IRF8302MPBF [INFINEON]

Dual Sided Cooling Compatible;
IRF8302MPBF
型号: IRF8302MPBF
厂家: Infineon    Infineon
描述:

Dual Sided Cooling Compatible

文件: 总9页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF8302MPbF  
l RoHs Compliant and Halogen-Free   
l Integrated Monolithic Schottky Diode  
l Low Profile (<0.7 mm)  
HEXFET® Power MOSFET plus Schottky Diode ‚  
Typical values (unless otherwise specified)  
VDSS  
VGS  
RDS(on)  
RDS(on)  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
30V max ±20V max  
1.4m@ 10V 2.2m@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Optimized for High Frequency Switching   
l Ideal for CPU Core DC-DC Converters  
35nC  
8.9nC 5.1nC  
40nC  
29nC  
1.8V  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction and Switching Losses  
l Compatible with existing Surface Mount Techniques   
l 100% Rg tested  
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MT  
MP  
MX  
Description  
The IRF8302MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET® package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual  
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF8302MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to  
reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further  
reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC  
converters that power high current loads such as the latest generation of microprocessors. The IRF8302MPbF has been optimized for  
parameters that are critical in synchronous buck converter’s Sync FET sockets.  
Base Part number  
Package Type  
Standard Pack  
Orderable Part Number  
Form  
Quantity  
IRF8302MPbF  
DirectFET MX  
Tape and Reel  
4800  
IRF8302MTRPbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
30  
±20  
31  
Drain-to-Source Voltage  
V
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
25  
@ TA = 70°C  
@ TC = 25°C  
A
190  
250  
260  
25  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
6
5
4
3
2
1
0
14.0  
12.0  
10.0  
8.0  
I
= 31A  
I = 25A  
D
D
V
V
V
= 24V  
= 15V  
= 6.0V  
DS  
DS  
DS  
T
= 125°C  
J
6.0  
4.0  
T
= 25°C  
2.0  
J
0.0  
0
2
4
6
8
10 12 14 16 18 20  
0
10 20 30 40 50 60 70 80 90 100  
Total Gate Charge (nC)  
Q
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.83mH, RG = 25, IAS = 25A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
February 17, 2014  
1
IRF8302MPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
Parameter  
Min. Typ. Max. Units  
VGS = 0V, ID = 1.0mA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
120  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
4.0  
1.4  
2.2  
1.8  
-4.2  
–––  
–––  
–––  
–––  
–––  
35  
–––  
V
Reference to 25°C, ID = 10mA  
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
V
GS = 10V, ID = 31A  
1.8  
2.7  
m
VGS = 4.5V, ID = 25A  
VDS = VGS, ID = 150µA  
VGS(th)  
Gate Threshold Voltage  
2.35  
V
V
DS = VGS, ID = 10mA  
VDS = 24V, VGS = 0V  
DS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
GS = -20V  
V
/ T  
J
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
GS(th)  
IDSS  
100  
5.0  
µA  
mA  
nA  
V
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
-100  
–––  
53  
V
VDS = 15V, ID = 25A  
gfs  
Qg  
S
VDS = 15V  
VGS = 4.5V  
ID = 25A  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
11  
–––  
–––  
–––  
–––  
–––  
–––  
2.2  
Qgs2  
Qgd  
5.1  
8.9  
10  
nC  
Qgodr  
See Fig. 15  
Qsw  
14  
V
DS = 16V, VGS = 0V  
Qoss  
RG  
29  
nC  
Gate Resistance  
1.3  
22  
VDD = 15V, VGS = 4.5V  
ID = 25A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
37  
ns  
RG = 1.8Ω  
See Fig. 17  
Turn-Off Delay Time  
20  
Fall Time  
15  
V
V
GS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6030 –––  
––– 1360 –––  
DS = 15V  
Output Capacitance  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
–––  
560  
–––  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
showing the  
Continuous Source Current  
(Body Diode)  
–––  
–––  
–––  
–––  
31  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
250  
p-n junction diode.  
TJ = 25°C, IS = 25A, VGS = 0V  
TJ = 25°C, IF = 25A  
di/dt = 300A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
30  
0.80  
45  
V
ns  
nC  
Qrr  
40  
60  
Notes:  
‡ Pulse width 400µs; duty cycle 2%.  
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
February 17, 2014  
2
IRF8302MPbF  
Absolute Maximum Ratings  
Max.  
2.8  
Parameter  
Units  
W
Power Dissipation  
Power Dissipation  
Power Dissipation  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
P
J
1.8  
104  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
1.2  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.022  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
1
0.02  
0.01  
τ
τ
J τJ  
τ
14.507  
12.335077  
0.1865935  
1.9583548  
0.0065404  
AτA  
τ
1 τ1  
τ
τ
8.742  
2 τ2  
3 τ3  
4 τ4  
18.806  
2.945  
Ci= τi/Ri  
Ci= τi/Ri  
0.1  
0.01  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ  
(At lower pulse widths ZthJA & ZTHJC are combined)  
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling , mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
