IRF7749L1TRPBF [INFINEON]

DirectFETPower MOSFET;
IRF7749L1TRPBF
型号: IRF7749L1TRPBF
厂家: Infineon    Infineon
描述:

DirectFETPower MOSFET

文件: 总10页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF7749L1TRPbF  
Applications  
l RoHS Compliant, Halogen Free ‚  
l Lead-Free (Qualified up to 260°C Reflow)   
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
VDSS  
VGS  
RDS(on)  
1.1mΩ@ 10V  
Vgs(th)  
l Ideal for High Performance Isolated Converter  
Primary Switch Socket  
l Optimized for Synchronous Rectification  
60V min ±20V max  
Qg tot  
Qgd  
l Low Conduction Losses  
200nC  
71nC  
2.9V  
l High Cdv/dt Immunity  
l Low Profile (<0.7mm)  
S
S
S
S
S
S
S
S
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
l Industrial Qualified  
G
D
D
DirectFET™ ISOMETRIC  
L8  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The IRF7749L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,  
when application noteAN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling  
to maximize thermal transfer in power systems.  
The IRF7749L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device  
coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements,  
and makes this device ideal for high performance power converters.  
Ordering Information  
Standard Pack  
Base part number  
Package Type  
Orderable Part Number  
Form  
Tape and Reel  
Quantity  
4000  
IRF7749L1TRPbF  
DirectFET Large Can  
IRF7749L1TRPbF  
Absolute Maximum Ratings  
Max.  
60  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
±20  
200  
140  
33  
V
GS  
(Silicon Limited)  
(Silicon Limited)  
(Silicon Limited)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
I
@ TC = 25°C  
D
D
D
D
A
@ TC = 100°C  
@ TA = 25°C  
@ TC = 25°C  
375  
800  
260  
120  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
1.60  
1.40  
1.20  
1.00  
0.80  
12.0  
10.0  
8.0  
V
V
V
V
= 6.0V  
= 8.0V  
= 10V  
= 14V  
T
= 25°C  
I
= 120A  
GS  
GS  
GS  
GS  
C
D
6.0  
T
T
= 25°C  
J
4.0  
= 125°C  
J
2.0  
0.0  
40  
80  
120  
160  
200  
4.0  
6.0  
V
8.0  
10.0 12.0 14.0 16.0  
I
, Drain Current (A)  
, Gate-to-Source Voltage (V)  
D
GS  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical On-Resistance vs. Drain Current  
Notes:  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.035mH, RG = 25Ω, IAS = 120A.  
1
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
60  
–––  
0.03  
1.1  
2.9  
-10  
–––  
–––  
–––  
–––  
–––  
200  
36  
–––  
V
Reference to 25°C, ID = 2mA  
VGS = 10V, ID = 120A  
ΔΒVDSS/ΔTJ  
RDS(on)  
–––  
–––  
2.0  
––– V/°C  
1.50  
4.0  
m
Ω
VDS = VGS, ID = 250μA  
VGS(th)  
V
V
/ T  
GS(th) Δ  
Δ
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
280  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
––– mV/°C  
J
VDS = 60V, VGS = 0V  
IDSS  
20  
250  
100  
-100  
–––  
300  
–––  
–––  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
μA  
nA  
S
VDS = 48V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 120A  
gfs  
Qg  
VDS = 30V  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
VGS = 10V  
Qgs2  
Qgd  
12  
nC  
ID = 120A  
See Fig. 9  
71  
Qgodr  
100  
83  
Qsw  
VDS = 16V, VGS = 0V  
Qoss  
RG  
67  
nC  
Gate Resistance  
1.1  
17  
Ω
VDD = 30V, VGS = 10V  
ID = 120A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
43  
RG=1.8Ω  
Turn-Off Delay Time  
78  
ns  
Fall Time  
39  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 12320 –––  
––– 1810 –––  
VDS = 25V  
ƒ = 1.0MHz  
Output Capacitance  
pF  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
850  
–––  
V
GS = 0V, VDS = 1.0V, f=1.0MHz  
––– 8060 –––  
––– 1310 –––  
VGS = 0V, VDS = 120V, f=1.0MHz  
Output Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
IS  
–––  
–––  
200  
showing the  
(Body Diode)  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
800  
p-n junction diode.  
TJ = 25°C, IS = 120A, VGS = 0V  
TJ = 25°C, IF = 120A, VDD = 30V  
di/dt = 100A/μs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
45  
1.3  
68  
V
ns  
nC  
Qrr  
78  
120  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Power Dissipation  
Power Dissipation  
Power Dissipation  
125  
W
P
P
P
@TC = 25°C  
@TC = 100°C  
@TA = 25°C  
D
D
D
P
J
63  
3.3  
Peak Soldering Temperature  
Operating Junction and  
270  
°C  
T
T
T
-55 to + 175  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
–––  
–––  
1.2  
JA  
°C/W  
JA  
–––  
–––  
J-Can  
J-PCB  
Junction-to-PCB Mounted  
0.4  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.10804  
0.61403  
0.45202  
0.00001  
0.000171  
0.053914  
0.006099  
0.036168  
τ
τ
J τJ  
τ
Cτ  
0.01  
0.001  
0.0001  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case „  
Notes:  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple incontact with top (Drain) of part.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
Š R is measured at TJ of approximately 90°C.  
θ
ƒ Surface mounted on 1 in. square Cu  
board (still air).  
‰Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink. (still air)  
3
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
TOP  
TOP  
10V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
BOTTOM  
BOTTOM  
60μs PULSE WIDTH  
1
Tj = 25°C  
3.8V  
3.8V  
60μs PULSE WIDTH  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
2.0  
1.5  
1.0  
0.5  
1000  
I
= 120A  
= 10V  
D
V
GS  
100  
T
T
T
= 175°C  
J
J
J
= 25°C  
= -40°C  
10  
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
100000  
14  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 120A  
