IRFB3006 [INFINEON]

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.;
IRFB3006
型号: IRFB3006
厂家: Infineon    Infineon
描述:

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.

文件: 总10页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFB3006PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification  
D
S
VDSS  
RDS(on) typ.  
max.  
60V  
2.1m  
2.5m  
in SMPS  
l UninterruptiblePowerSupply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
G
ID  
270A  
(Silicon Limited)  
ID  
195A  
(Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic  
D
dV/dtRuggedness  
l Fully Characterized Capacitance and  
AvalancheSOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
D
G
l RoHS Compliant, Halogen-Free  
TO-220AB  
G
D
S
Gate  
Drain  
Source  
Standard Pack  
Form  
Tube  
Base Part Number  
Package Type  
Orderable Part Number  
Quantity  
IRFB3006PbF  
TO-220  
50  
IRFB3006PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
270  
190  
195  
1080  
375  
2.5  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
A
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
10  
Gate-to-Source Voltage  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
320  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.4  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
0.50  
–––  
–––  
62  
°C/W  
1
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
April 23, 2014  
IRFB3006PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
2.1  
2.5  
4.0  
20  
VGS = 10V, ID = 170A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 250μA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 60V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = -20V  
–––  
2.0  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 170A  
280 ––– –––  
S
Qg  
––– 200 300  
nC ID = 170A  
VDS =30V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
37  
60  
–––  
Qgd  
VGS = 10V  
Qsync  
––– 140 –––  
––– 16 –––  
ID = 170A, VDS =0V, VGS = 10V  
ns VDD = 39V  
ID = 170A  
R = 2.7  
td(on)  
tr  
Rise Time  
––– 182 –––  
––– 118 –––  
––– 189 –––  
––– 8970 –––  
––– 1020 –––  
––– 534 –––  
––– 1480 –––  
––– 1920 –––  
td(off)  
Turn-Off Delay Time  
Ω
G
tf  
Fall Time  
VGS = 10V  
pF VGS = 0V  
VDS = 50V  
Ciss  
Input Capacitance  
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
oss eff. (TR)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER)  
VGS = 0V, VDS = 0V to 48V , See Fig. 11  
VGS = 0V, VDS = 0V to 48V  
C
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
D
270  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 1080  
A
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 170A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
44  
48  
63  
77  
2.4  
ns  
IF = 170A  
di/dt = 100A/μs  
Qrr  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
someleadmountingarrangements. (RefertoAN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
„ ISD 170A, di/dt 1360A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.022mH  
RG = 25Ω, IAS = 170A, VGS =10V. Part not recommended for use  
above this value .  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended  
footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
2
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
April 23, 2014  
IRFB3006PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
BOTTOM  
BOTTOM  
3.5V  
60μs PULSE WIDTH  
3.5V  
1
60μs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 170A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60μs PULSE WIDTH  
1
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
16000  
12000  
8000  
4000  
0
16  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 170A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
V
= 48V  
= 30V  
DS  
DS  
C
= C  
rss  
gd  
C
= C + C  
12  
8
oss  
ds  
gd  
C
iss  
4
C
oss  
C
rss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2014 International Rectifier  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
Submit Datasheet Feedback  
3
April 23, 2014  
IRFB3006PbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100μsec  
LIMITED BY PACKAGE  
1msec  
T
J
= 25°C  
10msec  
DC  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.1  
1
10  
100  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
80  
75  
70  
65  
60  
55  
300  
250  
200  
150  
100  
50  
I
= 5mA  
LIMITED BY PACKAGE  
D
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1400  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
20A  
27A  
170A  
BOTTOM  
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
www.irf.com © 2014 International Rectifier  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
Submit Datasheet Feedback  
4
April 23, 2014  
IRFB3006PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
τι  
0.01  
(sec)  
Ri (°C/W)  
0.02  
0.01  
τJ  
τC  
τJ  
τ1  
0.175365 0.000343  
0.22547 0.006073  
τ
2τ2  
τ1  
Ci= τi/Ri  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 170A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2014 International Rectifier  
5
Submit Datasheet Feedback  
April 23, 2014  
IRFB3006PbF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
20  
16  
12  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
I
= 112A  
F
V
= 51V  
R
4
T
= 125°C  
= 25°C  
J
J
T
0
100  
200  
300  
400  
500  
600  
700  
800  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / μs)  
T
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
20  
700  
600  
500  
400  
300  
16  
12  
8
I
= 170A  
= 51V  
I
= 112A  
= 51V  
200  
100  
0
F
F
V
V
T
R
4
0
R
T
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100  
200  
300  
400  
500  
600  
700  
800  
100  
200  
300  
400  
500  
600  
700  
800  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
700  
600  
500  
400  
300  
200  
100  
0
I
= 170A  
= 51V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100  
200  
300  
400  
500  
600  
700  
800  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
6
April 23, 2014  
IRFB3006PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
www.irf.com © 2014 International Rectifier  
Fig 24b. Gate Charge Waveform  
Submit Datasheet Feedback  
7
April 23, 2014  
IRFB3006PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
INTERNATIONAL  
RECTIFIER LOGO  
INTERNATIONAL  
RECTIFIER LOGO  
PART NUMBER  
PART NUMBER  
DATE CODE  
P = LEAD-FREE  
Y = LAST DIGIT OF YEAR  
WW = WORK WEEK  
? = ASSEMBLY SITE CODE  
IRFB3006  
IRFB3006  
DATE CODE  
OR  
ASSEMBLY  
LOT CODE  
ASSEMBLY  
LOT CODE  
Y = LAST DIGIT OF YEAR  
WW = WORK WEEK  
P = LEAD-FREE  
PYWW?  
YWWP  
LC  
LC  
LC  
LC  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
8
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
April 23, 2014  
IRFB3006PbF  
Qualification information  
Qualification level  
Industrial  
(per JEDEC JESD47F††guidelines)  
Moisture Sensitivity Level  
RoHS compliant  
TO-220  
Not applicable  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comment  
Updated data sheet with new IR corporate template.  
Updated package outline & part marking on page 8.  
4/23/2014  
Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
9
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
April 23, 2014  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFB3006GPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFB3006PBF

HEXFETPower MOSFET
INFINEON

IRFB3077

N-Channel MOSFET Transistor
ISC

IRFB3077GPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFB3077PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFB30N20D

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 30A I(D) | TO-220AB
ETC

IRFB31N20

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFB31N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFB31N20DPBF

HEXFET Power MOSFET ( VDSS = 200V , RDS(on)max = 0.082ヘ , ID = 31A )
INFINEON

IRFB3206

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3206GPBF

HEXFETPower MOSFET
INFINEON

IRFB3206PBF

HEXFET Power MOSFET
INFINEON