3
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
February 17, 2014  
IRF8302MPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
1
2.5V  
1
0.1  
0.01  
2.5V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
V
= 15V  
I
= 31A  
DS  
D
60µs PULSE WIDTH  
V
V
= 10V  
GS  
GS  
= 4.5V  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
0.1  
1
2
3
4
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
10  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
T
= 25°C  
J
C
C
C
+ C , C  
SHORTED  
ds  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
iss  
gs  
gd  
= C  
rss  
oss  
gd  
= C + C  
8
6
4
2
0
ds  
gd  
C
C
iss  
oss  
C
rss  
100  
0
50  
100  
150  
200  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
I , Drain Current (A)  
D
Fig 9. Typical On-Resistance vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
February 17, 2014  
4
IRF8302MPbF  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA LIMITED  
BY R (on)  
DS  
100µsec  
1msec  
10msec  
DC  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
1
T
= 25°C  
A
T = 150°C  
J
V
= 0V  
GS  
Single Pulse  
0.1  
0
0.01 0.10  
1.00  
10.00  
100.00  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
V
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
200  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
150  
100  
50  
I
= 10mA  
D
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
, Case Temperature (°C)  
J
C
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
1200  
I
D
TOP  
1.3A  
2.2A  
1000  
800  
600  
400  
200  
0
BOTTOM 25A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
5
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
February 17, 2014  
IRF8302MPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
V
R
D.U.T  
AS  
GS  
G
V
DD  
-
I
A
20V  
t
0.01Ω  
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 17a. Switching Time Test Circuit  
www.irf.com © 2014 International Rectifier  
Fig 17b. Switching Time Waveforms  
Submit Datasheet Feedback February 17, 2014  
6
IRF8302MPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
V***  
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
DirectFET® Board Footprint, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G=GATE  
D=DRAIN  
S=SOURCE  
D
D
D
D
S
S
G
7
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
February 17, 2014  
IRF8302MPbF  
DirectFET® Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes  
all recommendations for stencil and substrate designs.  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN MAX  
A
B
C
D
E
F
6.25 6.35 0.246 0.250  
4.80 5.05 0.189 0.199  
3.85 3.95 0.152 0.156  
0.35 0.45 0.014 0.018  
0.68 0.72 0.027 0.028  
0.68 0.72 0.027 0.028  
1.38 1.42 0.054 0.056  
0.80 0.84 0.032 0.033  
0.38 0.42 0.015 0.017  
0.88 1.01 0.035 0.039  
2.28 2.41 0.090 0.095  
0.59 0.70 0.023 0.028  
0.020 0.080 0.0008 0.0031  
0.08 0.17 0.003 0.007  
G
H
J
K
L
M
R
P
DirectFET® Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
February 17, 2014  
8
IRF8302MPbF  
DirectFET® Tape & Reel Dimension (Showing component orientation).  
LO A DE D TA PE FE ED D IR EC TIO N  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF8302MTRPBF). For 1000 parts on 7"  
reel, order IRF8302MTR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY4800)  
DIM E NS IO NS  
M ETRIC  
IM PE RIAL  
NO TE : CO NTR O LLING  
DIM ENS ION S IN M M  
METRIC  
IMPERIAL  
CO DE  
M IN  
M IN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
M A X  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
M A X  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
CODE  
MIN  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
MIN  
MAX  
N.C  
N.C  
0.520  
N.C  
N.C  
0.724  
0.567  
0.606  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
A
B
C
D
E
F
330  
20.2  
12.8  
1.5  
100.0  
N.C  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
G
H
G
H
12.4  
11.9  
0.488  
0.469  
1.60  
0.063  
Revision History  
Date  
Comments  
Added the orgering information table, on page 1.  
Updated data sheet with new IR corporate template.  
2/17/2014  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
9
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
February 17, 2014  

相关型号:

IRF8302MPBF_15

Dual Sided Cooling Compatible
INFINEON

IRF8302MTRPBF

Power Field-Effect Transistor, 31A I(D), 30V, 0.0018ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF8304MPBF

Ultra Low Package Inductance
INFINEON

IRF8304MPBF_15

Ultra Low Package Inductance
INFINEON

IRF8304MTRPBF

Power Field-Effect Transistor, 28A I(D), 30V, 0.0022ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF8306MPBF

Integrated Monolithic Schottky Diode
INFINEON

IRF8306MPBF_15

Integrated Monolithic Schottky Diode
INFINEON

IRF8306MTRPBF

HEXFET Power MOSFET plus Schottky Diode
INFINEON

IRF8308MPBF

RoHs Compliant Containing No Lead and Bromide
INFINEON

IRF8308MPBF_15

Dual Sided Cooling Compatible
INFINEON

IRF8308MTR1PBF

RoHs Compliant Containing No Lead and Bromide
INFINEON

IRF8308MTRPBF

RoHs Compliant Containing No Lead and Bromide
INFINEON