= C + C , C SHORTED  
D
iss  
gs  
gd ds  
12  
10  
8
V
V
V
= 48V  
= 30V  
= 12V  
C
= C  
DS  
DS  
DS  
rss  
gd  
C
= C + C  
ds  
oss  
gd  
Ciss  
10000  
1000  
100  
6
Coss  
Crss  
4
2
0
0
40  
Q
80  
120 160 200 240 280  
1
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 9. Typical Total Gate Charge vs  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
www.irf.com © 2012 International Rectifier  
Gate-to-Source Voltage  
4
February 18, 2013  
IRF7749L1TRPbF  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
1msec  
T
T
T
= 175°C  
= 25°C  
= -40°C  
J
J
J
DC  
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1
0
1
10  
100  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.4  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
200  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
160  
120  
80  
40  
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
T
, CaseTemperature (°C)  
T
C
Fig 13. Typical Threshold Voltage vs.  
Fig 12. Maximum Drain Current vs. Case Temperature  
Junction Temperature  
1200  
I
D
TOP  
20A  
31A  
1000  
800  
600  
400  
200  
0
BOTTOM 120A  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
© 2012 International Rectifier  
5
www.irf.com  
February 18, 2013  
IRF7749L1TRPbF  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming Tj = 150°C and  
Δ
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
1
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
ΔΤ  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 19a, 19b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
280  
240  
200  
160  
120  
80  
TOP  
BOTTOM 1% Duty Cycle  
= 120A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
40  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy Vs. Temperature  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·ta  
Driver Gate Drive  
P.W.  
D.U.T  
Period  
D =  
Period  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs  
www.irf.com © 2012 International Rectifier February 18, 2013  
6
IRF7749L1TRPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 18a. Gate Charge Test Circuit  
Fig 18b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
V
R
D.U.T  
AS  
GS  
G
V
DD  
-
I
A
20V  
t
0.01Ω  
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
7
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
DirectFET™ Board Footprint, L8 (Large Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
DirectFET™ Outline Dimension, L8 Outline (LargeSize Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN MAX  
9.05 9.15 0.356 0.360  
6.85 7.10 0.270 0.280  
5.90 6.00 0.232 0.236  
0.55 0.65 0.022 0.026  
0.58 0.62 0.023 0.024  
1.18 1.22 0.046 0.048  
0.98 1.02 0.039 0.040  
0.73 0.77 0.029 0.030  
0.38 0.42 0.015 0.017  
1.35 1.45 0.053 0.057  
2.55 2.65 0.100 0.104  
5.35 5.45 0.211 0.215  
0.68 0.74 0.027 0.029  
0.09 0.17 0.003 0.007  
0.02 0.08 0.001 0.003  
A
B
C
D
E
F
G
H
J
K
L
L1  
M
P
R
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
+
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
9
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  
IRF7749L1TRPbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
+
NOTE:  
Controlling dimensions in mm  
Std reel quantity is 4000 parts. (ordered as IRF7749L1TRPBF).  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
METRIC  
IMPERIAL  
CODE  
MIN  
MIN  
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
MAX  
12.10  
4.10  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
CODE  
MIN  
MIN  
MAX  
N.C  
MAX  
N.C  
4.69  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
A
B
C
D
E
F
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
330.00  
20.20  
12.80  
1.50  
N.C  
N.C  
16.30  
7.60  
7.40  
10.10  
N.C  
13.20  
N.C  
0.520  
N.C  
99.00  
N.C  
3.940  
0.880  
0.720  
0.760  
100.00  
22.40  
18.40  
19.40  
G
H
0.650  
0.630  
16.40  
15.90  
G
H
0.063  
1.60  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Qualification Information†  
Industrial †† *  
Qualification level  
MSL1  
Moisture Sensitivity Level  
RoHS Compliant  
DirectFET  
(per JEDEC J-STD-020D†††  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site  
http://www.irf.com/product-info/reliability  
†† Higher qualification ratings may be available should the user have such requirements.  
Please contact your International Rectifier sales representative for further information:  
http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
* Industrial qualification standards except autoclave test conditions.  
Revision History  
Date  
Comments  
2/13/2013  
TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document  
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
10  
www.irf.com  
© 2012 International Rectifier  
February 18, 2013  

相关型号:

IRF7749L2PBF

RoHS Compliant, Halogen Free
INFINEON

IRF7749L2TR1PBF

RoHS Compliant, Halogen Free
INFINEON

IRF7749L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7750

Power MOSFET(Vdss=-20V, Rds(on)=0.030ohm)
INFINEON

IRF7750GPBF

HEXFET® Power MOSFET Ultra Low On-Resistance Dual P-Channel MOSFET
INFINEON

IRF7750GTRPBF

Transistor
INFINEON

IRF7750PBF

Ultra Low On-Resistance
INFINEON

IRF7750TRPBF

Ultra Low On-Resistance
INFINEON

IRF7751

Power MOSFET(Vdss=-30V)
INFINEON

IRF7751GPBF

HEXFET® Power MOSFET Ultra Low On-Resistance
INFINEON

IRF7751GTRPBF

暂无描述
INFINEON

IRF7751PBF

Small Signal Field-Effect Transistor, 4.5A I(D), 30V, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, LEAD FREE, TSSOP-8
INFINEON