IRF6618 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF6618
型号: IRF6618
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总9页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94726D  
IRF6618/IRF6618TR1  
HEXFET® Power MOSFET  
VDSS  
30V  
RDS(on) max  
Qg  
43 nC  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
2.2m @VGS = 10V  
3.4m@VGS = 4.5V  
l Low Switching Losses  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with existing Surface Mount  
Techniques  
DirectFET™ISOMETRIC  
MT  
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6618 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package  
allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6618 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation  
of processors operating at higher frequencies. The IRF6618 has been optimized for parameters that are critical in synchronous buck  
converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6618 offers particularly low Rds(on) and high Cdv/  
dt immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
±20  
170  
30  
GS  
I @ TC = 25°C  
D
I @ TA = 25°C  
A
D
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I @ TA = 70°C  
24  
D
I
240  
2.8  
1.8  
89  
DM  
Power Dissipation  
Power Dissipation  
P @TA = 25°C  
D
P @TA = 70°C  
D
W
P @TC = 25°C  
Power Dissipation  
D
Linear Derating Factor  
Operating Junction and  
0.022  
-40 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
210  
24  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
A
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
Junction-to-Ambient  
Junction-to-Ambient  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
JA  
–––  
–––  
1.4  
JA  
Junction-to-Ambient  
Junction-to-Case  
°C/W  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
Notes  through ˆ are on page 9  
www.irf.com  
1
11/3/04  
IRF6618/IRF6618TR1  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
30  
–––  
–––  
V
V
/ T  
J
∆Β  
Breakdown Voltage Temp. Coefficient –––  
Static Drain-to-Source On-Resistance –––  
–––  
23  
––– mV/°C Reference to 25°C, ID = 1mA  
DSS  
mΩ  
RDS(on)  
1.7  
–––  
2.2  
3.4  
VGS = 10V, ID = 30A  
GS = 4.5V, ID = 24A  
VDS = VGS, ID = 250µA  
V
VGS(th)  
VGS(th)/TJ  
Gate Threshold Voltage  
1.35 1.64 2.35  
V
Gate Threshold Voltage Coefficient  
–––  
–––  
–––  
–––  
–––  
–––  
100  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
-5.7  
–––  
–––  
–––  
–––  
–––  
–––  
43  
––– mV/°C  
5.0  
V
V
DS = 30V, VGS = 0V  
DS = 24V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
1.0  
150  
100  
-100  
–––  
65  
µA  
VDS = 24V, VGS = 0V, TJ = 150°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
gfs  
S
V
DS = 15V, ID = 24A  
Qg  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
12  
–––  
–––  
23  
VDS = 15V  
4.0  
15  
nC VGS = 4.5V  
ID = 24A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
12  
–––  
–––  
–––  
2.2  
See Fig. 16  
19  
Qoss  
RG  
Output Charge  
28  
nC  
V
V
DS = 15V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
1.0  
21  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
DD = 15V, VGS = 4.5V  
71  
ID = 24A  
Turn-Off Delay Time  
Fall Time  
27  
ns Clamped Inductive Load  
8.1  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 5640 –––  
––– 1260 –––  
VGS = 0V  
pF VDS = 15V  
ƒ = 1.0MHz  
–––  
570  
–––  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
30  
MOSFET symbol  
D
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
240  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
VSD  
trr  
–––  
–––  
–––  
0.78  
43  
1.2  
65  
69  
V
T = 25°C, I = 24A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 24A  
J F  
Qrr  
di/dt = 100A/µs  
46  
nC  
2
www.irf.com  
IRF6618/IRF6618TR1  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
2.7V  
2.7V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
100  
10  
1.5  
1.0  
0.5  
I
= 30A  
D
V
= 10V  
GS  
T
= 150°C  
J
T
= 25°C  
J
1
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
