IRF2903ZSTRLPBF [INFINEON]

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3;
IRF2903ZSTRLPBF
型号: IRF2903ZSTRLPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3

文件: 总13页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96988A  
IRF2903Z  
IRF2903ZS  
AUTOMOTIVE MOSFET  
IRF2903ZL  
HEXFET® Power MOSFET  
Features  
D
l
Advanced Process Technology  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
VDSS = 30V  
l
l
l
l
RDS(on) = 2.4mΩ  
G
Repetitive Avalanche Allowed up to Tjmax  
ID = 75A  
S
Description  
Specifically designed for Automotive applications,  
this HEXFET® Power MOSFET utilizes the latest  
processingtechniquestoachieveextremelylowon-  
resistance per silicon area. Additional features of  
thisdesign area175°Cjunctionoperatingtempera-  
ture, fast switching speed and improved repetitive  
avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledevice  
foruseinAutomotiveapplicationsandawidevariety  
of other applications.  
D
D
D
S
S
S
D
D
D
G
G
G
D2Pak  
TO-262  
TO-220AB  
IRF2903Z  
IRF2903ZS  
IRF2903ZL  
G
Gate  
D
S
Drain  
Source  
Absolute Maximum Ratings  
Parameter  
Max.  
260  
180  
75  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
C
D
D
D
@ T = 100°C  
C
A
@ T = 25°C  
C
1020  
290  
2.0  
DM  
P
@T = 25°C Power Dissipation  
C
W
W/°C  
V
D
Linear Derating Factor  
± 20  
290  
820  
V
Gate-to-Source Voltage  
GS  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
-55 to + 175  
T
T
J
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
STG  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.51  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
Junction-to-Ambient (PCB Mount, steady state)  
–––  
40  
www.irf.com  
1
8/26/05  
IRF2903Z/S/L  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, ID = 1mA  
VGS = 10V, ID = 75A  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
V
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C  
mΩ  
V
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
1.9  
–––  
–––  
–––  
–––  
–––  
2.4  
4.0  
–––  
20  
VDS = VGS, ID = 150µA  
VDS = 10V, ID = 75A  
gfs  
IDSS  
Forward Transconductance  
120  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
V
DS = 30V, VGS = 0V  
VDS = 30V, VGS = 0V, TJ = 125°C  
GS = 20V  
Drain-to-Source Leakage Current  
µA  
250  
200  
V
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
nC  
VGS = -20V  
ID = 75A  
––– -200  
Qg  
Qgs  
Qgd  
td(on)  
tr  
160  
51  
240  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 24V  
VGS = 10V  
VDD = 15V  
ID = 75A  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
58  
24  
Rise Time  
100  
48  
RG = 3.2 Ω  
VGS = 10V  
Between lead,  
td(off)  
tf  
Turn-Off Delay Time  
ns  
Fall Time  
37  
LD  
Internal Drain Inductance  
4.5  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
Ciss  
Input Capacitance  
––– 6320 –––  
––– 1980 –––  
––– 1100 –––  
––– 5930 –––  
––– 2010 –––  
––– 3050 –––  
VDS = 25V  
Coss  
Output Capacitance  
Crss  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 24V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 24V  
Coss  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
I
Continuous Source Current  
–––  
–––  
75  
S
showing the  
(Body Diode)  
A
integral reverse  
I
Pulsed Source Current  
(Body Diode)  
–––  
––– 1020  
SM  
p-n junction diode.  
T = 25°C, I = 75A, V = 0V  
V
t
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
34  
1.3  
51  
44  
V
J
S
GS  
SD  
T = 25°C, I = 75A, VDD = 15V  
ns  
nC  
J
F
rr  
di/dt = 100A/µs  
Q
29  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
t
on  
2
www.irf.com  
IRF2903Z/S/L  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
240  
T
= 25°C  
J
200  
160  
120  
80  
100.0  
10.0  
1.0  
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
40  
V
= 10V  
DS  
380µs PULSE WIDTH  
60µs PULSE WIDTH  
0.1  
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0 10.0  
0
20 40 60 80 100 120 140 160 180  
Drain-to-Source Current (A)  
V
, Gate-to-Source Voltage (V)  
GS  
I
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF2903Z/S/L  
12000  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
V
= 24V  
= C + C , C SHORTED  
DS  
VDS= 15V  
iss  
gs  
gd ds  
C
= C  
10000  
8000  
6000  
4000  
2000  
0
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
40  
80  
120  
160  
200  
240  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
1msec  
100µsec  
10msec  
DC  
LIMITED BY PACKAGE  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
0.1  
1.0  
10.0  
100.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2903Z/S/L  
2.0  
1.5  
1.0  
0.5  
300  
250  
200  
150  
100  
50  
I
= 75A  
LIMITED BY PACKAGE  
D
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.01  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.08133 0.000044  
R1  
τ
JτJ  
τ
τ
Cτ  
τ
1τ1  
τ
0.02  
0.01  
2 τ2  
3τ3  
0.2408 0.000971  
0.18658 0.008723  
Ci= τi/Ri  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2903Z/S/L  
1200  
1000  
800  
600  
400  
200  
0
15V  
I
D
TOP  
26A  
42A  
75A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
GS  
GD  
I
I
= 1.0A  
D
D
= 1.0mA  
V
G
ID = 250µA  
= 150µA  
I
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
V
GS  
3mA  
T
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2903Z/S/L  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2903Z/S/L  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2903Z/S/L  
TO-220ABPackageOutline  
TO-220ABPartMarkingInformation  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
LOT CODE 1789  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly lineposition  
indicates "L ead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB package is not recommended for Surface Mount Application.  
www.irf.com  
9
IRF2903Z/S/L  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2PakPartMarkingInformation  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
Note: "P" in assembly line  
position indicates "Lead-Free"  
ASSEMBLY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
P = DE S I GNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
ASSEMBLY  
LOT CODE  
WEEK 02  
A= ASSEMBLY SITE CODE  
10  
www.irf.com  
IRF2903Z/S/L  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
IGBT  
1-GATE  
2-COLLECTOR  
3-EMITTER  
4-COLLECTOR  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WE EK 19  
Note: "P" in assembly line  
pos ition indicates "L ead-F ree"  
AS S E MB LY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MBL Y  
LOT CODE  
WEEK 19  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
11  
IRF2903Z/S/L  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.10mH  
This value determined from sample failure population. 100%  
tested to this value in production.  
RG = 25, IAS = 75A, VGS =10V. Part not  
recommended for use above this value.  
‡ This is only applied to TO-220AB pakcage.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
from 0 to 80% VDSS  
.
‰ Rθ is measured at TJ approximately 90°C  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101]market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/05  
12  
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF2903ZSTRR

暂无描述
INFINEON

IRF2903ZSTRRPBF

Power Field-Effect Transistor, 75A I(D), 30V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2907S

AUTOMOTIVE MOSFET
INFINEON

IRF2907Z

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZL

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZLPBF

HEXFET Power MOSFET
INFINEON

IRF2907ZPBF

HEXFET Power MOSFET
INFINEON

IRF2907ZS

AUTOMOTIVE MOSFET
INFINEON

IRF2907ZS-7PPBF

IRF2907ZS-7PPBF
INFINEON

IRF2907ZS-7PPBF_06

HEXFET㈢ Power MOSFET
INFINEON

IRF2907ZS-7PPBF_15

Advanced Process Technology
INFINEON

IRF2907ZSPBF

HEXFET Power MOSFET
INFINEON