IRF6604TR1 [INFINEON]

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET;
IRF6604TR1
型号: IRF6604TR1
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET

文件: 总13页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFP6D6- 9403645E  
HEXFET® Power MOSFET  
VDSS  
30V  
RDS(on) max  
11.5m@VGS = 7.0V  
13m@VGS = 4.5V  
Qg  
17nC  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
l Low Switching Losses  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with existing Surface Mount  
Techniques  
DirectFET™ISOMETRIC  
MQ  
Applicable DirectFET Outline and Substrate Outline (see p.9,10 for details)  
SQ SX ST MQ MX MT  
Description  
The IRF6604 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging  
to achieve the lowest on-state resistance charge product in a package that has the footprint of an SO-8 and only 0.7 mm  
profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly  
equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed  
regarding the manufacturing methods and process. The DirectFET package allows dual sided cooling to maximize  
thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6604 balances both low resistance and low charge along with ultra low package inductance to reduce both conduc-  
tion and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power  
the latest generation of processors operating at higher frequencies. The IRF6604 has been optimized for parameters that  
are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
30  
Drain-to-Source Voltage  
V
±12  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 7.0V  
Continuous Drain Current, VGS @ 7.0V  
Continuous Drain Current, VGS @ 7.0V  
Pulsed Drain Current  
49  
I
I
I
I
@ TC = 25°C  
D
D
D
12  
@ TA = 25°C  
@ TA = 70°C  
A
9.2  
92  
2.3  
DM  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
D
D
D
1.5  
Power Dissipation  
W
42  
Power Dissipation  
0.018  
-40 to + 150  
Linear Derating Factor  
W/°C  
°C  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Junction-to-Ambient  
Typ.  
–––  
12.5  
20  
Max.  
55  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
JA  
–––  
–––  
3.0  
JA  
Junction-to-Ambient  
Junction-to-Case  
°C/W  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
Notes  through ˆare on page 11  
www.irf.com  
1
11/16/05  
IRF6604  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
30  
–––  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient –––  
Static Drain-to-Source On-Resistance –––  
–––  
27  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
9.0  
11.5  
13  
VGS = 7.0V, ID = 12A  
VGS = 4.5V, ID = 9.6A  
VDS = VGS, ID = 250µA  
10  
VGS(th)  
Gate Threshold Voltage  
1.3  
–––  
–––  
–––  
–––  
–––  
–––  
38  
–––  
-4.5  
–––  
–––  
–––  
–––  
2.1  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
30  
50  
µA VDS = 24V, VGS = 0V  
µA VDS = 30V, VGS = 0V  
100  
100  
V
DS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 12V  
VGS = -12V  
––– -100  
gfs  
Qg  
–––  
17  
–––  
26  
S
V
DS = 15V, ID = 9.6A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
4.1  
1.0  
6.3  
5.6  
7.3  
9.5  
1.1  
11  
–––  
–––  
–––  
–––  
–––  
–––  
2.0  
VDS = 15V  
nC VGS = 4.5V  
ID = 9.6A  
Gate Charge Overdrive  
See Fig. 16  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC  
VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
ID = 9.6A  
4.3  
18  
Turn-Off Delay Time  
Fall Time  
ns Clamped Inductive Load  
25  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 2270 –––  
VGS = 0V  
pF VDS = 15V  
ƒ = 1.0MHz  
–––  
–––  
420  
190  
–––  
–––  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
32  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
9.6  
Repetitive Avalanche Energy  
EAR  
0.23  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
Continuous Source Current  
–––  
–––  
42  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
92  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
0.94  
31  
1.2  
47  
39  
V
T = 25°C, I = 9.6A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 9.6A  
J F  
Qrr  
di/dt = 100A/µs  
26  
nC  
2
www.irf.com  
IRF6604  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
7.0V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
BOTTOM 2.7V  
BOTTOM 2.7V  
2.7V  
2.7V  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
100.00  
12A  
=
I
D
T
= 150°C  
J
1.5  
1.0  
0.5  
0.0  
T
= 25°C  
J
10.00  
V
= 15V  
DS  
20µs PULSE WIDTH  
V
= 7.0V  
1.00  
GS  
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
°
T , Junction Temperature  
(
C)  
V
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF6604  
10000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 9.6A  
D
= C + C  
,
C
SHORTED  
iss  
gs  
gd  
ds  
C
= C  
V
V
= 24V  
= 15V  
rss  
gd  
DS  
DS  
C
= C + C  
oss  
ds  
gd  
Ciss  
1000  
Coss  
Crss  
100  
1
10  
100  
0
5
10  
15  
20  
25  
V
, Drain-to-Source Voltage (V)  
DS  
Q
Total Gate Charge (nC)  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
100  
10  
1
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
°
T = 150  
C
J
°
T = 25  
C
J
100µsec  
1msec  
1
10msec  
Tc = 25°C  
Tj = 150°C  
V
= 0 V  
Single Pulse  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
0
1
10  
100  
1000  
V
,Source-to-Drain Voltage (V)  
SD  
V
, Drain-toSource Voltage (V)  
DS  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
4
www.irf.com  
IRF6604  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
12  
9
I
= 250µA  
D
6
3
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
TA, Ambient Temperature (°C)  
T
, Temperature ( °C )  
J
Fig 9. Maximum Drain Current Vs.  
Fig 10. Threshold Voltage Vs. Temperature  
Ambient Temperature  
100  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
P
DM  
0.02  
0.01  
t
1
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJA  
A
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF6604  
80  
60  
40  
20  
0
I
15V  
D
TOP  
4.3A  
7.7A  
9.6A  
BOTTOM  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
°
( C)  
Starting Tj, Junction Temperature  
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
LD  
I
AS  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
VGS  
Same Type as D.U.T.  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
Fig 14a. Switching Time Test Circuit  
VDS  
.3µF  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRF6604  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF6604  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF6604  
DirectFET™ Outline Dimension, MQ Outline  
(Medium Size Can, Q-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
METRIC  
MAX  
CODE  
MIN  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
0.69  
0.57  
0.23  
1.57  
2.95  
0.59  
0.03  
0.08  
MAX  
0.250  
0.199  
0.156  
0.018  
0.028  
0.028  
0.029  
0.024  
0.011  
0.067  
0.123  
0.028  
0.003  
0.007  
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
0.73  
0.61  
0.27  
1.70  
3.12  
0.70  
0.08  
0.17  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.027  
0.022  
0.009  
0.062  
0.116  
0.023  
0.001  
0.003  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
www.irf.com  
9
IRF6604  
DirectFET™ Substrate and PCB Layout, MQ Outline  
(MediumSize Can, Q-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
10  
www.irf.com  
IRF6604  
DirectFET™ Tape & Reel Dimension  
(Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6604). For 1000 parts on 7" reel,  
order IRF6604TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000)  
METRIC  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
330.0  
20.2  
12.8  
1.5  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
6.9  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
G
H
1.60  
0.063  
www.irf.com  
11  
IRF6604  
DirectFET™ Part Marking  
Notes:  
„ Surface mounted on 1 in. square Cu board.  
Used double sided cooling , mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.70mH  
RG = 25, IAS = 9.6A.  
ƒ Pulse width 400µs; duty cycle 2%.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
ˆ R is measured at TJ of approximately 90°C.  
θ
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 11/05  
12  
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6607

Power MOSFET
INFINEON

IRF6607TR1

Power MOSFET
INFINEON

IRF6608

lHEXFET Power MOSFET
INFINEON

IRF6609

Power MOSFET
INFINEON

IRF6609PBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6609TR1

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6609TR1PBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6609TRPBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6610

HEXFET Power MOSFET Silicon Technology with the advanced DirectFETTM
INFINEON

IRF6610TR1PBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3
INFINEON

IRF6610TRPBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6611

DirectFET Power MOSFET
INFINEON