IRF3710ZGPBF [INFINEON]

Power Field-Effect Transistor, 59A I(D), 100V, 0.018ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3;
IRF3710ZGPBF
型号: IRF3710ZGPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 59A I(D), 100V, 0.018ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3

局域网 开关 脉冲 晶体管
文件: 总9页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96349  
IRF3710ZGPbF  
Features  
Advanced Process Technology  
HEXFET® Power MOSFET  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
D
VDSS = 100V  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
Halogen-Free  
RDS(on) = 18mΩ  
G
ID = 59A  
S
Description  
ThisHEXFET® PowerMOSFETutilizesthelatest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitive avalanche rating . These features  
combinetomakethisdesignanextremelyefficient  
and reliable device for use in a wide variety of  
applications.  
TO-220AB  
IRF3710ZGPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
59  
Units  
A
I
I
I
@ TC = 25°C  
@ TC = 100°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (See Fig. 9)  
Pulsed Drain Current  
D
D
42  
240  
160  
DM  
P
@TC = 25°C  
Maximum Power Dissipation  
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
1.1  
± 20  
W/°C  
V
V
GS  
EAS  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
170  
200  
mJ  
EAS (tested)  
Avalanche Current  
IAR  
See Fig.12a,12b,15,16  
A
Repetitive Avalanche Energy  
EAR  
mJ  
T
J
Operating Junction and  
-55 to + 175  
T
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.92  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat, Greased Surface  
0.50  
–––  
°C/W  
Junction-to-Ambient  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
01/18/11  
IRF3710ZGPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
∆ΒVDSS/TJ  
RDS(on)  
100  
–––  
0.10  
14  
–––  
V
Breakdown Voltage Temp. Coefficient –––  
––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
18  
4.0  
V
GS = 10V, ID = 35A  
VDS = VGS, ID = 250µA  
m
VGS(th)  
–––  
–––  
–––  
–––  
–––  
–––  
82  
V
gfs  
IDSS  
Forward Transconductance  
35  
–––  
20  
S
V
V
V
V
V
DS = 50V, ID = 35A  
DS = 100V, VGS = 0V  
DS = 100V, VGS = 0V, TJ = 125°C  
GS = 20V  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
250  
200  
-200  
120  
28  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
GS = -20V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
nC ID = 35A  
VDS = 80V  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
19  
27  
40  
V
GS = 10V  
DD = 50V  
17  
–––  
–––  
–––  
–––  
–––  
ns  
V
Rise Time  
77  
ID = 35A  
G = 6.8Ω  
VGS = 10V  
td(off)  
tf  
Turn-Off Delay Time  
41  
R
Fall Time  
56  
LD  
Internal Drain Inductance  
4.5  
nH Between lead,  
D
S
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
pF VGS = 0V  
DS = 25V  
ƒ = 1.0MHz, See Fig. 5  
Ciss  
Input Capacitance  
––– 2900 –––  
Coss  
Output Capacitance  
–––  
–––  
290  
150  
–––  
–––  
V
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
Coss  
––– 1130 –––  
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
GS = 0V, VDS = 80V, ƒ = 1.0MHz  
Coss  
Output Capacitance  
–––  
–––  
170  
280  
–––  
–––  
V
Coss eff.  
Effective Output Capacitance  
VGS = 0V, VDS = 0V to 80V  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
Continuous Source Current  
–––  
–––  
59  
(Body Diode)  
Pulsed Source Current  
A
V
showing the  
integral reverse  
G
ISM  
–––  
–––  
240  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
VSD  
T = 25°C, I = 35A, V = 0V  
–––  
–––  
1.3  
J
S
GS  
trr  
Qrr  
T = 25°C, I = 35A, VDD = 25V  
J F  
di/dt = 100A/µs  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
50  
100  
75  
160  
ns  
nC  
ton  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.27mH,  
RG = 25, IAS = 35A, VGS =10V. Part not  
recommended for use above this value.  
.
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
