IRF8707TRPBF [INFINEON]

HEXFET® Power MOSFET; HEXFET ? A®功率MOSFET
IRF8707TRPBF
型号: IRF8707TRPBF
厂家: Infineon    Infineon
描述:

HEXFET® Power MOSFET
HEXFET ? A®功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 光电二极管
文件: 总9页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96118A  
IRF8707PbF  
HEXFET® Power MOSFET  
Applications  
l
Control MOSFET of Sync-Buck  
Converters used for Notebook  
Processor Power  
Control MOSFET for Isolated  
DC-DC Converters in Networking  
Systems  
VDSS  
30V  
RDS(on) max  
11.9m @VGS = 10V  
Qg  
6.2nC  
l
A
A
D
1
2
3
4
8
7
Benefits  
S
S
S
G
l
l
l
l
Very Low Gate Charge  
D
Very Low RDS(on) at 4.5V VGS  
Ultra-Low Gate Impedance  
Fully Characterized Avalanche Voltage  
and Current  
6
5
D
D
SO-8  
Top View  
l
l
l
20V VGS Max. Gate Rating  
100% tested for Rg  
Lead-Free  
Description  
The IRF8707PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the  
industry standard SO-8 package. The IRF8707PbF has been optimized for parameters that are  
critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction  
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC  
converters that power the latest generation of processors for notebook and Netcom applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
30  
Units  
VDS  
V
V
Gate-to-Source Voltage  
± 20  
11  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
9.1  
88  
A
DM  
P
P
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
Power Dissipation  
2.5  
1.6  
D
D
W
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
RθJL  
RθJA  
°C/W  
–––  
50  
Notes through are on page 9  
www.irf.com  
1
10/24/07  
IRF8707PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
V
V
DSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.022 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
9.3  
11.9  
VGS = 10V, ID = 11A  
m
14.2 17.5  
VGS = 4.5V, ID = 8.8A  
VDS = VGS, ID = 25µA  
VGS(th)  
Gate Threshold Voltage  
1.35 1.80 2.35  
V
IDSS  
VGS(th)  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
25  
-5.8  
–––  
–––  
–––  
–––  
–––  
6.2  
1.4  
0.7  
2.2  
1.9  
2.9  
3.7  
2.2  
6.7  
7.9  
7.3  
4.4  
760  
170  
82  
––– mV/°C VDS = VGS, ID = 25µA  
1.0  
150  
100  
-100  
–––  
9.3  
VDS = 24V, VGS = 0V  
µA  
V
DS = 24V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
V
nA  
S
VGS = -20V  
gfs  
Qg  
VDS = 15V, ID = 8.8A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
3.7  
VDS = 15V  
Qgs2  
Qgd  
VGS = 4.5V  
ID = 8.8A  
nC  
Qgodr  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
See Figs. 15 & 16  
Qsw  
Qoss  
Rg  
Output Charge  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
ID = 8.8A  
ns  
Turn-Off Delay Time  
Fall Time  
R = 1.8  
G
See Fig. 18  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 15V  
pF  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
53  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
8.8  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
–––  
MOSFET symbol  
3.1  
A
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
–––  
–––  
88  
A
V
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
VSD  
trr  
–––  
–––  
–––  
–––  
12  
1.0  
18  
20  
T = 25°C, I = 8.8A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 8.8A, VDD = 15V  
J F  
Qrr  
ton  
di/dt = 300A/µs  
13  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF8707PbF  
100  
10  
100  
10  
1
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
BOTTOM  
BOTTOM  
1
2.3V  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 150°C  
2.3V  
1
0.1  
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
2.0  
1.5  
1.0  
0.5  
100  
10  
1
I
= 11A  
D
V
= 10V  
GS  
T
= 150°C  
J
T
= 25°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
-60 -40 -20  
0
20 40 60 80 100 120140 160  
1
2
3
4
5
6
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance  
Fig 3. Typical Transfer Characteristics  
vs. Temperature  
www.irf.com  
3
IRF8707PbF  
10000  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 8.8A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
V
V
= 24V  
= 15V  
rss  
oss  
gd  
DS  
DS  
= C + C  
ds  
gd  
1000  
100  
10  
C
iss  
C
oss  
C
rss  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
1
2
3
4
5
6
7
8
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
1msec  
T
= 150°C  
J
10msec  
T
= 25°C  
J
1
1
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF8707PbF  
12  
10  
8
2.5  
2.2  
1.9  
1.6  
1.3  
1.0  
I
= 250µA  
D
6
I
= 25µA  
4
D
2
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25 50 75 100 125 150  
T
, Ambient Temperature (°C)  
A
T , Temperature ( °C )  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
AmbientTemperature  
100  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
10  
1
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
P
0.1  
DM  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
t
1
τ
τ
J τJ  
τ
2.2284  
0.000169  
AτA  
2
t
0.01  
0.001  
τ
1 τ1  
τ
τ
7.0956  
0.013738  
2 τ2  
3 τ3  
4 τ4  
Notes:  
1. Duty factor D =  
2. Peak T =P  
25.4895 0.68725  
t / t  
1
2
Ci= τi/Ri  
Ci= τi/Ri  
15.1981  
25.8  
x Z  
+ T  
A
J
DM  
thJA  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF8707PbF  
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
I
I
= 11A  
D
D
TOP  
0.67A  
0.82A  
BOTTOM 8.80A  
T = 125°C  
J
T
= 25°C  
J
0
2
4
6
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
V
(BR)DSS  
15V  
t
p
L
VCC  
DRIVER  
+
L
V
DUT  
DS  
0
1
20K  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01Ω  
t
p
I
AS  
Fig 15. Gate Charge Test Circuit  
Fig 14. Unclamped Inductive Test Circuit  
and Waveform  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 16. Gate Charge Waveform  
6
www.irf.com  
IRF8707PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18a. Switching Time Test Circuit  
Fig 18b. Switching Time Waveforms  
www.irf.com  
7
IRF8707PbF  
SO-8 Package Outline  
Dimensions are shown in milimeters (inches)  
SO-8 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
IRF8707PbF  
SO-8 Tape and Reel  
Dimensions are shown in milimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‚Starting TJ = 25°C, L = 1.38mH, RG = 25, IAS = 8.8A.  
ƒPulse width 400µs; duty cycle 2%.  
„When mounted on 1 inch square copper board.  
R is measured at TJ of approximately 90°C.  
θ
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/2007  
www.irf.com  
9

相关型号:

IRF8714GPBF

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714GTRPBF

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714PBF

HEXFET Power MOSFET
INFINEON

IRF8714PBF-1

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714PBF-1_15

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714TRPBF

HEXFETPower MOSFET
INFINEON

IRF8721

30V 单个 N 通道 HEXFET Power MOSFET, 采用 SO-8 封装
INFINEON

IRF8721GPBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN AND LEAD FREE, SOP-8
INFINEON

IRF8721PBF

HEXFET Power MOSFET
INFINEON

IRF8721PBF-1

Power Field-Effect Transistor
INFINEON

IRF8721TRPBF

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8721TRPBF-1

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON