IRF1404PBF [INFINEON]

HEXFET㈢ Power MOSFET; HEXFET㈢功率MOSFET
IRF1404PBF
型号: IRF1404PBF
厂家: Infineon    Infineon
描述:

HEXFET㈢ Power MOSFET
HEXFET㈢功率MOSFET

晶体 晶体管 开关 脉冲 局域网
文件: 总10页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-94968  
IRF1404PbF  
HEXFET® Power MOSFET  
l Advanced Process Technology  
l Ultra Low On-Resistance  
l Dynamic dv/dt Rating  
l 175°C Operating Temperature  
l Fast Switching  
l Fully Avalanche Rated  
l Automotive Qualified (Q101)  
l Lead-Free  
D
VDSS = 40V  
RDS(on) = 0.004Ω  
G
ID = 202A†  
S
Description  
Seventh Generation HEXFET® Power MOSFETs from  
International Rectifier utilize advanced processing  
techniques to achieve extremely low on-resistance per  
silicon area. This benefit, combined with the fast  
switching speed and ruggedized device design that  
HEXFET power MOSFETs are well known for, provides  
the designer with an extremely efficient and reliable  
device for use in a wide variety of applications including  
automotive.  
The TO-220 package is universally preferred for all  
automotive-commercial-industrialapplicationsatpower  
dissipation levels to approximately 50 watts. The low  
thermal resistance and low package cost of the TO-220  
contributetoitswideacceptancethroughouttheindustry.  
Absolute Maximum Ratings  
TO-220AB  
Parameter  
Max.  
202†  
143†  
808  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
A
PD @TC = 25°C  
Power Dissipation  
333  
W
W/°C  
V
Linear Derating Factor  
2.2  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
620  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
See Fig.12a, 12b, 15, 16  
A
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy‡  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
mJ  
1.5  
V/ns  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
-55 to + 175  
°C  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.45  
–––  
62  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
02/02/04  
IRF1404PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.039 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– 0.0035 0.004  
V
S
VGS = 10V, ID = 121A „  
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 121A  
2.0  
76  
––– 4.0  
––– –––  
Forward Transconductance  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 131 196  
VDS = 40V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
VDS = 32V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 121A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
36 –––  
37 56  
17 –––  
nC VDS = 32V  
VGS = 10V„  
VDD = 20V  
––– 190 –––  
ID = 121A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
46 –––  
33 –––  
RG = 2.5Ω  
RD = 0.2„  
D
S
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
Ciss  
Input Capacitance  
––– 5669 –––  
––– 1659 –––  
––– 223 –––  
––– 6205 –––  
––– 1467 –––  
––– 2249 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
202†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 808  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.5  
––– 78 117  
––– 163 245  
V
TJ = 25°C, IS = 121A, VGS = 0V „  
ns  
TJ = 25°C, IF = 121A  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by  
„ Pulse width 400µs; duty cycle 2%.  
max. junction temperature. (See fig. 11)  
Coss eff. is a fixed capacitance that gives the same charging time  
‚ Starting TJ = 25°C, L = 85µH  
as Coss while VDS is rising from 0 to 80% VDSS  
RG = 25, IAS = 121A. (See Figure 12)  
†
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
ƒ ISD 121A, di/dt 130A/µs, VDD V(BR)DSS  
TJ 175°C  
,
2
www.irf.com  
IRF1404PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM4.5V  
BOTTOM4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
20µs PULSE WIDTH  
°
°
T = 175 C  
J
T = 25 C  
J
1
0.1  
1
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.5  
202A  
=
I
D
°
T = 25 C  
J
2.0  
1.5  
1.0  
0.5  
0.0  
°
T = 175 C  
J
100  
V
= 25V  
DS  
20µs PULSE WIDTH  
V
=10V  
GS  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
4
5
6
7
8
9
10 11  
12  
T , Junction Temperature ( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF1404PbF  
20  
16  
12  
8
10000  
I = 121A  
D
V
= 0V, f = 1 MHZ  
GS  
V
V
= 32V  
= 20V  
DS  
DS  
C
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
8000  
6000  
4000  
2000  
0
rss  
gd  
C
= C + C  
oss  
ds gd  
Ciss  
Coss  
Crss  
4
FOR TEST CIRCUIT  
SEE FIGURE 13  
1
10  
100  
0
0
50  
100  
150  
200  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA LIMITED  
BY R  
DS(on)  
°
T = 175 C  
J
10us  
100us  
°
T = 25 C  
J
1ms  
10ms  
1
°
T = 25 C  
C
°
T = 175 C  
Single Pulse  
J
V
= 0 V  
GS  
3.0  
0.1  
0.0  
1
0.5  
1.0  
1.5  
2.0  
2.5  
3.5  
1
10  
100  
V
,Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1404PbF  
RD  
220  
200  
180  
160  
140  
120  
100  
80  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
DꢀUꢀTꢀ  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
60  
V
DS  
40  
90%  
20  
0
25  
50  
75  
100  
125  
150  
175  
°
T , Case Temperature ( C)  
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.01  
0.10  
0.05  
0.02  
0.01  
SINGLE PULSE  
(THERMAL RESPONSE)  
P
DM  
t
1
t
2
Notes:  
1. Duty factor D = t / t  
1
2
2. Peak T =P  
x Z  
+ T  
thJC C  
J
DM  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1404PbF  
1500  
1200  
900  
600  
300  
0
15V  
I
D
TOP  
49A  
101A  
BOTTOM 121A  
DRIVER  
+
L
V
DS  
D.U.T  
R
G
V
DD  
-
I
A
AS  
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature( C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
4.0  
GS  
GD  
V
G
3.0  
2.0  
1.0  
I
= -250µA  
Charge  
D
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25  
50  
75 100 125 150  
V
GS  
T , Temperature ( °C )  
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1404PbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax  
is not exceeded.  
3. Equation below based on circuit and waveforms shown  
in Figures 12a, 12b.  
400  
TOP  
BOTTOM 10% Duty Cycle  
= 121A  
Single Pulse  
350  
300  
250  
200  
150  
100  
50  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
Vs. Temperature  
www.irf.com  
7
IRF1404PbF  
Peak Diode Recovery dv/dt Test Circuit  
+
ƒ
-
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
DꢀUꢀT  
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
+
-
Driver same type as DꢀUꢀTꢀ  
ISD controlled by Duty Factor "D"  
DꢀUꢀTꢀ - Device Under Test  
VDD  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
=10V  
*
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. For N-channel HEXFET® Power MOSFETs  
8
www.irf.com  
IRF1404PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
3.78 (.149)  
- B -  
10.29 (.405)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
3.54 (.139)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
LEAD ASSIGNMENTS  
1.15 (.045)  
MIN  
HEXFET  
IGBTs, CoPACK  
2- DRAIN  
3- SOURCE  
1
2
3
1- GATE  
1- GATE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
4- DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1
2
DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH  
3
4
OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
E XAMPLE: T HIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
AS S EMBLED ON WW 19, 1997  
IN T HE AS S EMBLY LINE "C"  
INT ERNAT IONAL  
RECT IFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DAT E CODE  
YEAR 7 = 1997  
WEEK 19  
AS S EMBLY  
LOT CODE  
LINE C  
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.02/04  
www.irf.com  
9
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF1404S

Power MOSFET(Vdss=40V, Rds(on)=0.004ohm, Id=162A)
INFINEON

IRF1404S

HEXFET® Power MOSFET
KERSEMI

IRF1404SPBF

HEXFET® Power MOSFET
INFINEON

IRF1404SPBF

HEXFET® Power MOSFET
KERSEMI

IRF1404STRL

Power Field-Effect Transistor, 75A I(D), 40V, 0.004ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, PLASTIC, D2PAK-3
INFINEON

IRF1404STRLPBF

Advanced Process Technology
INFINEON

IRF1404STRR

Power Field-Effect Transistor, 75A I(D), 40V, 0.004ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, PLASTIC, D2PAK-3
INFINEON

IRF1404STRRPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.004ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF1404Z

AUTOMOTIVE MOSFET
INFINEON

IRF1404ZGPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.0037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN AND LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRF1404ZL

Advanced Process Technology
INFINEON

IRF1404ZLPBF

AUTOMOTIVE MOSFET
INFINEON