IRF7484PBF [INFINEON]

HEXFET㈢ Power MOSFET; HEXFET㈢功率MOSFET
IRF7484PBF
型号: IRF7484PBF
厂家: Infineon    Infineon
描述:

HEXFET㈢ Power MOSFET
HEXFET㈢功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 光电二极管 局域网
文件: 总10页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95281  
IRF7484PbF  
Typical Applications  
HEXFET® Power MOSFET  
l
l
l
l
Relayreplacement  
Anti-lock Braking System  
Air Bag  
VDSS RDS(on) max (mW) ID  
Lead-Free  
40V  
10@VGS = 7.0V  
14A  
Benefits  
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
Fast Switching  
A
A
1
8
S
S
S
G
D
Repetitive Avalanche Allowed up to Tjmax  
2
3
4
7
D
Description  
6
D
Specifically designed for Automotive applications, this  
Stripe Planar design of HEXFET® Power MOSFETs  
utilizes the latest processing techniques to achieve  
extremelylow on-resistanceper siliconarea. Additional  
features of this HEXFET power MOSFET are a 150°C  
junction operating temperature, fast switching speed  
andimprovedrepetitiveavalancherating. Thesebenefits  
combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a  
wide variety of other applications.  
5
D
SO-8  
Top View  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TA = 25°C  
ID @ TA = 70°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
14  
11  
A
110  
PD @TA = 25°C  
Power Dissipationƒ  
Linear Derating Factor  
2.5  
W
W/°C  
V
0.02  
VGS  
Gate-to-Source Voltage  
± 8.0  
230  
EAS  
Single Pulse Avalanche Energy„  
Avalanche Current  
mJ  
A
IAR  
See Fig.16c, 16d, 19, 20  
EAR  
Repetitive Avalanche Energy†  
Junction and Storage Temperature Range  
mJ  
°C  
TJ, TSTG  
-55 to + 150  
Thermal Resistance  
Symbol  
RθJL  
Parameter  
Junction-to-Drain Lead  
Typ.  
–––  
Max.  
20  
Units  
RθJA  
Junction-to-Ambient ƒ  
–––  
50  
°C/W  
www.irf.com  
1
09/21/04  
IRF7484PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
VGS = 0V, ID = 250µA  
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient  
––– 0.040 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– ––– 10 mVGS = 7.0V, ID = 14A ‚  
1.0 ––– 2.0  
40 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 69 100  
––– 9.0 –––  
––– 16 –––  
––– 9.3 –––  
––– 5.0 –––  
––– 180 –––  
––– 58 –––  
––– 3520 –––  
––– 660 –––  
––– 76 –––  
V
S
VDS = VGS, ID = 250µA  
VDS = 10V, ID = 14A  
Forward Transconductance  
VDS = 40V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
VDS = 32V, VGS = 0V, TJ = 125°C  
VGS = 8.0V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -8.0V  
Qg  
ID = 14A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
nC VDS = 32V  
VGS = 7.0V  
VDD = 20V ‚  
ID = 1.0A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 6.2Ω  
VGS = 7.0V  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
pF  
VDS = 25V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
showing the  
2.3  
–––  
–––  
–––  
–––  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
p-n junction diode.  
110  
S
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
––– ––– 1.3  
––– 59 89  
––– 110 170  
V
TJ = 25°C, IS = 2.3A, VGS = 0V ‚  
ns  
TJ = 25°C, IF = 2.3A  
Qrr  
nC di/dt = 100A/µs ‚  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
ISD 14A, di/dt 140A/µs, VDD V(BR)DSS  
TJ 150°C.  
,
‚ Pulse width 400µs; duty cycle 2%.  
ƒ Surface mounted on 1 in square Cu board.  
„ Starting TJ = 25°C, L = 2.3mH, RG = 25,  
IAS = 14A. (See Figure 12).  
† Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive  
avalanche performance.  
2
www.irf.com  
IRF7484PbF  
100000  
10000  
1000  
100  
10000  
1000  
100  
10  
VGS  
7.5V  
VGS  
7.5V  
TOP  
TOP  
7.0V  
4.5V  
3.0V  
2.5V  
2.3V  
2.0V  
7.0V  
4.5V  
3.0V  
2.5V  
2.3V  
2.0V  
BOTTOM 1.8V  
BOTTOM 1.8V  
10  
1.8V  
1
1
1.8V  
0.1  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 25°C  
0.01  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
2.0  
1000.00  
14A  
=
I
D
100.00  
10.00  
1.00  
1.5  
T
= 150°C  
J
1.0  
0.5  
0.0  
T
= 25°C  
V
J
= 15V  
DS  
20µs PULSE WIDTH  
V
= 10V  
0.10  
GS  
1.0  
2.0  
3.0 4.0  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
°
T , Junction Temperature  
( C)  
V
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7484PbF  
100000  
8
7
6
5
4
3
2
1
0
D
I
= 14A  
V
= 0V,  
f = 1 MHZ  
GS  
V
V
V
= 32V  
= 20V  
= 8V  
DS  
DS  
DS  
C
= C + C  
,
C
ds  
SHORTED  
iss  
gs  
gd  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
Ciss  
Coss  
Crss  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
