount of solder deposited will minimize the occurrence of lead shorts.  
Since for 0.5mm pitch devices the leads are only 0.25mm wide, the stencil apertures should  
not be made narrower; openings in stencils < 0.25mm wide are difficult to maintain repeatable  
solder release.  
2. The stencil lead land apertures should therefore be shortened in length by 80% and centered  
on the lead land.  
3. The center land pad aperture should be striped with 0.25mm wide openings and spaces to  
deposit approximately 50% area of solder on the center pad. If too much solder is deposited  
on the center land pad the part will float and the lead lands will be open.  
4. The maximum length and width of the center land pad stencil aperture should be equal to the  
solder resist opening minus an annular 0.2mm pull back to decrease the incidence of shorting  
the center land to the lead lands when the part is pushed into the solder paste.  
Page 35 of 39  
07/15/04  
IR3093  
Figure 14. PCB metal and solder resist.  
Page 36 of 39  
07/15/04  
IR3093  
Figure 15. PCB metal and component placement.  
Page 37 of 39  
07/15/04  
IR3093  
Figure 16. Stencil design.  
Page 38 of 39  
07/15/04  
IR3093  
PACKAGE DIMENSIONS  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
www.irf.com  
Page 39 of 39  
07/15/04  

相关型号:

IR3093MTR

3 PHASE OPTERON, ATHLON, OR VR10.X CONTROL IC
INFINEON

IR3094MPBF

3 PHASE PWM CONTROLLER FOR POINT OF LOAD
INFINEON

IR3094MTRPBF

3 PHASE PWM CONTROLLER FOR POINT OF LOAD
INFINEON

IR3094PBF

3 PHASE PWM CONTROLLER FOR POINT OF LOAD
INFINEON

IR30ASR06N

Silicon Controlled Rectifier, 600V V(DRM), 600V V(RRM), 1 Element, DIE-2
VISHAY

IR30CSR08L

Silicon Controlled Rectifier, 800V V(DRM), 800V V(RRM), 1 Element, DIE-2
VISHAY

IR30CSR14L

Silicon Controlled Rectifier, 1400V V(DRM), 1400V V(RRM), 1 Element, DIE-2
VISHAY

IR3101

Half-Bridge FredFet and Integrated Driver
INFINEON

IR3103

i Motion Series
INFINEON

IR311

REFLECTIVE NON FOCUSING SENSOR PCB MOUNT
FAIRCHILD

IR313

Technical Data Sheet 4.7mm Round Non-flange Infrared LED
EVERLIGHT

IR3220

FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR
INFINEON