IRF8714GPBF [INFINEON]

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power;
IRF8714GPBF
型号: IRF8714GPBF
厂家: Infineon    Infineon
描述:

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power

文件: 总9页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96263  
IRF8714GPbF  
Applications  
HEXFET® Power MOSFET  
l
Control MOSFET of Sync-Buck  
Converters used for Notebook  
ProcessorPower  
VDSS  
30V  
RDS(on) max  
Qg  
8.7m @VGS = 10V  
8.1nC  
l Control MOSFET for Isolated DC-DC  
Converters in Networking Systems  
Benefits  
l VeryLowGateCharge  
l Very Low RDS(on) at 4.5V VGS  
l Ultra-LowGateImpedance  
l FullyCharacterizedAvalancheVoltage  
and Current  
A
A
D
1
2
3
4
8
S
S
S
G
7
D
6
D
5
D
l 20V VGS Max. Gate Rating  
l 100% tested for Rg  
l Lead-Free  
SO-8  
Top View  
l Halogen-Free  
Description  
The IRF8714GPbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the  
industry standard SO-8 package. The IRF8714GPbF has been optimized for parameters that are  
critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction  
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC  
converters that power the latest generation of processors for Notebook and Netcom applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
30  
Units  
VDS  
V
V
Gate-to-Source Voltage  
± 20  
14  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
11  
A
110  
2.5  
1.6  
DM  
P
P
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
Power Dissipation  
D
D
W
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
RθJL  
RθJA  
°C/W  
–––  
50  
Notes  through are on page 9  
www.irf.com  
1
07/10/09  
IRF8714GPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
V
V
DSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
7.1  
8.7  
13  
VGS = 10V, ID = 14A  
VGS = 4.5V, ID = 11A  
VDS = VGS, ID = 25µA  
mΩ  
10.9  
VGS(th)  
Gate Threshold Voltage  
1.35 1.80 2.35  
V
IDSS  
VGS(th)  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
71  
-6.0  
–––  
–––  
–––  
–––  
–––  
8.1  
1.9  
1.0  
3.0  
2.2  
4.0  
4.8  
1.6  
10  
––– mV/°C VDS = VGS, ID = 25µA  
1.0  
150  
100  
-100  
–––  
12  
µA VDS = 24V, VGS = 0V  
V
DS = 24V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
V
VGS = -20V  
gfs  
Qg  
VDS = 15V, ID = 11A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
2.6  
VDS = 15V  
Qgs2  
Qgd  
nC VGS = 4.5V  
ID = 11A  
Qgodr  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
See Figs. 15 & 16  
Qsw  
Qoss  
Rg  
Output Charge  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
9.9  
11  
ID = 11A  
Turn-Off Delay Time  
Fall Time  
ns  
pF  
R = 1.8  
G
5.0  
See Fig. 18  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1020 –––  
–––  
–––  
220  
110  
–––  
–––  
VDS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
65  
11  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
–––  
3.1  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
110  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
14  
1.0  
21  
23  
V
T = 25°C, I = 11A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 11A, VDD = 15V  
J F  
Qrr  
ton  
di/dt = 300A/µs  
15  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF8714GPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.3V  
BOTTOM  
BOTTOM  
1
0.1  
1
0.01  
0.001  
2.3V  
1
2.3V  
1
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
10  
100  
1000  
0.1  
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 14A  
D
V
= 10V  
GS  
100  
10  
1
T
= 150°C  
J
T
= 25°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
6
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance  
Fig 3. Typical Transfer Characteristics  
vs. Temperature  
www.irf.com  
3
IRF8714GPbF  
10000  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 11A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
V
V
= 24V  
= 15V  
rss  
oss  
gd  
= C + C  
DS  
DS  
ds  
gd  
C
iss  
1000  
100  
10  
C
oss  
C
rss  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
2
4
6
8
10  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 150°C  
J
100µsec  
1msec  
T
= 25°C  
J
10msec  
1
1
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF8714GPbF  
14  
12  
10  
8
2.5  
2.0  
1.5  
1.0  
I
= 25µA  
D
6
4
2
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25 50 75 100 125 150  
T
, Ambient Temperature (°C)  
T , Temperature ( °C )  
A
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
AmbientTemperature  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
1
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
τ
τ
J τJ  
τ
1.9778  
0.000165  
AτA  
τ
1 τ1  
0.01  
0.001  
τ
τ
7.4731  
0.022044  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + T  
2 τ2  
3 τ3  
4 τ4  
26.2617 0.82275  
14.2991 28.4  
Ci= τi/Ri  
Ci= τi/Ri  
A
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF8714GPbF  
25  
300  
250  
200  
150  
100  
50  
I
I
= 14A  
D
D
TOP  
0.82A  
1.0A  
20  
15  
10  
BOTTOM 11A  
T
= 125°C  
J
T
= 25°C  
J
5
0
3
4
5
6
7
8
9
10 11 12  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
V
(BR)DSS  
15V  
t
p
L
VCC  
DRIVER  
+
L
V
DUT  
DS  
0
1
20K  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01Ω  
t
p
I
AS  
Fig 15. Gate Charge Test Circuit  
Fig 14. Unclamped Inductive Test Circuit  
and Waveform  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 16. Gate Charge Waveform  
6
www.irf.com  
IRF8714GPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
10%  
PulseWidth 1µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18a. Switching Time Test Circuit  
Fig 18b. Switching Time Waveforms  
www.irf.com  
7
IRF8714GPbF  
SO-8 Package Outline(Mosfet & Fetky)  
Dimensions are shown in milimeters (inches)  
SO-8 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRF8714GPbF  
SO-8 Tape and Reel  
Dimensions are shown in milimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.1mH, RG = 25, IAS = 11A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ When mounted on 1 inch square copper board.  
R is measured at TJ of approximately 90°C.  
θ
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/2009  
www.irf.com  
9

相关型号:

IRF8714GTRPBF

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714PBF

HEXFET Power MOSFET
INFINEON

IRF8714PBF-1

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714PBF-1_15

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8714TRPBF

HEXFETPower MOSFET
INFINEON

IRF8721

30V 单个 N 通道 HEXFET Power MOSFET, 采用 SO-8 封装
INFINEON

IRF8721GPBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN AND LEAD FREE, SOP-8
INFINEON

IRF8721PBF

HEXFET Power MOSFET
INFINEON

IRF8721PBF-1

Power Field-Effect Transistor
INFINEON

IRF8721TRPBF

Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
INFINEON

IRF8721TRPBF-1

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON

IRF8734PBF

HEXFET Power MOSFET
INFINEON