IRFR7440TRPBF [INFINEON]

Brushed Motor drive applications; ??有刷电机驱动应用
IRFR7440TRPBF
型号: IRFR7440TRPBF
厂家: Infineon    Infineon
描述:

Brushed Motor drive applications
??有刷电机驱动应用

电机 驱动
文件: 总11页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFR7440PbF  
IRFU7440PbF  
HEXFET® Power MOSFET  
Applications  
D
S
VDSS  
RDS(on) typ.  
max.  
40V  
1.9mΩ  
2.4mΩ  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l PWM Inverterized topologies  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Electronic ballast applications  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
G
ID  
180A  
(Silicon Limited)  
ID  
90A  
(Package Limited)  
D
D
S
S
D
G
G
Benefits  
I-Pak  
IRFU7440TRPbF  
D-Pak  
l Improved Gate, Avalanche and Dynamic dV/dt  
IRFR7440TRPbF  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dv/dt and dI/dt Capability  
l Lead-Free  
G
Gate  
D
Drain  
S
Source  
l RoHS Compliant containing no Lead, no Bromide,  
and no Halogen  
Ordering Information  
Orderable part number  
Package Type  
Standard Pack  
Form  
Tube/Bulk  
Tape and Reel  
Tube/Bulk  
Complete Part Number  
Quantity  
75  
2000  
75  
IRFR7440PbF  
IRFR7440TRPbF  
IRFU7440PbF  
D-PAK  
D-PAK  
I-PAK  
IRFR7440PbF  
IRFR7440TRPbF  
IRFU7440PbF  
180  
8
6
4
2
LIMITED BY PACKAGE  
I
= 90A  
D
160  
140  
120  
100  
80  
T
T
= 125°C  
J
60  
40  
= 25°C  
16  
20  
J
0
0
4
25  
50  
75  
100  
125  
150  
175  
8
12  
20  
T , Case Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
C
GS  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com © 2012 International Rectifier  
1
October 17, 2012  
IRFR/U7440PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
180  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
125  
A
90  
760  
140  
PD @TC = 25°C  
Maximum Power Dissipation  
W
0.95  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
dv/dt  
TJ  
Gate-to-Source Voltage  
4.4  
Peak Diode Recovery  
V/ns  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
160  
220  
mJ  
E
AS (tested)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
IAR  
A
See Fig 15,16, 23a, 23b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.05  
50  
Units  
R8  
JC  
Junction-to-Case  
Junction-to-Ambient (PCB Mount)  
°C/W  
R8JA  
R8  
Junction-to-Ambient  
110  
JA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
40  
––– –––  
V
VGS = 0V, ID = 250μA  
Δ
Δ
V(BR)DSS/ TJ Breakdown Voltage Temp. Coefficient  
–––  
–––  
28  
1.9  
2.8  
3.0  
––– mV/°C Reference to 25°C, ID = 1mA  
Ω
Ω
V
RDS(on)  
Static Drain-to-Source On-Resistance  
2.4  
–––  
3.9  
1
m
m
VGS = 10V, ID = 90A  
VGS = 6.0V, ID = 50A  
VDS = VGS, ID = 100μA  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.2  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
VGS = -20V  
––– ––– 150  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
Ω
–––  
2.6  
–––  
Notes:  
 Calculated continuous current based on maximum allowable junction  
Pulse width 400μs; duty cycle 2%.  
temperature. Bond wire current limit is 90A. Note that current  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.04mH  
RG = 50Ω, IAS = 90A, VGS =10V.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
.
.
Š This value determined from sample failure population,  
„ ISD 100A, di/dt 1306A/μs, VDD V(BR)DSS, TJ 175°C.  
starting TJ = 25°C, L= 0.04mH, RG = 50Ω, IAS = 90A, VGS =10V.  
2
www.irf.com  
© 2012 International Rectifier  
October 17, 2012  
IRFR/U7440PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Forward Transconductance  
280 –––  
–––  
134  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 90A  
nC ID =90A  
DS =20V  
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
89  
26  
26  
63  
11  
39  
51  
34  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
V
VGS = 10V  
ID = 90A, VDS =0V, VGS = 10V  
ns VDD = 20V  
ID = 30A  
RG = 2.7Ω  
VGS = 10V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4610 –––  
pF VGS = 0V  
VDS = 25V  
Output Capacitance  
Reverse Transfer Capacitance  
––– 690  
––– 460  
––– 855  
–––  
–––  
–––  
ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER) Effective Output Capacitance (Energy Related)  
Coss eff. (TR) Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 32V  
VGS = 0V, VDS = 0V to 32V  
See Fig. 12  
––– 1210 –––  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
––– ––– 180  
A
A
V
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 760  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
p-n junction diode.  
TJ = 25°C, IS = 90A, VGS = 0V  
VSD  
trr  
–––  
–––  
–––  
–––  
–––  
–––  
0.9  
34  
35  
33  
34  
1.8  
1.3  
–––  
–––  
–––  
–––  
–––  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
IF = 90A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC TJ = 25°C  
TJ = 125°C  
IRRM  
A
TJ = 25°C  
3
www.irf.com  
© 2012 International Rectifier  
October 17, 2012  
IRFR/U7440PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.3V  
VGS  
TOP  
TOP  
15V  
10V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.3V  
BOTTOM  
BOTTOM  
4.3V  
1
4.3V  
V
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 90A  
D
V
= 10V  
GS  
100  
10  
1
T
= 175°C  
J
T
= 25°C  
= 10V  
J
V
DS  
60μs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
16  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 90A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
V
V
= 32V  
