IRFP7537PBF [INFINEON]

Power Field-Effect Transistor;
IRFP7537PBF
型号: IRFP7537PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor

文件: 总10页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFP7537PbF  
HEXFET® Power MOSFET  
Application  
Brushed Motor drive applications  
BLDC Motor drive applications  
Battery powered circuits  
Half-bridge and full-bridge topologies  
Synchronous rectifier applications  
Resonant mode power supplies  
OR-ing and redundant power switches  
DC/DC and AC/DC converters  
DC/AC Inverters  
VDSS  
60V  
RDS(on) typ.  
max  
2.75m  
3.30m  
ID  
172A  
S
Benefits  
D
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness  
Fully Characterized Capacitance and Avalanche SOA  
Enhanced body diode dV/dt and dI/dt Capability  
Lead-Free, RoHS Compliant  
G
G
D
S
Gate  
Drain  
Source  
Base part number  
Package Type  
Standard Pack  
Form  
Orderable Part Number  
Quantity  
IRFP7537PbF  
TO-247  
Tube  
25  
IRFP7537PbF  
12  
10  
8
200  
150  
100  
50  
I
= 100A  
D
6
T
T
= 125°C  
= 25°C  
J
4
2
J
0
0
2
4
6
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
V
Gate -to -Source Voltage (V)  
C
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
Absolute Maximum Rating  
Symbol  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V  
172  
121  
700  
230  
1.5  
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V  
A
IDM  
Pulsed Drain Current   
Maximum Power Dissipation  
Linear Derating Factor  
PD @TC = 25°C  
W
W/°C  
V
VGS  
Gate-to-Source Voltage  
± 20  
TJ  
TSTG  
Operating Junction and  
Storage Temperature Range  
-55 to + 175  
°C  
Soldering Temperature, for 10 seconds (1.6mm from case)  
300  
Mounting Torque, 6-32 or M3 Screw  
10 lbf·in (1.1 N·m)  
Avalanche Characteristics  
EAS (Thermally limited)  
EAS (tested)  
IAR  
250  
280  
Single Pulse Avalanche Energy   
Single Pulse Avalanche Energy Tested Value   
Avalanche Current   
mJ  
A
mJ  
See Fig 15, 16, 23a, 23b  
EAR  
Repetitive Avalanche Energy   
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
0.24  
–––  
Max.  
0.66  
–––  
40  
Units  
Junction-to-Case   
RJC  
RCS  
RJA  
Case-to-Sink, Flat Greased Surface  
°C/W  
Junction-to-Ambient   
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
60  
––– –––  
V
VGS = 0V, ID = 250µA  
–––  
40 ––– mV/°C Reference to 25°C, ID = 1mA   
V(BR)DSS/TJ  
RDS(on)  
––– 2.75 3.30  
––– 3.50 –––  
2.1 –––  
––– –––  
––– ––– 150  
––– ––– 100  
––– ––– -100  
V
V
GS = 10V, ID = 100A   
GS = 6.0V, ID = 50A   
m  
V
VGS(th)  
IDSS  
Gate Threshold Voltage  
3.7  
1.0  
VDS = VGS, ID = 150µA  
DS =60 V, VGS = 0V  
VDS =60V,VGS = 0V,TJ =125°C  
V
Drain-to-Source Leakage Current  
µA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Resistance  
V
V
GS = 20V  
GS = -20V  
IGSS  
RG  
nA  
–––  
2.0  
–––  
  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L = 50µH, RG = 50, IAS = 100A, VGS =10V.  
ISD 100A, di/dt 1130A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS  
.
Ris measured at TJ approximately 90°C.  
This value determined from sample failure population, starting TJ =25°C, L= 50µH, RG = 50, IAS =100A, VGS =10V.  
2
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min.  
190  
–––  
–––  
–––  
–––  
–––  
–––  
Typ. Max. Units  
Conditions  
–––  
142  
36  
–––  
210  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID =100A  
Qg  
ID = 100A  
VDS = 30V  
VGS = 10V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain Charge  
Total Gate Charge Sync. (Qg– Qgd)  
Turn-On Delay Time  
nC  
Qgd  
43  
Qsync  
td(on)  
tr  
99  
15  
VDD = 30V  
ID = 100A  
Rise Time  
105  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
–––  
–––  
–––  
82  
84  
–––  
–––  
–––  
–––  
–––  
RG= 2.7  
V
GS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
7020  
640  
395  
VGS = 0V  
VDS = 25V  
ƒ = 1.0MHz, See Fig.7  
pF  
Effective Output Capacitance  
(Energy Related)  
Coss eff.(ER)  
Coss eff.(TR)  
–––  
–––  
665  
880  
–––  
–––  
VGS = 0V, VDS = 0V to 48V  
VGS = 0V, VDS = 0V to 48V  
Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min.  
Typ. Max. Units  
Conditions  
MOSFET symbol  
D
Continuous Source Current  
(Body Diode)  
IS  
–––  
–––  
172  
showing the  
A
G
Pulsed Source Current  
(Body Diode)  
integral reverse  
p-n junction diode.  
ISM  
–––  
–––  
–––  
–––  
700  
1.2  
S
VSD  
Diode Forward Voltage  
V
TJ = 25°C,IS = 100A,VGS = 0V   
dv/dt  
Peak Diode Recovery dv/dt  
–––  
–––  
–––  
–––  
–––  
–––  
10  
39  
41  
46  
56  
2.1  
––– V/ns TJ = 175°C,IS =100A,VDS = 60V  
–––  
–––  
–––  
–––  
–––  
TJ = 25°C  
VDD = 51V  
IF = 100A,  
trr  
Reverse Recovery Time  
ns  
TJ = 125°C  
TJ = 25°C di/dt = 100A/µs   
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
TJ = 125°C  
TJ = 25°C  
IRRM  
3
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs  
Tj = 175°C  
PULSE WIDTH  
60µs  
PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 3. Typical Output Characteristics  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
1000  
100  
10  
I
= 100A  
= 10V  
D
V
GS  
T
= 175°C  
T
= 25°C  
J
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
-60  
-20  
T
20  
60  
100  
140  
180  
2
3
4
5
6
7
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 100A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
12.0  
10.0  
8.0  
C
= C  
rss  
gd  
V
= 48V  
= 30V  
DS  
C
= C + C  
oss  
ds  
gd  
V
DS  
VDS= 12V  
C
iss  
6.0  
C
oss  
rss  
C
4.0  
2.0  
0.0  
100  
0
50  
100  
150  
0.1  
1
10  
100  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 8. Typical Gate Charge vs.  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2014 International Rectifier  
Gate-to-Source Voltage  
4
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
1000  
100  
10  
1000  
100  
10  
100µsec  
T
= 175°C  
J
1msec  
OPERATION IN THIS AREA  
T
= 25°C  
J
LIMITED BY R (on)  
DS  
10msec  
1
1
Tc = 25°C  
DC  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
0.1  
0.4  
V
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
V
, Drain-to-Source Voltage (V)  
DS  
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode Forward Voltage  
1.2  
78  
Id = 1.0mA  
76  
74  
72  
70  
68  
66  
64  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
10  
20  
30  
40  
50  
60  
-60  
-20  
20  
60  
100  
140  
180  
T
, Temperature ( °C )  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical Coss Stored Energy  
5.1  
VGS = 5.5V  
VGS = 6.0V  
VGS = 7.0V  
VGS = 8.0V  
VGS = 10V  
4.6  
4.1  
3.6  
3.1  
2.6  
0
50  
I
100  
150  
200  
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
© 2014 International Rectifier Submit Datasheet Feedback  
5
www.irf.com  
January 10, 2014  
IRFP7537PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Avalanche Current vs. Pulse Width  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1.Avalanche failures assumption:  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 14, 15).  
0
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
I
av = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)· av  
t
Fig 16. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2014 International Rectifier  
6
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
12  
9
I
= 60A  
= 51V  
F
V
R
T = 25°C  
J
T = 125°C  
J
6
ID = 150µA  
ID = 250µA  
ID = 1.0mA  
ID = 1.0A  
3
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/µs)  
F
Fig 17. Threshold Voltage vs. Temperature  
Fig 18. Typical Recovery Current vs. dif/dt  
15  
225  
I
= 100A  
= 51V  
I
= 60A  
= 51V  
F
F
200  
175  
150  
125  
100  
75  
V
V
R
R
12  
9
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
3
50  
0
25  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig 19. Typical Recovery Current vs. dif/dt  
Fig 20. Typical Stored Charge vs. dif/dt  
225  
I
= 100A  
= 51V  
F
200  
175  
150  
125  
100  
75  
V
R
T = 25°C  
J
T = 125°C  
J
50  
25  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig 21. Typical Stored Charge vs. dif/dt  
© 2014 International Rectifier Submit Datasheet Feedback  
7
www.irf.com  
January 10, 2014  
IRFP7537PbF  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
I
0.01  
t
p
AS  
Fig 23a. Unclamped Inductive Test Circuit  
Fig 23b. Unclamped Inductive Waveforms  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 25b. Gate Charge Waveform  
Fig 25a. Gate Charge Test Circuit  
8
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
TO-247AC Package Outline (Dimensions are shown in millimeters (inches))  
TO-247AC Part Marking Information  
Notes: This part marking information applies to devices produced after 02/26/2001  
EXAMPLE: THIS IS AN IRFPE30  
WITH ASSEMBLY  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
IRFPE30  
135H  
57  
ASSEMBLED ON WW 35, 2001  
IN THE ASSEMBLY LINE "H"  
56  
DATE CODE  
YEAR 1 = 2001  
WEEK 35  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-Free"  
LINE H  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  
IRFP7537PbF  
Qualification Information†  
Qualification Level  
Industrial  
(per JEDEC JESD47F) ††  
TO-247  
N/A  
Yes  
Moisture Sensitivity Level  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
10 www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
January 10, 2014  

相关型号:

IRFP7718PBF

Brushed Motor drive applications
INFINEON

IRFP7718PBF_15

Brushed Motor drive applications
INFINEON

IRFP90N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.023ohm, Id=94A)
INFINEON

IRFP90N20DPBF

SMPS MOSFET
INFINEON

IRFP9123

Transistor
SAMSUNG

IRFP9130

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9131

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9132

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9133

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9140

19A, 100V, 0.200 Ohm, P-Channel Power MOSFET
INTERSIL

IRFP9140

P-CHANNEL POWER MOSFETS
SAMSUNG

IRFP9140

Power MOSFET
VISHAY