‡ This value determined from sample failure population. 100%  
tested to this value in production.  
ƒ ISD 35A, di/dt 380A/µs, VDD V(BR)DSS  
TJ 175°C.  
,
„ Pulse width 1.0ms; duty cycle 2%.  
2
www.irf.com  
IRF3710ZGPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
4.5V  
BOTTOM  
1
4.5V  
4.5V  
0.1  
0.01  
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
120  
100  
T = 25°C  
J
T
= 175°C  
100  
10  
1
J
80  
T
= 175°C  
J
60  
40  
20  
0
T
= 25°C  
V
J
= 25V  
VDS = 15V  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
0
2
4
6
8 10  
0
10  
20  
30  
40  
50  
60  
70  
V
, Gate-to-Source Voltage (V)  
GS  
I , Drain-to-Source Current (A)  
D
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF3710ZGPbF  
100000  
12.0  
10.0  
8.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
iss  
I = 35A  
D
= C + C  
,
C
SHORTED  
gs  
gd  
ds  
V
V
V
= 80V  
= 50V  
= 20V  
DS  
DS  
DS  
C
C
= C  
gd  
rss  
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
Ciss  
6.0  
Coss  
4.0  
Crss  
2.0  
10  
0.0  
1
10  
100  
0
20  
40  
60  
80  
100  
V
, Drain-to-Source Voltage (V)  
DS  
Q
Total Gate Charge (nC)  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
1.00  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T = 175°C  
J
100µsec  
T = 25°C  
J
1msec  
1
Tc = 25°C  
10msec  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.10  
1
10  
100  
1000  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3710ZGPbF  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 59A  
D
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
T , Junction Temperature (°C)  
C
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs. Temperature  
Case Temperature  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3710ZGPbF  
15V  
300  
250  
200  
150  
100  
50  
I
D
TOP  
15A  
25A  
DRIVER  
+
L
V
DS  
BOTTOM 35A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
5.0  
V
G
4.0  
3.0  
2.0  
1.0  
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
= 250µA  
D
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
V
GS  
T , Temperature ( °C )  
J
3mA  
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF3710ZGPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
0.01  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
0.1  
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
tav (sec)  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 35A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs. Temperature  
www.irf.com  
7
IRF3710ZGPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF3710ZGPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRFB4310GPBF  
PART NUMBER  
DAT E CODE:  
INTERNATIONAL  
RECTIFIER  
LOGO  
Note: "G" suffix in part number  
indicates "Halogen - F ree"  
Y= LAST DIGIT OF  
CAL E NDAR YE AR  
Note: "P" in assembly lineposition  
indicates "Lead - F ree"  
ASSEMBLY  
LOT CODE  
WW= WORK WE E K  
X= FACTORY CODE  
TO-220AB package is not recommended for Surface Mount Application  
Notes:  
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf3710z.pdf  
2. For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.01/2011  
www.irf.com  
9

相关型号:

IRF3710ZL

AUTOMOTIVE MOSFET
INFINEON

IRF3710ZL

Advanced Process Technology Ultra Low On-Resistance
KERSEMI

IRF3710ZLPBF

AUTOMOTIVE MOSFET
INFINEON

IRF3710ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRF3710ZS

AUTOMOTIVE MOSFET
INFINEON

IRF3710ZSPBF

AUTOMOTIVE MOSFET
INFINEON

IRF3710ZSTRL

暂无描述
INFINEON

IRF3710ZSTRLPBF

Power Field-Effect Transistor, 59A I(D), 100V, 0.018ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3710ZSTRR

暂无描述
INFINEON

IRF3710ZSTRRPBF

Power Field-Effect Transistor, 59A I(D), 100V, 0.018ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3711

Power MOSFET(Vdss=20V, Rds(on)max=6.0mohm, Id=110A)
INFINEON

IRF3711L

Power MOSFET(Vdss=20V, Rds(on)max=6.0mohm, Id=110A)
INFINEON