1
10  
100  
Q
, Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
10  
T
= 150°C  
J
100µsec  
1msec  
T
= 25°C  
J
10msec  
1
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.10  
0
1
10  
100  
1000  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.4  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
4
www.irf.com  
IRF7484PbF  
15  
12  
9
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
6
Fig 10a. Switching Time Test Circuit  
3
V
DS  
90%  
0
25  
50  
T
75  
100  
125  
150  
°
( C)  
, Case Temperature  
C
10%  
Fig 9. Maximum Drain Current Vs.  
V
GS  
Case Temperature  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 10b. Switching Time Waveforms  
100  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
P
DM  
0.02  
0.01  
t
1
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJA  
A
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
100  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7484PbF  
16.0  
15.0  
14.0  
13.0  
12.0  
9.40  
9.30  
9.20  
9.10  
9.00  
8.90  
8.80  
8.70  
8.60  
I
= 14A  
V
= 7.0V  
D
GS  
11.0  
10.0  
9.0  
8.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
20  
40  
60  
80  
100  
120  
V
Gate -to -Source Voltage (V)  
GS,  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance Vs. Drain  
Fig 12. Typical On-Resistance Vs. Gate  
Current  
Voltage  
1.8  
1.7  
1.6  
1.5  
50  
40  
30  
20  
10  
0
I
= 250µA  
D
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
1.00  
10.00  
100.00  
Time (sec)  
1000.00  
T
J
Fig 15. Typical Power Vs. Time  
Fig 14. Typical Threshold Voltage Vs.  
Junction Temperature  
6
www.irf.com  
IRF7484PbF  
520  
416  
312  
208  
104  
0
I
D
TOP  
6.3A  
11A  
14A  
BOTTOM  
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
Fig 16c. Unclamped Inductive Test Circuit  
25  
50  
75  
100  
125  
150  
°
( C)  
Starting Tj, Junction Temperature  
V
(BR)DSS  
Fig 16a. Maximum Avalanche Energy  
t
p
Vs. Drain Current  
I
AS  
Fig 16d. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
Q
G
50KΩ  
.2µF  
12V  
VGS  
.3µF  
Q
Q
GD  
GS  
+
V
DS  
D.U.T.  
-
V
V
GS  
G
3mA  
I
I
D
G
Charge  
Current Sampling Resistors  
Fig 18. Basic Gate Charge Waveform  
Fig 17. Gate Charge Test Circuit  
www.irf.com  
7
IRF7484PbF  
100  
Duty Cycle = Single Pulse  
10  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
avalanche losses  
Tj = 25°C due to  
0.01  
1
0.05  
0.10  
0.1  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
1.0E+02  
1.0E+03  
tav (sec)  
Fig 19. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
250  
TOP  
BOTTOM 10% Duty Cycle  
= 14A  
Single Pulse  
225  
200  
175  
150  
125  
100  
75  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
50  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 20. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
8
www.irf.com  
IRF7484PbF  
SO-8 Package Details  
INCHES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A1 .0040  
b
c
.013  
8
1
7
2
6
3
5
4
.0075  
.189  
.0098  
.1968  
.1574  
6
H
D
E
e
E
0.25 [.010]  
A
.1497  
.050 BASIC  
1.27 BASIC  
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
e1  
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
A
F OOT PRINT  
8X 0.72 [.028]  
NOT ES :  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUT L INE CONF OR MS T O JE DE C OU T L INE MS -012AA.  
5
6
7
DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
ASUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DAT E CODE (YWW)  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
Y = LAST DIGIT OF T HE YEAR  
XXXX  
F7101  
WW = WE E K  
INTERNATIONAL  
RECTIFIER  
LOGO  
A = AS S E MB LY S IT E CODE  
LOT CODE  
PART NUMBER  
www.irf.com  
9
IRF7484PbF  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualifications Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/04  
10  
www.irf.com  

相关型号:

IRF7484Q

AUTOMOTIVE MOSFET
INFINEON

IRF7484QPBF

AUTOMOTIVE MOSFET
INFINEON

IRF7488

HEXFET Power MOSFET
INFINEON

IRF7488PBF

HEXFET Power MOSFET
INFINEON

IRF7488TRPBF

Transistor,
INFINEON

IRF7490

HEXFET Power MOSFET
INFINEON

IRF7490PBF

HEXFET Power MOSFET
INFINEON

IRF7490TR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF7490TRPBF

Power Field-Effect Transistor, 5.4A I(D), 100V, 0.039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SOP-8
INFINEON

IRF7491

HEXFET Power MOSFET
INFINEON

IRF7491PBF

HEXFET Power MOSFET
INFINEON

IRF7492

HEXFET Power MOSFET
INFINEON