IRF2903ZSPBF [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2903ZSPBF
型号: IRF2903ZSPBF
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总11页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96098  
AUTOMOTIVE MOSFET  
IRF2903ZSPbF  
IRF2903ZLPbF  
Features  
HEXFET® Power MOSFET  
l
Advanced Process Technology  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
D
l
l
l
l
l
VDSS = 30V  
RDS(on) = 2.4mΩ  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
G
ID = 75A  
S
Description  
D
D
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitive avalanche rating . These features com-  
binetomakethisdesignanextremelyefficientand  
reliable device for use in Automotive applications  
and a wide variety of other applications.  
S
S
D
D
G
G
D2Pak  
TO-262  
G
D
Drain  
S
Gate  
Source  
Absolute Maximum Ratings  
Parameter  
Max.  
235  
166  
75  
Units  
(Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
C
D
D
D
(Silicon Limited)  
(Package Limited)  
@ T = 100°C  
C
A
@ T = 25°C  
C
1020  
231  
1.54  
± 20  
231  
820  
DM  
P
@T = 25°C Power Dissipation  
C
W
W/°C  
V
D
Linear Derating Factor  
V
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
GS  
EAS (Thermally limited)  
AS (Tested )  
mJ  
E
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
-55 to + 175  
T
T
J
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
°C  
STG  
300 (1.6mm from case )  
Thermal Resistance  
Units  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
0.65  
62  
RθJC  
RθJA  
RθJA  
Junction-to-Case  
Junction-to-Ambient  
Junction-to-Ambient (PCB Mount, steady state)  
40  
www.irf.com  
1
04/06/07  
IRF2903ZS/ZLPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
Reference to 25°C, ID = 1mA  
V
(BR)DSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C  
V
GS = 10V, ID = 75A  
RDS(on)  
VGS(th)  
gfs  
mΩ  
V
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
1.9  
–––  
–––  
–––  
–––  
–––  
–––  
160  
51  
2.4  
4.0  
VDS = VGS, ID = 150µA  
VDS = 10V, ID = 75A  
VDS = 30V, VGS = 0V  
Forward Transconductance  
120  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
20  
S
IDSS  
Drain-to-Source Leakage Current  
µA  
V
DS = 30V, VGS = 0V, TJ = 125°C  
VGS = 20V  
GS = -20V  
ID = 75A  
DS = 24V  
250  
200  
-200  
240  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
nC  
V
Qg  
Qgs  
Qgd  
td(on)  
tr  
V
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
VGS = 10V  
VDD = 15V  
ID = 75A  
58  
24  
Rise Time  
100  
48  
G = 3.2  
R
td(off)  
tf  
Turn-Off Delay Time  
ns  
VGS = 10V  
Fall Time  
37  
LD  
Internal Drain Inductance  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
ƒ = 1.0MHz  
Ciss  
Input Capacitance  
––– 6320 –––  
––– 1980 –––  
––– 1100 –––  
––– 5930 –––  
––– 2010 –––  
––– 3050 –––  
V
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 24V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 24V  
Coss  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
I
Continuous Source Current  
–––  
–––  
75  
S
showing the  
(Body Diode)  
A
integral reverse  
I
Pulsed Source Current  
(Body Diode)  
–––  
––– 1020  
SM  
p-n junction diode.  
T = 25°C, I = 75A, V = 0V  
V
t
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
34  
1.3  
51  
44  
V
J
S
GS  
SD  
T = 25°C, I = 75A, VDD = 15V  
ns  
nC  
J
F
rr  
di/dt = 100A/µs  
Q
29  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
t
on  
2
www.irf.com  
IRF2903ZS/ZLPbF  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
100  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
1
10  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
240  
T
= 25°C  
J
200  
160  
120  
80  
100.0  
10.0  
1.0  
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
40  
V
= 10V  
DS  
380µs PULSE WIDTH  
60µs PULSE WIDTH  
0.1  
0
2.0  
3.0  
4.0  
5.0  
6.0 7.0 8.0 9.0 10.0  
0
20 40 60 80 100 120 140 160 180  
Drain-to-Source Current (A)  
V
, Gate-to-Source Voltage (V)  
GS  
I
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF2903ZS/ZLPbF  
12000  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
V
= 24V  
= C + C , C SHORTED  
DS  
VDS= 15V  
iss  
gs  
gd ds  
C
= C  
10000  
8000  
6000  
4000  
2000  
0
rss  
gd  
C
= C + C  
ds  
oss  
gd  
Ciss  
Coss  
Crss  
4
0
0
40  
80  
120  
160  
200  
240  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
1msec  
100µsec  
10msec  
LIMITED BY PACKAGE  
T
= 25°C  
J
1
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
0.1  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2903ZS/ZLPbF  
2.0  
1.5  
1.0  
0.5  
240  
200  
160  
120  
80  
I
= 75A  
D
V
= 10V  
GS  
Limited By Package  
40  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2903ZS/ZLPbF  
600  
500  
400  
300  
200  
100  
0
15V  
I
D
TOP  
26A  
42A  
75A  
DRIVER  
L
V
DS  
BOTTOM  
D.U.T  
AS  
R
+
-
G
V
DD  
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
4.5  
GS  
GD  
I
I
= 1.0A  
D
D
= 1.0mA  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
G
ID = 250µA  
= 150µA  
I
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
V
GS  
3mA  
T
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2903ZS/ZLPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
160  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
120  
80  
40  
0
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2903ZS/ZLPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2903ZS/ZLPbF  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
www.irf.com  
9
IRF2903ZS/ZLPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
10  
www.irf.com  
IRF2903ZS/ZLPbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
15.42 (.609)  
23.90 (.941)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
†
‡
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.10mH  
This value determined from sample failure population. 100%  
tested to this value in production.  
This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
Rθ is measured at TJ approximately 90°C  
R
G = 25, IAS = 75A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
ˆ
from 0 to 80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101]market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/2007  
www.irf.com  
11  

相关型号:

IRF2903ZSTRL

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF2903ZSTRLPBF

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2903ZSTRR

暂无描述
INFINEON

IRF2903ZSTRRPBF

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2907S

AUTOMOTIVE MOSFET
INFINEON

IRF2907Z

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZL

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZLPBF

HEXFET Power MOSFET
INFINEON

IRF2907ZPBF

HEXFET Power MOSFET
INFINEON

IRF2907ZS

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZS-7PPBF

IRF2907ZS-7PPBF
INFINEON

IRF2907ZS-7PPBF_06

HEXFET㈢ Power MOSFET
INFINEON