= 20V  
rss  
gd  
DS  
DS  
C
= C + C  
ds  
12  
8
oss  
gd  
Ciss  
Coss  
Crss  
4
0
100  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2012 International Rectifier  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
October 17, 2012  
IRFR/U7440PbF  
1000  
100  
10  
1000  
100  
10  
100μsec  
T
= 175°C  
J
1msec  
imited by Package  
L
T
= 25°C  
J
OPERATION IN THIS AREA  
10msec  
LIMITED BY R (on)  
DS  
1
1
Tc = 25°C  
DC  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
0.1  
0.1  
0.1  
1
10  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Id = 1.0mA  
0
10  
20  
30  
40  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
V
Drain-to-Source Voltage (V)  
T
DS,  
J
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
10.0  
V
= 5.5V  
= 6.0V  
= 7.0V  
GS  
8.0  
V
GS  
V
GS  
VGS = 8.0V  
=10V  
6.0  
4.0  
2.0  
0.0  
V
GS  
0
20 40 60 80 100 120 140 160 180 200  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
© 2012 International Rectifier  
5
www.irf.com  
October 17, 2012  
IRFR/U7440PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
ΔΤ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
180  
160  
140  
120  
100  
80  
TOP  
BOTTOM 1.0% Duty Cycle  
= 90A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 15, 16).  
60  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
40  
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)  
20  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com © 2012 International Rectifier  
October 17, 2012  
IRFR/U7440PbF  
8
6
4
2
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
I
= 54A  
= 34V  
F
V
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 100μA  
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
D
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/μs)  
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
120  
8
I
= 54A  
= 34V  
I
= 90A  
= 34V  
F
F
V
V
100  
80  
60  
40  
20  
0
R
R
T = 25°C  
T = 25°C  
J
J
6
4
2
0
T = 125°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
100  
I
= 90A  
= 34V  
F
V
R
80  
60  
40  
20  
0
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
© 2012 International Rectifier  
7
www.irf.com  
October 17, 2012  
IRFR/U7440PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
Ω
0.01  
t
p
I
AS  
Fig 23b. Unclamped Inductive Waveforms  
Fig 23a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 25a. Gate Charge Test Circuit  
www.irf.com © 2012 International Rectifier  
Fig 25b. Gate Charge Waveform  
October 17, 2012  
8
IRFR/U7440PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
EXAMPLE: THIS IS AN IRFR120  
PART NUMBER  
WITH ASSEMBLY  
LOT CODE 1234  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 1 = 2001  
WEE K 16  
IRFR120  
116A  
ASSEMBLED ON WW 16, 2001  
IN THE ASSEMBLY LINE "A"  
12  
34  
LINE A  
Note: "P" in assembly lineposition  
ASS EMBLY  
LOT CODE  
indicates "L ead-F ree"  
"P" in assembly line position indicates  
"Lead-F ree" qualification to the cons umer-level  
PART NUMBER  
DATE CODE  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
OR  
IRFR120  
12 34  
LOGO  
P = DESIGNATES LEAD-FREE  
PRODUCT QUALIFIED TO THE  
CONSUMER LEVEL (OPTIONAL)  
ASSEMBLY  
LOT CODE  
YEAR 1 = 2001  
WEEK 16  
A = AS S E MB L Y S IT E CODE  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com  
© 2012 International Rectifier  
October 17, 2012  
IRFR/U7440PbF  
I-Pak(TO-251AA)PackageOutline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
PART NUMBER  
EXAMPLE: THIS IS AN IRFU120  
INTERNATIONAL  
RECTIFIER  
LOGO  
WIT H AS S E MBLY  
LOT CODE 5678  
DAT E CODE  
YEAR 1 = 2001  
WE EK 19  
IRFU120  
119A  
78  
ASSEMBLED ON WW19, 2001  
IN THE ASSEMBLY LINE "A"  
56  
LINE A  
AS S E MB L Y  
LOT CODE  
Note: "P" in assembly lineposition  
indicates Lead-Free"  
OR  
PART NUMBER  
DATE CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFU120  
56 78  
YEAR 1 = 2001  
AS S E MBL Y  
LOT CODE  
WE EK 19  
A = AS S E MB L Y S IT E CODE  
10  
www.irf.com  
© 2012 International Rectifier  
October 17, 2012  
IRFR/U7440PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Qualification information†  
Industrial††  
(per JEDEC JESD47F††† guidelines)  
MSL1  
Qualification level  
D-PAK  
I-PAK  
(per JEDEC J-STD-020D†††)  
Not applicable  
Moisture Sensitivity Level  
RoHS compliant  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comments  
10/17/2012  
Added I-Pak -All pages  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
11  
www.irf.com  
© 2012 International Rectifier  
October 17, 2012  

相关型号:

IRFR7446PBF

Power Field-Effect Transistor, 56A I(D), 40V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3/2
INFINEON

IRFR7446TRPBF

Power Field-Effect Transistor, 56A I(D), 40V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3/2
INFINEON

IRFR7540

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFR7540PBF

Brushed Motor drive applications
INFINEON

IRFR7540PBF_15

Brushed Motor drive applications
INFINEON

IRFR7546PBF

Brushed motor drive applications
INFINEON

IRFR7546PBF_15

Brushed motor drive applications
INFINEON

IRFR7740PBF

Brushed motor drive applications
INFINEON

IRFR7740PBF_15

Brushed motor drive applications
INFINEON

IRFR7746PBF

Brushed Motor drive applications
INFINEON

IRFR7746PBF_15

Brushed Motor drive applications
INFINEON

IRFR812PBF

HEXFETPower MOSFET
INFINEON