IRFP7430PBF [INFINEON]

Brushed Motor drive applications; 有刷电机驱动应用
IRFP7430PBF
型号: IRFP7430PBF
厂家: Infineon    Infineon
描述:

Brushed Motor drive applications
有刷电机驱动应用

电机 驱动
文件: 总9页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97777  
StrongIRFET™  
IRFP7430PbF  
Applications  
HEXFET® Power MOSFET  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
D
S
VDSS  
40V  
RDS(on) typ.  
max.  
1.0m  
1.3m  
G
ID  
404A  
(Silicon Limited)  
ID  
195A  
(Package Limited)  
D
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
S
D
Ruggedness  
G
l Fully Characterized Capacitance and Avalanche  
SOA  
TO-247AC  
IRFP7430PbF  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
D
S
Gate  
Drain  
Source  
Ordering Information  
Base Part Number  
Package Type  
Standard Pack  
Form  
Tube  
Complete Part  
Number  
IRFP7430PbF  
Quantity  
IRFP7430PbF  
TO-247  
50  
6.0  
4.0  
2.0  
0.0  
500  
400  
300  
200  
100  
0
I
= 100A  
D
Limited By Package  
T
= 125°C  
J
T
= 25°C  
J
4
6
8
10 12 14  
16 18 20  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
V
Gate -to -Source Voltage (V)  
C
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com  
1
04/20/12  
IRFP7430PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
404  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
286  
A
195  
1524  
366  
PD @TC = 25°C  
Maximum Power Dissipation  
W
2.4  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
722  
1360  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.41  
–––  
40  
Units  
R  
JC  
R  
CS  
R  
JA  
Junction-to-Case  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
0.24  
–––  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
V
VGS = 0V, ID = 250μA  
V(BR)DSS/TJ  
RDS(on)  
––– 0.014 –––  
V/°C Reference to 25°C, ID = 1.0mA  
mVGS = 10V, ID = 100A  
mVGS = 6.0V, ID = 50A  
–––  
1.0  
1.2  
1.3  
–––  
3.9  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.2  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
2.1  
V
VDS = VGS, ID = 250μA  
Drain-to-Source Leakage Current  
1.0  
μA VDS = 40V, VGS = 0V  
150  
100  
-100  
–––  
V
V
DS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
Notes:  
 Calculated continuous current based on maximum allowable junction  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.14mH  
RG = 50, IAS = 100A, VGS =10V.  
.
.
Š This value determined from sample failure population,  
„ ISD 100A, di/dt 990A/μs, VDD V(BR)DSS, TJ 175°C.  
starting TJ = 25°C, L= 0.14mH, RG = 50, IAS = 100A, VGS =10V.  
2
www.irf.com  
IRFP7430PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Qg  
Forward Transconductance  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
300  
77  
–––  
460  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 100A  
Total Gate Charge  
nC ID = 100A  
VDS =20V  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
98  
VGS = 10V  
Qsync  
td(on)  
tr  
202  
32  
ID = 100A, VDS =0V, VGS = 10V  
ns VDD = 20V  
ID = 30A  
Rise Time  
105  
160  
100  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.7  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 14240 –––  
pF VGS = 0V  
Output Capacitance  
–––  
–––  
–––  
–––  
2130  
1460  
2605  
2920  
–––  
–––  
–––  
–––  
V
DS = 25V  
ƒ = 1.0 MHz  
GS = 0V, VDS = 0V to 32V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
C
oss eff. (ER)  
V
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
Continuous Source Current  
–––  
––– 376  
A
A
V
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
1576  
integral reverse  
(Body Diode)  
p-n junction diode.  
TJ = 25°C, IS = 100A, VGS = 0V  
VSD  
Diode Forward Voltage  
Peak Diode Recovery  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.86  
2.7  
52  
1.2  
–––  
–––  
–––  
–––  
–––  
–––  
dv/dt  
trr  
V/ns TJ = 175°C, IS = 100A, VDS = 40V  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
IF = 100A  
di/dt = 100A/μs  
52  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
97  
nC TJ = 25°C  
TJ = 125°C  
97  
IRRM  
2.3  
A
TJ = 25°C  
www.irf.com  
3
IRFP7430PbF  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
TOP  
TOP  
100  
BOTTOM  
BOTTOM  
4.5V  
10  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
2.0  
I
= 100A  
= 10V  
D
V
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
GS  
100  
10  
T
= 25°C  
J
T = 175°C  
J
V
= 25V  
DS  
60μs PULSE WIDTH  
1.0  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 100A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
50 100 150 200 250 300 350 400  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
IRFP7430PbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100μsec  
1msec  
10msec  
Limited by package  
T
= 25°C  
J
1
1
DC  
10  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
47  
46  
45  
44  
43  
42  
41  
40  
2.5  
Id = 1.0mA  
V
= 0V to 32V  
DS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
-60 -40 -20 0 20 40 60 80 100120140160180  
T , Temperature ( °C )  
J
V
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
6.0  
V
V
V
V
V
= 5.5V  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
GS  
4.0  
2.0  
0.0  
0
200  
400  
600  
800 1000 1200  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com  
5
IRFP7430PbF  
1
D = 0.50  
0.20  
0.1  
0.01  
0.10  
0.05  
0.02  
0.01  
0.001  
0.0001  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
800  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
Fig 16. Maximum AvalJanche Energy vs. Temperature  
6
www.irf.com  
IRFP7430PbF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
12  
10  
8
I = 60A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
12  
300  
I = 100A  
F
I = 60A  
F
V
= 34V  
V
= 34V  
R
10  
8
R
250  
200  
150  
100  
50  
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
260  
I = 100A  
F
V
= 34V  
R
220  
180  
140  
100  
60  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
IRFP7430PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2V0GVS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
IRFP7430PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Qualification information  
Industrial††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
N/A  
(per JE DE C J-S TD-020D†††  
Moisture Sensitivity Level  
RoHS compliant  
TO-247AC  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/2012  
www.irf.com  
9

相关型号:

IRFP7530

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP7530PBF

Power Field-Effect Transistor,
INFINEON

IRFP7537

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP7537PBF

Power Field-Effect Transistor
INFINEON

IRFP7718PBF

Brushed Motor drive applications
INFINEON

IRFP7718PBF_15

Brushed Motor drive applications
INFINEON

IRFP90N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.023ohm, Id=94A)
INFINEON

IRFP90N20DPBF

SMPS MOSFET
INFINEON

IRFP9123

Transistor
SAMSUNG

IRFP9130

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9131

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9132

P-CHANNEL POWER MOSFETS
SAMSUNG