IRFB4103PBF [INFINEON]

DIGITAL AUDIO MOSFET; 数字音频MOSFET
IRFB4103PBF
型号: IRFB4103PBF
厂家: Infineon    Infineon
描述:

DIGITAL AUDIO MOSFET
数字音频MOSFET

文件: 总7页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96909  
IRFB4103PbF  
Key Parameters  
DIGITAL AUDIO MOSFET  
Features  
Key parameters optimized for Class-D audio  
amplifier applications  
VDS  
200  
139  
25  
V
m:  
nC  
nC  
R
DS(ON) typ. @ 10V  
Low RDSON for improved efficiency  
Low QG and QSW for better THD and improved  
efficiency  
Qg typ.  
Q
sw typ.  
15  
RG(int) typ.  
1.0  
175  
TJ max  
°C  
Low QRR for better THD and lower EMI  
175°C operating junction temperature for  
ruggedness  
D
S
Can deliver up to 300W per channel into 8load in  
half-bridge topology  
G
TO-220AB  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes  
thelatestprocessingtechniquestoachievelowon-resistancepersiliconarea.Furthermore,Gatecharge,body-diode  
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance  
factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction  
temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,  
robust and reliable device for ClassD audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
200  
±30  
17  
Units  
V
VDS  
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
A
12  
68  
Power Dissipation f  
PD @TC = 25°C  
PD @TC = 100°C  
140  
71  
W
Power Dissipation f  
Linear Derating Factor  
Operating Junction and  
0.95  
W/°C  
°C  
TJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
Max.  
1.05  
–––  
62  
Units  
Junction-to-Case f  
RθJC  
RθCS  
RθJA  
–––  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
°C/W  
Junction-to-Ambient f  
Notes  through are on page 2  
www.irf.com  
1
1/5/05  
IRFB4103PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
200  
–––  
–––  
3.0  
–––  
0.21  
139  
–––  
-13  
–––  
–––  
–––  
–––  
–––  
25  
–––  
–––  
165  
5.5  
V
∆ΒVDSS/TJ  
RDS(on)  
V/°C Reference to 25°C, ID = 1mA  
mΩ  
VGS = 10V, ID = 12A  
VGS(th)  
V
VDS = VGS, ID = 250µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
7.1  
––– mV/°C  
25  
250  
100  
-100  
–––  
38  
µA VDS = 200V, VGS = 0V  
V
DS = 200V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 30V  
VGS = -30V  
gfs  
S
VDS = 50V, ID = 12A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
RG(int)  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
5.4  
2.9  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 160V  
GS = 10V  
nC  
V
ID = 12A  
Gate Charge Overdrive  
4.7  
15  
See Fig. 6 and 19  
Switch Charge (Qgs2 + Qgd  
Internal Gate Resistance  
Turn-On Delay Time  
Rise Time  
)
1.0  
9.6  
40  
VDD = 100V, VGS = 10V  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
16  
ns  
R
G = 2.5Ω  
5.4  
900  
120  
22  
Ciss  
Coss  
Crss  
Coss  
LD  
Input Capacitance  
Output Capacitance  
V
GS = 0V  
pF VDS = 50V  
ƒ = 1.0MHz,  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
See Fig.5  
150  
4.5  
VGS = 0V, VDS = 0V to 160V  
Between lead,  
D
S
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Avalanche Characteristics  
Parameter  
Typ.  
Max.  
Units  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS  
IAR  
–––  
130  
mJ  
See Fig. 14, 15, 17a, 17b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS @ TC = 25°C  
–––  
–––  
17  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
68  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
130  
730  
1.7  
200  
110  
V
TJ = 25°C, IS = 10A, VGS = 0V  
Reverse Recovery Time  
ns TJ = 25°C, IF = 12A  
di/dt = 100A/µs  
nC  
Qrr  
Reverse Recovery Charge  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.78mH, RG = 25, IAS = 12A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive  
avalanche information  
θ
2
www.irf.com  
IRFB4103PbF  
100  
10  
1
100  
10  
1
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
9.0V  
8.0V  
7.0V  
6.0V  
BOTTOM  
BOTTOM  
6.0V  
6.0V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
100.0  
I
= 17A  
D
V
= 10V  
GS  
10.0  
1.0  
T
= 175°C  
J
T
= 25°C  
J
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
20  
V
C
= 0V,  
f = 1 MHZ  
I = 12A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 160V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 100V  
VDS= 40V  
C
= C + C  
oss  
ds  
gd  
1000  
100  
10  
Ciss  
Coss  
4
Crss  
0
0
10  
20  
30  
40  
1
10  
100  
1000  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRFB4103PbF  
100.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
T
= 175°C  
DS  
J
10.0  
1.0  
100µsec  
1msec  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
DC  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
20  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
16  
12  
8
I
= 250µA  
D
4
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
J
T
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
10  
1
D = 0.50  
0.20  
R1  
R1  
R2  
R2  
R3  
R3  
0.10  
0.1  
Ri (°C/W) τi (sec)  
0.1624 0.000094  
0.4354 0.001831  
0.4517 0.018175  
τ
JτJ  
τ
τ
0.05  
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.02  
0.01  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRFB4103PbF  
600  
500  
400  
300  
200  
100  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
I
= 12A  
I
D
D
TOP  
3.7A  
6.2A  
12A  
BOTTOM  
T
T
= 125°C  
= 25°C  
J
J
6.0  
8.0  
V
10.0  
12.0  
14.0  
16.0  
18.0  
25  
50  
75  
100  
125  
150  
175  
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
100  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
10  
0.01  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 17a, 17b.  
140  
120  
100  
80  
TOP  
BOTTOM 1% Duty Cycle  
= 12A  
Single Pulse  
I
D
60  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
40  
6. Iav = Allowable avalanche current.  
20  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 15. Maximum Avalanche Energy Vs. Temperature  
EAS (AR) = PD (ave)·tav  
www.irf.com  
5
IRFB4103PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 17b. Unclamped Inductive Waveforms  
Fig 17a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 18a. Switching Time Test Circuit  
Fig 18b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 19a. Gate Charge Test Circuit  
Fig 19b Gate Charge Waveform  
6
www.irf.com  
IRFB4103PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
- B -  
3.78 (.149)  
3.54 (.139)  
10.29 (.405)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE: T HIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
AS S EMBLED ON WW 19, 1997  
IN T HE AS S EMBLY LINE "C"  
INT ERNATIONAL  
RECT IFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DAT E CODE  
YEAR 7 = 1997  
WEEK 19  
AS S EMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/05  
www.irf.com  
7

相关型号:

IRFB4110

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4110GPBF

HEXFET Power MOSFET
INFINEON

IRFB4110PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFB4110PBF

HEXFETPower MOSFET
FREESCALE

IRFB4110QPBF

HEXFET Power MOSFET
INFINEON

IRFB4110_18

N-Channel MOSFET Transistor
ISC

IRFB4115

N-Channel MOSFET Transistor
ISC

IRFB4115G

N-Channel MOSFET Transistor
ISC

IRFB4115GPBF

HEXFETPower MOSFET
INFINEON

IRFB4115PBF

HEXFET Power MOSFET
INFINEON

IRFB4127

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4127PBF

HEXFETPower MOSFET
INFINEON