6.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 24A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
V
V
= 24V  
= 15V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
rss  
oss  
gd  
= C + C  
DS  
DS  
ds  
gd  
C
iss  
C
C
oss  
rss  
100  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs.  
Fig 6. Typical Gate Charge vs.  
Drain-to-SourceVoltage  
Gate-to-SourceVoltage  
www.irf.com  
3
IRF6618/IRF6618TR1  
1000  
100  
10  
1000.00  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 150°C  
J
100.00  
10.00  
1.00  
100µsec  
1msec  
T
= 25°C  
J
T
= 25°C  
C
Tj = 150°C  
Single Pulse  
V
= 0V  
10msec  
100  
GS  
1
0.10  
0
1
10  
1000  
0.2  
0.4  
SD  
0.6  
0.8  
1.0  
1.2  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
180  
160  
140  
120  
100  
80  
I
= 250µA  
D
60  
40  
20  
0
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
J
, Case Temperature (°C)  
C
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs.  
CaseTemperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.6784  
17.299  
17.566  
9.4701  
0.00086  
0.57756  
8.94  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
106  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6618/IRF6618TR1  
6
5
4
3
2
1
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 30A  
I
D
D
TOP  
9.3A  
11A  
BOTTOM 24A  
T
= 125°C  
J
T
= 25°C  
J
2
3
4
5
6
7
8
9
10  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
V
Gate -to -Source Voltage (V)  
J
GS,  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
Current Regulator  
Same Type as D.U.T.  
V
(BR)DSS  
50KΩ  
15V  
t
p
.2µF  
12V  
.3µF  
DRIVER  
+
L
V
DS  
+
V
DS  
D.U.T.  
-
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
2
VGS  
0.01  
t
p
I
3mA  
AS  
I
I
D
G
Current Sampling Resistors  
Fig 15. Gate Charge Test Circuit  
Fig 14. Unclamped Inductive Test Circuit  
andWaveform  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 17. Switching Time Waveforms  
Fig 16. Switching Time Test Circuit  
www.irf.com  
5
IRF6618/IRF6618TR1  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
6
www.irf.com  
IRF6618/IRF6618TR1  
DirectFET™ Outline Dimension, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all  
recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX  
MIN  
CODE  
MIN  
6.25  
4.80  
3.85  
0.35  
0.78  
0.88  
1.78  
0.98  
0.63  
O.88  
2.46  
0.59  
0.03  
0.08  
MAX  
0.250  
0.199  
0.156  
0.018  
0.032  
0.036  
0.072  
0.040  
0.026  
0.039  
0.104  
0.028  
0.003  
0.007  
6.35  
5.05  
3.95  
0.45  
0.82  
0.92  
1.82  
0.246  
0.189  
0.152  
0.014  
0.031  
0.035  
0.070  
A
B
C
D
E
F
NOTE: CONTROLLING  
DIMENSIONS ARE IN MM  
G
H
J
1.02 0.039  
0.67  
1.01  
2.63  
0.70  
0.08  
0.17  
0.025  
0.035  
0.097  
0.023  
0.001  
0.003  
K
L
M
N
P
www.irf.com  
7
IRF6618/IRF6618TR1  
DirectFET™ Board Footprint, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Source  
4- Source  
5- Gate  
6- Drain  
7- Drain  
1
2
6
7
3
4
5
DirectFET™ Tape & Reel Dimension  
(Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,  
order IRF6618TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
8
www.irf.com  
IRF6618/IRF6618TR1  
DirectFET™ Part Marking  
Notes:  
Used double sided cooling , mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Starting TJ = 25°C, L = 0.75mH, RG = 25, IAS = 24A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/04  
www.irf.com  
9

相关型号:

IRF6618PBF

DirectFET?Power MOSFET ?
INFINEON

IRF6618TR1

Power MOSFET
INFINEON

IRF6618TR1PBF

Lead-Free (Qualified up to 260°C Reflow)
INFINEON

IRF6618TRPBF

DirectFET?Power MOSFET ?
INFINEON

IRF6619

DirectFET Power MOSFET
INFINEON

IRF6619PBF

DirectFET Power MOSFET
INFINEON

IRF6619TRPBF

DirectFET Power MOSFET
INFINEON

IRF661TRPBF

RoHs Compliant
INFINEON

IRF6620

HEXFETPower MOSFET
INFINEON

IRF6620PBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6620TR1

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6620TRPBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON