IRF7946TRPBF [INFINEON]

Brushed Motor drive applications;
IRF7946TRPBF
型号: IRF7946TRPBF
厂家: Infineon    Infineon
描述:

Brushed Motor drive applications

文件: 总12页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97780  
StrongIRFET™  
IRF7946PbF  
Applications  
DirectFET® Power MOSFET  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
VDSS  
40V  
RDS(on) typ.  
max.  
1.1m  
1.4m  
ID  
ID  
198A  
90A  
(Silicon Limited)  
(Package Limited)  
Benefits  
G
S
S
D
D
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
DirectFET™ ISOMETRIC  
MX  
l Enhanced body diode dV/dt and dI/dt Capability  
l RoHS Compliant Containing no Lead, no Bromide  
and no Halogen  
Ordering Information  
Standard Pack  
Form  
Tape and Reel  
Tape and Reel  
Complete Part  
Number  
IRF7946TRPbF  
IRF7946TR1PbF  
Base part number  
Package Type  
Quantity  
4800  
1000  
IRF7946TRPbF  
IRF7946TR1PbF  
DirectFET MX  
DirectFET MX  
6.0  
4.0  
2.0  
0.0  
200  
150  
100  
50  
I
= 90A  
D
Limited By Package  
T
= 125°C  
J
T
= 25°C  
J
0
4
6
8
10  
12 14 16  
18 20  
25  
50  
75  
, Case Temperature (°C)  
C
100  
125  
150  
T
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com  
1
04/23/12  
IRF7946PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
198  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
125  
A
90  
793  
96  
PD @TC = 25°C  
Maximum Power Dissipation  
W
0.77  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 150  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
85  
163  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
55  
Units  
R  
R  
R  
R  
R  
Junction-to-Ambient  
Junction-to-Ambient  
JA  
–––  
–––  
1.3  
JA  
Junction-to-Ambient  
Junction-to-Case  
°C/W  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
–––  
JA-PCB  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
0.03  
1.1  
–––  
–––  
1.4  
V
VGS = 0V, ID = 250μA  
V(BR)DSS/TJ  
RDS(on)  
–––  
–––  
V/°C Reference to 25°C, ID = 1.0mA  
mVGS = 10V, ID = 90A  
1.7  
–––  
3.9  
mVGS = 6.0V, ID = 72A  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.2  
–––  
–––  
–––  
–––  
–––  
3.0  
V
VDS = VGS, ID = 150μA  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
0.67  
1.0  
μA VDS = 40V, VGS = 0V  
150  
100  
-100  
–––  
V
V
DS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
Notes:  
 TC measured with thermocouple mounted to top (Drain) of part.  
 Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
Ž Used double sided cooling , mounting pad with large heatsink.  
 Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
 Mounted to a PCB with  
small clip heatsink (still air)  
Œ Surface mounted on 1 in. square Cu  
(still air).  
2
www.irf.com  
IRF7946PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Qg  
Forward Transconductance  
91  
–––  
141  
36  
–––  
212  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 90A  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC ID = 90A  
VDS =20V  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
44  
VGS = 10V  
Qsync  
td(on)  
tr  
97  
ID = 90A, VDS =0V, VGS = 10V  
20  
ns VDD = 20V  
ID = 30A  
Rise Time  
49  
td(off)  
tf  
Turn-Off Delay Time  
54  
RG = 2.7  
VGS = 10V  
Fall Time  
41  
Ciss  
Coss  
Crss  
Input Capacitance  
6852  
1046  
735  
1307  
1465  
pF VGS = 0V  
Output Capacitance  
V
DS = 25V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz  
C
oss eff. (ER)  
V
V
GS = 0V, VDS = 0V to 32V  
Coss eff. (TR)  
GS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
–––  
96  
A
A
V
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
–––  
–––  
793  
(Body Diode)  
p-n junction diode.  
TJ = 25°C, IS = 90A, VGS = 0V  
VSD  
Diode Forward Voltage  
Peak Diode Recovery  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.75  
1.6  
49  
1.2  
–––  
–––  
–––  
–––  
–––  
–––  
dv/dt  
trr  
V/ns TJ = 175°C, IS = 90A, VDS = 40V  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
50  
IF = 90A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
74  
nC TJ = 25°C  
TJ = 125°C  
73  
IRRM  
2.6  
A
TJ = 25°C  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 90A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH  
RG = 50, IAS = 90A, VGS =10V.  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
Š This value determined from sample failure population,  
starting TJ = 25°C, L= 0.021mH, RG = 50, IAS = 90A, VGS =10V.  
„ ISD 90A, di/dt 1135A/μs, VDD V(BR)DSS, TJ 150°C.  
www.irf.com  
3
IRF7946PbF  
1000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
100  
10  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 150°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 90A  
D
V
= 10V  
GS  
100  
10  
T = 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60μs PULSE WIDTH  
1.0  
2
3
4
5
6
7
8
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 90A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20 40 60 80 100 120 140 160 180  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
IRF7946PbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
T
= 150°C  
1msec  
J
Limited by  
Package  
10msec  
DC  
T
= 25°C  
J
1
Tc = 25°C  
0.1  
Tj = 150°C  
Single Pulse  
V
GS  
= 0V  
1.0  
0.01  
0.1  
1
10  
100  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
V
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
1.4  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Id = 1.0mA  
V
= 0V to 32V  
DS  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
-60 -40 -20  
0
20 40 60 80 100 120140 160  
, Temperature ( °C )  
T
J
V
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
10.0  
V
= 5.5V  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
GS  
V
V
V
V
8.0  
6.0  
4.0  
2.0  
0.0  
0
200  
400  
600  
800  
1000  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com  
5
IRF7946PbF  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming j = 25°C and  
Tstart = 125°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 90A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
IRF7946PbF  
16  
14  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I = 54A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 150μA  
= 1.0mA  
= 1.0A  
D
D
D
6
4
2
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150  
di /dt (A/μs)  
T , Temperature ( °C )  
F
J
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
16  
350  
I = 90A  
F
I = 54A  
F
14  
V
= 34V  
V
= 34V  
R
R
300  
250  
200  
150  
100  
50  
T = 25°C  
T = 25°C  
J
J
12  
10  
8
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
400  
I = 90A  
F
V
350  
300  
250  
200  
150  
100  
50  
= 34V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
IRF7946PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
IRF7946PbF  
DirectFET® Board Footprint, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G=GATE  
D=DRAIN  
S=SOURCE  
D
D
D
D
S
S
G
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com  
9
IRF7946PbF  
DirectFET® Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes  
all recommendations for stencil and substrate designs.  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN MAX  
A
B
C
D
E
F
6.25 6.35 0.246 0.250  
4.80 5.05 0.189 0.199  
3.85 3.95 0.152 0.156  
0.35 0.45 0.014 0.018  
0.68 0.72 0.027 0.028  
0.68 0.72 0.027 0.028  
1.38 1.42 0.054 0.056  
0.80 0.84 0.031 0.033  
0.38 0.42 0.015 0.017  
0.88 1.02 0.035 0.040  
2.28 2.42 0.090 0.095  
0.59 0.70 0.023 0.028  
0.03 0.08 0.001 0.003  
0.08 0.17 0.003 0.007  
G
H
J
K
L
M
R
P
Dimensions are shown in  
millimeters (inches)  
DirectFET® Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
IRF7946PbF  
DirectFET® Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF7946TRPBF). For 1000 parts on 7"  
reel, order IRF7946TR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
CODE  
MAX  
N.C  
MIN  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
MIN  
MAX  
N.C  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MAX  
8.10  
4.10  
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
A
B
C
D
E
F
7.90  
3.90  
11.90 12.30  
5.45  
5.10  
6.50  
1.50  
1.50  
5.55  
5.30  
6.70  
N.C  
1.60  
G
H
0.063  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com  
11  
IRF7946PbF  
Qualification information  
Consumer††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
MS L3  
(per JE DE C J-S TD-020D†††  
Moisture Sensitivity Level  
RoHS compliant  
DFET 1.5  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/2012  
12  
www.irf.com  

相关型号:

IRF7E3704

HEXFET POWER MOSFET SURFACE MOUNT (LCC-18)
INFINEON

IRF7F3704

HEXFET㈢ POWER MOSFET THRU-HOLE (TO-39) 20V, N-CHANNEL
INFINEON

IRF7MS2907

HEXFET POWER MOSFET THRU-HOLE (Low-ohmic TO-254AA)
INFINEON

IRF7MS2907PBF

Power Field-Effect Transistor, 45A I(D), 75V, 0.0055ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-254AA, HERMETIC SEALED PACKAGE-3
INFINEON

IRF7N1405

HEXFET-R POWER MOSFET SURFACE MOUNT (SMD-1)
INFINEON

IRF7N1405_07

HEXFET POWER MOSFET SURFACE MOUNT (SMD-1)
INFINEON

IRF7N60

POWER MOSFET
SUNTAC

IRF7N60FP

POWER MOSFET
SUNTAC

IRF7NA2907

HEXFET POWER MOSFET SURFACE MOUNT (SMD-2)
INFINEON

IRF7NA2907PBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HERMETIC SEALED, SMD-2, 3 PIN
INFINEON

IRF7NA2907SCS

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HERMETICALLY SEALED, SMD-2, 3 PIN
INFINEON

IRF7NA2907SCX

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HERMETICALLY SEALED, SMD-2, 3 PIN
INFINEON